Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A New Approach to Melanoma Treatment: microRNAs

Author(s): Suleyman Ilhan*, Ferdi Oguz and Harika Atmaca

Volume 24, Issue 16, 2024

Published on: 25 April, 2024

Page: [1362 - 1376] Pages: 15

DOI: 10.2174/0115680266291290240417081544

Price: $65

conference banner
Abstract

Although immunotherapy and targeted therapy have radically changed melanoma treatment, the development of resistance and reduction of patient responses are still significant problems. Small molecule inhibitors are needed to overcome this situation, and biomarkers that can estimate whether patients will reply to existing treatments need to be developed. miRNAs are involved in diverse processes such as tumor development, tumor progression, metastasis, and invasion. While some miRNAs act as tumor suppressors, others may be oncogenic. miRNAs also contribute to the processes involved in drug resistance. There is increasing evidence demonstrating the possible effect of miRNAs on the diagnosis and treatment markers of melanoma. The manuscript focuses on the current challenges in melanoma treatment, highlighting issues such as the development of resistance and reduced patient responses despite the revolutionary advancements in targeted therapy and immunotherapy. It underscores the need for small molecule inhibitors and the creation of biomarkers for predicting patient responses to current treatments. The role of miRNAs in processes such as tumor development, metastasis, and invasion has been highlighted. While certain miRNAs function as tumor suppressors, others may exhibit oncogenic properties. Furthermore, increasing evidence is presented demonstrating the potential significance of miRNAs as markers for the symptom and identification of melanoma. These findings indicate a promising avenue for future research and clinical applications. In summary, the article effectively communicates key insights, making it a valuable resource for those interested in melanoma research and treatment.

Keywords: MiRNAs, Melanoma, Oncogenic miRNAs, Therapeutics, MiRNA biomarkers, Immunosuppressive.

Graphical Abstract
[1]
Göl, İ.; Erkin, Ö. Knowledge and practices of primary care providers on skin cancer and skin self-examination. Revista da Escola de Enfermagem, 2018, 52.
[http://dx.doi.org/10.1590/S1980-220X2017039703359]
[2]
Carr, S.; Smith, C.; Wernberg, J.; Saunders, W.B. Epidemiology and Risk Factors of Melanoma Surgical Clinics of North America, 2020, 100(1), 1-12.
[http://dx.doi.org/10.1016/j.suc.2019.09.005]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Rastrelli Marco, T.S.R.R.C.A.M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification in vivo, 2014, 28(6), 1005-1012.
[5]
The Independent Community Advisory Board. The melanoma white paper: Reshaping EU healthcare for melanoma patients 2012.
[6]
Acer, E.; Kaya Erdoğan, H. SIK GÖRÜLEN DERİ KANSERLERİNİN EPİDEMİYOLOJİSİ. ESTÜDAM Halk Sağlığı Dergisi, 2019, 4, 52-60.
[http://dx.doi.org/10.35232/estudamhsd.499257]
[7]
Memon, A.; Bannister, P.; Rogers, I.; Sundin, J.; Al-Ayadhy, B.; James, P.W.; McNally, R.J.Q. Changing epidemiology and age-specific incidence of cutaneous malignant melanoma in England: An analysis of the national cancer registration data by age, gender and anatomical site, 1981–2018. Lancet Reg. Health Eur., 2021, 2, 100024.
[http://dx.doi.org/10.1016/j.lanepe.2021.100024] [PMID: 34557790]
[8]
Ghiasvand, R.; Rueegg, C.S.; Weiderpass, E.; Green, A.C.; Lund, E.; Veierød, M.B.; Ghiasvand Respond to “Indoor Tanning—A Melanoma Accelerator?”. Am. J. Epidemiol., 2017, 185(3), 160-161.
[http://dx.doi.org/10.1093/aje/kww150] [PMID: 28077361]
[9]
Dzwierzynski, W.W. Melanoma risk factors and prevention. Clin. Plast. Surg., 2021, 48(4), 543-550.
[http://dx.doi.org/10.1016/j.cps.2021.05.001] [PMID: 34503715]
[10]
Spanogle, J.P.; Clarke, C.A.; Aroner, S.; Swetter, S.M. Risk of second primary malignancies following cutaneous melanoma diagnosis: A population-based study. J. Am. Acad. Dermatol., 2010, 62(5), 757-767.
[http://dx.doi.org/10.1016/j.jaad.2009.07.039] [PMID: 20223559]
[11]
Omland, S.H.; Ahlström, M.G.; Gerstoft, J.; Pedersen, G.; Mohey, R.; Pedersen, C.; Kronborg, G.; Larsen, C.S.; Kvinesdal, B.; Gniadecki, R.; Obel, N.; Omland, L.H. Risk of skin cancer in patients with HIV: A danish nationwide cohort study. J. Am. Acad. Dermatol., 2018, 79(4), 689-695.
[http://dx.doi.org/10.1016/j.jaad.2018.03.024] [PMID: 29588249]
[12]
Yanik, E. L. Brief report: Cutaneous melanoma risk among people with HIV in the United States and Canada J Acquir Immune Defic Syndr, 2018, 78(5), 499-504.
[http://dx.doi.org/10.1097/QAI.0000000000001719] [PMID: 29771785]
[13]
Ascha, M.; Ascha, M.S.; Tanenbaum, J.; Bordeaux, J.S. Risk factors for melanoma in renal transplant recipients. JAMA Dermatol., 2017, 153(11), 1130-1136.
[http://dx.doi.org/10.1001/jamadermatol.2017.2291] [PMID: 28746700]
[14]
Rizvi, S. M. H. Long-term change in the risk of skin cancer after organ transplantation a population-based nationwide cohort study JAMA Dermatol, 2017, 153(12), 1270-1277.
[http://dx.doi.org/10.1001/jamadermatol.2017.2984] [PMID: 29049612]
[15]
Greco, A.; Safi, D.; Swami, U.; Ginader, T.; Milhem, M.; Zakharia, Y. Efficacy and adverse events in metastatic melanoma patients treated with combination BRAF plus MEK inhibitors versus BRAF inhibitors: A systematic review. Cancers, 2019, 11(12), 1950.
[http://dx.doi.org/10.3390/cancers11121950] [PMID: 31817473]
[16]
Tucker, M.A. Melanoma epidemiology. Hematol. Oncol. Clin. North Am., 2009, 23(3), 383-395.
[http://dx.doi.org/10.1016/j.hoc.2009.03.010] [PMID: 19464592]
[17]
Varrone, F.; Caputo, E. The miRNAs role in melanoma and in its resistance to therapy. Int. J. Mol. Sci., 2020, 21(3), 878.
[http://dx.doi.org/10.3390/ijms21030878] [PMID: 32013263]
[18]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment Cancer Biol Ther, 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[19]
Acet, O. Malignant melanoma types and treatment. Demiroğlu Bilim University Florence Nightingale J. Medi., 2019, 5(3), 155-165.
[http://dx.doi.org/10.5606/fng.btd.2019.029]
[20]
Mattia, G.; Puglisi, R.; Ascione, B.; Malorni, W.; Carè, A.; Matarrese, P. Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death Dis., 2018, 9(2), 112.
[http://dx.doi.org/10.1038/s41419-017-0059-7] [PMID: 29371600]
[21]
Nguyen, K.; Hignett, E.; Khachemoune, A. Current and emerging treatment options for metastatic melanoma: a focused review. Dermatol. Online J., 2020, 26(7), 1-10.
[http://dx.doi.org/10.5070/D3267049551]
[22]
Spagnolo, F. BRAF-mutant melanoma: Treatment approaches, resistance mechanisms, and diagnostic strategies In: OncoTarg. and Thera; Dove Medical Press Ltd., 2015; Vol. 8, pp. 157-168.
[23]
Lim, S.Y.; Menzies, A.M.; Rizos, H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma In: Cancer; John Wiley and Sons Inc., 2017; Vol. 123, pp. 2118-2129.
[24]
Patel, H.; Yacoub, N.; Mishra, R.; White, A.; Yuan, L.; Alanazi, S.; Garrett, J.T. Current advances in the treatment of braf-mutant melanoma. Cancers, 2020, 12(2), 482.
[http://dx.doi.org/10.3390/cancers12020482] [PMID: 32092958]
[25]
Kirkwood, J.M.; Kottschade, L.A.; McWilliams, R.R.; Khushalani, N.I.; Jang, S.; Hallmeyer, S.; McDermott, D.F.; Tawbi, H.; Che, M.; Lee, C.H.; Ritchings, C.; Le, T.K.; Park, B.; Ramsey, S. Real-world outcomes with immuno-oncology therapies in advanced melanoma: final results of the OPTIMIzE registry study. Immunotherapy, 2024, 16(1), 29-42.
[http://dx.doi.org/10.2217/imt-2022-0292] [PMID: 37937397]
[26]
Mooradian, M.J.; Sullivan, R.J. Immunotherapy in melanoma: recent advancements and future directions. Cancers, 2023, 15(16), 4176.
[http://dx.doi.org/10.3390/cancers15164176] [PMID: 37627204]
[27]
Gargalionis, A. N.; Basdra, E. K. Insights in microRNAs biology Curr Top Med Chem, 2013, 13(13), 1493-1502.
[http://dx.doi.org/10.2174/15680266113139990098] [PMID: 23745801]
[28]
Wozniak, M.; Czyz, M. The functional role of long non-coding rnas in melanoma. Cancers, 2021, 13(19), 4848.
[http://dx.doi.org/10.3390/cancers13194848] [PMID: 34638331]
[29]
Tang, K.; Zhang, H.; Li, Y.; Sun, Q.; Jin, H. Circular RNA as a potential biomarker for melanoma: A systematic review. Front Cell Dev Biol, 2021, 9, 638548.
[http://dx.doi.org/10.3389/fcell.2021.638548] [PMID: 33869186]
[30]
Kunz, M. MicroRNAs in melanoma biology. Adv Exp Med Biol, 2013, 774, 103-120.
[http://dx.doi.org/10.1007/978-94-007-5590-1_6]
[31]
Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet., 2009, 10(10), 704-714.
[http://dx.doi.org/10.1038/nrg2634] [PMID: 19763153]
[32]
Chan, S.H.; Wang, L.H. Regulation of cancer metastasis by microRNAs. J. Biomed. Sci., 2015, 22(1), 9.
[http://dx.doi.org/10.1186/s12929-015-0113-7] [PMID: 25614041]
[33]
Jing, Z.; Han, W.; Sui, X.; Xie, J.; Pan, H. Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett., 2015, 356(2), 332-338.
[http://dx.doi.org/10.1016/j.canlet.2014.09.039] [PMID: 25304373]
[34]
Chan, B.; Manley, J.; Lee, J.; Singh, S.R. The emerging roles of microRNAs in cancer metabolism. Cancer Lett., 2015, 356(2), 301-308.
[http://dx.doi.org/10.1016/j.canlet.2014.10.011] [PMID: 25451319]
[35]
Mazziotta, C. MicroRNA dysregulations in Merkel cell carcinoma: Molecular mechanisms and clinical applications In: J. Medi. Virol; John Wiley and Sons Inc., 2023; 95, p. (1)e28375.
[http://dx.doi.org/10.1002/jmv.28375] [PMID: 36477874]
[36]
Miśkiewicz, J.; Mielczarek-Palacz, A.; Gola, J.M. MicroRNAs as potential biomarkers in gynecological cancers. Biomedicines, 2023, 11(6), 1704.
[http://dx.doi.org/10.3390/biomedicines11061704] [PMID: 37371799]
[37]
Biswas, S. MicroRNAs as therapeutic agents: the future of the battle against cancer. Curr. Top. Med. Chem., 2019, 18(30), 2544-2554.
[http://dx.doi.org/10.2174/1568026619666181120121830] [PMID: 30457051]
[38]
Varamo, C.; Occelli, M.; Vivenza, D.; Merlano, M.; Lo Nigro, C. MicroRNAs role as potential biomarkers and key regulators in melanoma. Genes Chromosomes Cancer, 2017, 56(1), 3-10.
[http://dx.doi.org/10.1002/gcc.22402] [PMID: 27561079]
[39]
Mirzaei, H. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma Eur J Cancer, 2016, 53, 25-32.
[http://dx.doi.org/10.1016/j.ejca.2015.10.009]
[40]
Mione, M.; Bosserhoff, A. Micro RNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res., 2015, 28(3), 340-354.
[http://dx.doi.org/10.1111/pcmr.12346] [PMID: 25515738]
[41]
Mannavola, F.; Tucci, M.; Felici, C.; Stucci, S.; Silvestris, F. miRNAs in melanoma: a defined role in tumor progression and metastasis. Expert Rev. Clin. Immunol., 2016, 12(1), 79-89.
[http://dx.doi.org/10.1586/1744666X.2016.1100965] [PMID: 26505837]
[42]
Mueller, D.W.; Rehli, M.; Bosserhoff, A.K. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol., 2009, 129(7), 1740-1751.
[http://dx.doi.org/10.1038/jid.2008.452] [PMID: 19212343]
[43]
Bemis, L.T.; Chen, R.; Amato, C.M.; Classen, E.H.; Robinson, S.E.; Coffey, D.G.; Erickson, P.F.; Shellman, Y.G.; Robinson, W.A. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res., 2008, 68(5), 1362-1368.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2912] [PMID: 18316599]
[44]
Haflidadóttir, B.S.; Bergsteinsdóttir, K.; Praetorius, C.; Steingrímsson, E. miR-148 regulates Mitf in melanoma cells. PLoS One, 2010, 5(7), e11574.
[http://dx.doi.org/10.1371/journal.pone.0011574] [PMID: 20644734]
[45]
Segura, M.F. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor 2009. Available from: www.pnas.org/cgi/content/full/
[46]
Goswami, S.; Tarapore, R.S.; Poenitzsch Strong, A.M.; TeSlaa, J.J.; Grinblat, Y.; Setaluri, V.; Spiegelman, V.S. MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor (MITF) mRNA is inhibited by coding region determinant-binding protein (CRD-BP). J. Biol. Chem., 2015, 290(1), 384-395.
[http://dx.doi.org/10.1074/jbc.M114.590158] [PMID: 25414259]
[47]
Guo, J.; Zhang, J.F.; Wang, W.M.; Cheung, F.W.; Lu, Y.; Ng, C.; Kung, H.; Liu, W. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression. RNA Biol., 2014, 11(6), 732-741.
[http://dx.doi.org/10.4161/rna.28865] [PMID: 24824743]
[48]
Qian, H.; Yang, C.; Yang, Y. MicroRNA-26a inhibits the growth and invasiveness of malignant melanoma and directly targets on MITF gene. Cell Death Discov., 2017, 3(1), 17028.
[http://dx.doi.org/10.1038/cddiscovery.2017.28] [PMID: 28698805]
[49]
Luo, C.; Merz, P.R.; Chen, Y.; Dickes, E.; Pscherer, A.; Schadendorf, D.; Eichmüller, S.B. MiR-101 inhibits melanoma cell invasion and proliferation by targeting MITF and EZH2. Cancer Lett., 2013, 341(2), 240-247.
[http://dx.doi.org/10.1016/j.canlet.2013.08.021] [PMID: 23962556]
[50]
Bell, R.E.; Khaled, M.; Netanely, D.; Schubert, S.; Golan, T.; Buxbaum, A.; Janas, M.M.; Postolsky, B.; Goldberg, M.S.; Shamir, R.; Levy, C. Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J. Invest. Dermatol., 2014, 134(2), 441-451.
[http://dx.doi.org/10.1038/jid.2013.340] [PMID: 23934065]
[51]
Dror, S.; Sander, L.; Schwartz, H.; Sheinboim, D.; Barzilai, A.; Dishon, Y.; Apcher, S.; Golan, T.; Greenberger, S.; Barshack, I.; Malcov, H.; Zilberberg, A.; Levin, L.; Nessling, M.; Friedmann, Y.; Igras, V.; Barzilay, O.; Vaknine, H.; Brenner, R.; Zinger, A.; Schroeder, A.; Gonen, P.; Khaled, M.; Erez, N.; Hoheisel, J.D.; Levy, C. Melanoma miRNA trafficking controls tumour primary niche formation. Nat. Cell Biol., 2016, 18(9), 1006-1017.
[http://dx.doi.org/10.1038/ncb3399] [PMID: 27548915]
[52]
Shen, H.; Yu, X.; Yang, F.; Zhang, Z.; Shen, J.; Sun, J.; Choksi, S.; Jitkaew, S.; Shu, Y. Reprogramming of normal fibroblasts into cancer-associated fibroblasts by miRNAs-mediated CCL2/VEGFA signaling. PLoS Genet., 2016, 12(8), e1006244.
[http://dx.doi.org/10.1371/journal.pgen.1006244] [PMID: 27541266]
[53]
Soon, P.; Kiaris, H. MicroRNAs in the tumour microenvironment: big role for small players. Endocr. Relat. Cancer, 2013, 20(5), R257-R267.
[http://dx.doi.org/10.1530/ERC-13-0119] [PMID: 23878074]
[54]
Qin, A.; Wen, Z.; Zhou, Y.; Li, Y.; Li, Y.; Luo, J.; Ren, T.; Xu, L. Micro RNA -126 regulates the induction and function of CD 4 + Foxp3 + regulatory T cells through PI 3K/ AKT pathway. J. Cell. Mol. Med., 2013, 17(2), 252-264.
[http://dx.doi.org/10.1111/jcmm.12003] [PMID: 23301798]
[55]
Tittarelli, A.; Navarrete, M.; Lizana, M.; Hofmann-Vega, F.; Salazar-Onfray, F. Hypoxic melanoma cells deliver micrornas to dendritic cells and cytotoxic t lymphocytes through connexin-43 channels. Int. J. Mol. Sci., 2020, 21(20), 7567.
[http://dx.doi.org/10.3390/ijms21207567] [PMID: 33066331]
[56]
Noman, M.Z.; Buart, S.; Romero, P.; Ketari, S.; Janji, B.; Mari, B.; Mami-Chouaib, F.; Chouaib, S. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res., 2012, 72(18), 4629-4641.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1383] [PMID: 22962263]
[57]
Wozniak, M.; Sztiller-Sikorska, M.; Czyz, M. Diminution of miR-340-5p levels is responsible for increased expression of ABCB5 in melanoma cells under oxygen-deprived conditions. Exp. Mol. Pathol., 2015, 99(3), 707-716.
[http://dx.doi.org/10.1016/j.yexmp.2015.11.014] [PMID: 26554847]
[58]
Martinez-Usatorre, A.; Sempere, L.F.; Carmona, S.J.; Carretero-Iglesia, L.; Monnot, G.; Speiser, D.E.; Rufer, N.; Donda, A.; Zehn, D.; Jandus, C.; Romero, P. MicroRNA-155 expression is enhanced by T-cell receptor stimulation strength and correlates with improved tumor control in Melanoma. Cancer Immunol. Res., 2019, 7(6), 1013-1024.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0504] [PMID: 31043416]
[59]
Poniewierska-Baran, A.; Słuczanowska-Głąbowska, S.; Małkowska, P.; Sierawska, O.; Zadroga, Ł.; Pawlik, A.; Niedźwiedzka-Rystwej, P. Role of miRNA in melanoma development and progression. Int. J. Mol. Sci., 2022, 24(1), 201.
[http://dx.doi.org/10.3390/ijms24010201] [PMID: 36613640]
[60]
Sun, V.; Zhou, W.B.; Majid, S.; Kashani-Sabet, M.; Dar, A.A. MicroRNA-mediated regulation of melanoma. Br. J. Dermatol., 2014, 171(2), 234-241.
[http://dx.doi.org/10.1111/bjd.12989] [PMID: 24665835]
[61]
Dar, A.A.; Majid, S.; de Semir, D.; Nosrati, M.; Bezrookove, V.; Kashani-Sabet, M. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J. Biol. Chem., 2011, 286(19), 16606-16614.
[http://dx.doi.org/10.1074/jbc.M111.227611] [PMID: 21454583]
[62]
Noguchi, S.; Mori, T.; Otsuka, Y.; Yamada, N.; Yasui, Y.; Iwasaki, J.; Kumazaki, M.; Maruo, K.; Akao, Y. Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J. Biol. Chem., 2012, 287(15), 11769-11777.
[http://dx.doi.org/10.1074/jbc.M111.325027] [PMID: 22354972]
[63]
Greenberg, E.; Hershkovitz, L.; Itzhaki, O.; Hajdu, S.; Nemlich, Y.; Ortenberg, R.; Gefen, N.; Edry, L.; Modai, S.; Keisari, Y.; Besser, M.J.; Schachter, J.; Shomron, N.; Markel, G. Regulation of cancer aggressive features in melanoma cells by microRNAs. PLoS One, 2011, 6(4), e18936.
[http://dx.doi.org/10.1371/journal.pone.0018936] [PMID: 21541354]
[64]
Levati, L.; Pagani, E.; Romani, S.; Castiglia, D.; Piccinni, E.; Covaciu, C.; Caporaso, P.; Bondanza, S.; Antonetti, F.R.; Bonmassar, E.; Martelli, F.; Alvino, E.; D’Atri, S. MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell Melanoma Res., 2011, 24(3), 538-550.
[http://dx.doi.org/10.1111/j.1755-148X.2011.00857.x] [PMID: 21466664]
[65]
Wang, H.F.; Chen, H.; Ma, M.W.; Wang, J.; Tang, T.T.; Ni, L.S.; Yu, J.L.; Li, Y.Z.; Bai, B.X. miR-573 regulates melanoma progression by targeting the melanoma cell adhesion molecule. Oncol. Rep., 2013, 30(1), 520-526.
[http://dx.doi.org/10.3892/or.2013.2451] [PMID: 23670160]
[66]
Felli, N.; Felicetti, F.; Lustri, A.M.; Errico, M.C.; Bottero, L.; Cannistraci, A.; De Feo, A.; Petrini, M.; Pedini, F.; Biffoni, M.; Alvino, E.; Negrini, M.; Ferracin, M.; Mattia, G.; Carè, A. miR-126&126* restored expressions play a tumor suppressor role by directly regulating ADAM9 and MMP7 in melanoma. PLoS One, 2013, 8(2), e56824.
[http://dx.doi.org/10.1371/journal.pone.0056824] [PMID: 23437250]
[67]
Reuland, S.N.; Smith, S.M.; Bemis, L.T.; Goldstein, N.B.; Almeida, A.R.; Partyka, K.A.; Marquez, V.E.; Zhang, Q.; Norris, D.A.; Shellman, Y.G. MicroRNA-26a is strongly downregulated in melanoma and induces cell death through repression of silencer of death domains (SODD). J. Invest. Dermatol., 2013, 133(5), 1286-1293.
[http://dx.doi.org/10.1038/jid.2012.400] [PMID: 23190898]
[68]
Levy, C.; Khaled, M.; Iliopoulos, D.; Janas, M.M.; Schubert, S.; Pinner, S.; Chen, P.H.; Li, S.; Fletcher, A.L.; Yokoyama, S.; Scott, K.L.; Garraway, L.A.; Song, J.S.; Granter, S.R.; Turley, S.J.; Fisher, D.E.; Novina, C.D. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol. Cell, 2010, 40(5), 841-849.
[http://dx.doi.org/10.1016/j.molcel.2010.11.020] [PMID: 21109473]
[69]
Penna, E.; Orso, F.; Cimino, D.; Tenaglia, E.; Lembo, A.; Quaglino, E.; Poliseno, L.; Haimovic, A.; Osella-Abate, S.; De Pittà, C.; Pinatel, E.; Stadler, M.B.; Provero, P.; Bernengo, M.G.; Osman, I.; Taverna, D. microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J., 2011, 30(10), 1990-2007.
[http://dx.doi.org/10.1038/emboj.2011.102] [PMID: 21468029]
[70]
Garofalo, M.; Di Leva, G.; Romano, G.; Nuovo, G.; Suh, S.S.; Ngankeu, A.; Taccioli, C.; Pichiorri, F.; Alder, H.; Secchiero, P.; Gasparini, P.; Gonelli, A.; Costinean, S.; Acunzo, M.; Condorelli, G.; Croce, C.M. RETRACTED: miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 2009, 16(6), 498-509.
[http://dx.doi.org/10.1016/j.ccr.2009.10.014] [PMID: 19962668]
[71]
Luo, C.; Tetteh, P.W.; Merz, P.R.; Dickes, E.; Abukiwan, A.; Hotz-Wagenblatt, A.; Holland-Cunz, S.; Sinnberg, T.; Schittek, B.; Schadendorf, D.; Diederichs, S.; Eichmüller, S.B. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J. Invest. Dermatol., 2013, 133(3), 768-775.
[http://dx.doi.org/10.1038/jid.2012.357] [PMID: 23151846]
[72]
Rang, Z.; Yang, G.; Wang, Y.; Cui, F. miR-542-3p suppresses invasion and metastasis by targeting the proto-oncogene serine/threonine protein kinase, PIM1, in melanoma. Biochem. Biophys. Res. Commun., 2016, 474(2), 315-320.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.093] [PMID: 27107696]
[73]
Bar-Eli, M. Searching for the ‘melano-miRs’: miR-214 drives melanoma metastasis. EMBO J., 2011, 30(10), 1880-1881.
[http://dx.doi.org/10.1038/emboj.2011.132] [PMID: 21593728]
[74]
Xu, Y.; Brenn, T.; Brown, E.R.S.; Doherty, V.; Melton, D.W. Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br. J. Cancer, 2012, 106(3), 553-561.
[http://dx.doi.org/10.1038/bjc.2011.568] [PMID: 22223089]
[75]
Dar, A.A.; Majid, S.; Rittsteuer, C.; de Semir, D.; Bezrookove, V.; Tong, S.; Nosrati, M.; Sagebiel, R.; Miller, J.R., III; Kashani-Sabet, M. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J. Natl. Cancer Inst., 2013, 105(6), 433-442.
[http://dx.doi.org/10.1093/jnci/djt003] [PMID: 23365201]
[76]
Felicetti, F.; Errico, M.C.; Bottero, L.; Segnalini, P.; Stoppacciaro, A.; Biffoni, M.; Felli, N.; Mattia, G.; Petrini, M.; Colombo, M.P.; Peschle, C.; Carè, A. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res., 2008, 68(8), 2745-2754.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2538] [PMID: 18417445]
[77]
Errico, M.C.; Felicetti, F.; Bottero, L.; Mattia, G.; Boe, A.; Felli, N.; Petrini, M.; Bellenghi, M.; Pandha, H.S.; Calvaruso, M.; Tripodo, C.; Colombo, M.P.; Morgan, R.; Carè, A. The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway. Int. J. Cancer, 2013, 133(4), 879-892.
[http://dx.doi.org/10.1002/ijc.28097] [PMID: 23400877]
[78]
Satzger, I.; Mattern, A.; Kuettler, U.; Weinspach, D.; Voelker, B.; Kapp, A.; Gutzmer, R. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int. J. Cancer, 2010, 126(11), 2553-2562.
[http://dx.doi.org/10.1002/ijc.24960] [PMID: 19830692]
[79]
Jin, L.; Hu, W.L.; Jiang, C.C.; Wang, J.X.; Han, C.C.; Chu, P.; Zhang, L.J.; Thorne, R.F.; Wilmott, J.; Scolyer, R.A.; Hersey, P.; Zhang, X.D.; Wu, M. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 15840-15845.
[http://dx.doi.org/10.1073/pnas.1019312108] [PMID: 21896753]
[80]
Shen, Z. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment 2017. Available from: www.impactjournals.com/oncotarget/
[81]
Min, S.; Li, L.; Zhang, M.; Zhang, Y.; Liang, X.; Xie, Y.; He, Q.; Li, Y.; Sun, J.; Liu, Q.; Jiang, X.; Zhang, Y.; Che, Y.; Yang, R. TGF-β-associated miR-27a inhibits dendritic cell-mediated differentiation of Th1 and Th17 cells by TAB3, p38 MAPK, MAP2K4 and MAP2K7. Genes Immun., 2012, 13(8), 621-631.
[http://dx.doi.org/10.1038/gene.2012.45] [PMID: 23034448]
[82]
Dynoodt, P.; Speeckaert, R.; De Wever, O.; Chevolet, I.; Brochez, L.; Lambert, J.; Van Gele, M. miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells. Int. J. Oncol., 2013, 42(4), 1443-1451.
[http://dx.doi.org/10.3892/ijo.2013.1823] [PMID: 23404256]
[83]
Yamazaki, H.; Chijiwa, T.; Inoue, Y.; Abe, Y.; Suemizu, H.; Kawai, K.; Wakui, M.; Furukawa, D.; Mukai, M.; Kuwao, S.; Saegusa, M.; Nakamura, M. Overexpression of the miR-34 family suppresses invasive growth of malignant melanoma with the wild-type p53 gene. Exp. Ther. Med., 2012, 3(5), 793-796.
[http://dx.doi.org/10.3892/etm.2012.497] [PMID: 22969970]
[84]
Lohcharoenkal, W.; Das Mahapatra, K.; Pasquali, L.; Crudden, C.; Kular, L.; Akkaya Ulum, Y.Z.; Zhang, L.; Xu Landén, N.; Girnita, L.; Jagodic, M.; Ståhle, M.; Sonkoly, E.; Pivarcsi, A. Genome-wide screen for MicroRNAs reveals a role for miR-203 in melanoma metastasis. J. Invest. Dermatol., 2018, 138(4), 882-892.
[http://dx.doi.org/10.1016/j.jid.2017.09.049] [PMID: 29104160]
[85]
Rambow, F.; Bechadergue, A.; Luciani, F.; Gros, G.; Domingues, M.; Bonaventure, J.; Meurice, G.; Marine, J.C.; Larue, L. Regulation of melanoma progression through the TCF4/miR-125b/NEDD9 cascade. J. Invest. Dermatol., 2016, 136(6), 1229-1237.
[http://dx.doi.org/10.1016/j.jid.2016.02.803] [PMID: 26968260]
[86]
Wellner, U.; Schubert, J.; Burk, U.C.; Schmalhofer, O.; Zhu, F.; Sonntag, A.; Waldvogel, B.; Vannier, C.; Darling, D.; Hausen, A.; Brunton, V.G.; Morton, J.; Sansom, O.; Schüler, J.; Stemmler, M.P.; Herzberger, C.; Hopt, U.; Keck, T.; Brabletz, S.; Brabletz, T. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol., 2009, 11(12), 1487-1495.
[http://dx.doi.org/10.1038/ncb1998] [PMID: 19935649]
[87]
Domingues, M.J.; Rambow, F.; Job, B.; Papon, L.; Liu, W.; Larue, L.; Bonaventure, J. β-catenin inhibitor ICAT modulates the invasive motility of melanoma cells. Cancer Res., 2014, 74(7), 1983-1995.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0920] [PMID: 24514042]
[88]
Migliore, C.; Petrelli, A.; Ghiso, E.; Corso, S.; Capparuccia, L.; Eramo, A.; Comoglio, P.M.; Giordano, S. MicroRNAs impair MET-mediated invasive growth. Cancer Res., 2008, 68(24), 10128-10136.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2148] [PMID: 19074879]
[89]
Liu, K.; Jin, J.; Rong, K.; Zhuo, L.; Li, P. MicroRNA-675 inhibits cell proliferation and invasion in melanoma by directly targeting metadherin. Mol. Med. Rep., 2017, 17(2), 3372-3379.
[http://dx.doi.org/10.3892/mmr.2017.8264] [PMID: 29257296]
[90]
Bhattacharya, A.; Schmitz, U.; Raatz, Y.; Schönherr, M.; Kottek, T.; Schauer, M.; Franz, S.; Saalbach, A.; Anderegg, U.; Wolkenhauer, O.; Schadendorf, D.; Simon, J.C.; Magin, T.; Vera, J.; Kunz, M. miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy. Oncotarget, 2015, 6(5), 2966-2980.
[http://dx.doi.org/10.18632/oncotarget.3070] [PMID: 25650662]
[91]
Pencheva, N.; Tran, H.; Buss, C.; Huh, D.; Drobnjak, M.; Busam, K.; Tavazoie, S.F. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell, 2012, 151(5), 1068-1082.
[http://dx.doi.org/10.1016/j.cell.2012.10.028] [PMID: 23142051]
[92]
Wang, X.; Qin, X.; Yan, M.; Shi, J.; Xu, Q.; Li, Z.; Yang, W.; Zhang, J.; Chen, W. Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression. J. Exp. Clin. Cancer Res., 2019, 38(1), 151.
[http://dx.doi.org/10.1186/s13046-019-1144-9] [PMID: 30961650]
[93]
Aksenenko, M.; Palkina, N.; Komina, A.; Tashireva, L.; Ruksha, T. Differences in microRNA expression between melanoma and healthy adjacent skin. BMC Dermatol., 2019, 19(1), 1.
[http://dx.doi.org/10.1186/s12895-018-0081-1] [PMID: 30611259]
[94]
Ghafouri-Fard, S.; Gholipour, M.; Taheri, M. MicroRNA signature in melanoma: biomarkers and therapeutic targets. Front. Oncol., 2021, 11(22), 608987.
[http://dx.doi.org/10.3389/fonc.2021.608987] [PMID: 33968718]
[95]
D’Atri; Alvino, E.; Pagani, E.; Arcelli, D.; Caporaso, P.; Bondanza, S.; Di Leva, G.; Ferracin, M.; Volinia, S.; Bonmassar, E.; Croce, C.M.; D’Atri, S. Altered expression of selected microRNAs in melanoma: Antiproliferative and proapoptotic activity of miRNA-155. Int. J. Oncol., 2009, 35(2), 393-400.
[http://dx.doi.org/10.3892/ijo_00000352] [PMID: 19578755]
[96]
Liu, L.; Qiu, M.; Tan, G.; Liang, Z.; Qin, Y.; Chen, L.; Chen, H.; Liu, J. miR-200c Inhibits invasion, migration and proliferation of bladder cancer cells through down-regulation of BMI-1 and E2F3. J. Transl. Med., 2014, 12(1), 305.
[http://dx.doi.org/10.1186/s12967-014-0305-z] [PMID: 25367080]
[97]
Liu, S.; Tetzlaff, M.T.; Wang, T.; Yang, R.; Xie, L.; Zhang, G.; Krepler, C.; Xiao, M.; Beqiri, M.; Xu, W.; Karakousis, G.; Schuchter, L.; Amaravadi, R.K.; Xu, W.; Wei, Z.; Herlyn, M.; Yao, Y.; Zhang, L.; Wang, Y.; Zhang, L.; Xu, X. miR-200c/Bmi1 axis and epithelial–mesenchymal transition contribute to acquired resistance to BRAF inhibitor treatment. Pigment Cell Melanoma Res., 2015, 28(4), 431-441.
[http://dx.doi.org/10.1111/pcmr.12379] [PMID: 25903073]
[98]
Kawasaki, K.; Kawakami, T.; Watabe, H.; Itoh, F.; Mizoguchi, M.; Soma, Y. Expression of matrilysin (matrix metalloproteinase-7) in primary cutaneous and metastatic melanoma. Br. J. Dermatol., 2007, 156(4), 613-619.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07678.x] [PMID: 17493064]
[99]
Wang, Z.; Li, Y.; Ahmad, A.; Azmi, A.S.; Kong, D.; Banerjee, S.; Sarkar, F.H. Targeting miRNAs involved in cancer stem cell and EMT regulation: An emerging concept in overcoming drug resistance. Drug Resist. Updat., 2010, 13(4-5), 109-118.
[http://dx.doi.org/10.1016/j.drup.2010.07.001] [PMID: 20692200]
[100]
Elson-Schwab, I.; Lorentzen, A.; Marshall, C.J. MicroRNA-200 family members differentially regulate morphological plasticity and mode of melanoma cell invasion. PLoS One, 2010, 5(10), e13176.
[http://dx.doi.org/10.1371/journal.pone.0013176] [PMID: 20957176]
[101]
Adam, L.; Zhong, M.; Choi, W.; Qi, W.; Nicoloso, M.; Arora, A.; Calin, G.; Wang, H.; Siefker-Radtke, A.; McConkey, D.; Bar-Eli, M.; Dinney, C. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res., 2009, 15(16), 5060-5072.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2245] [PMID: 19671845]
[102]
Gajos-Michniewicz, A.; Czyz, M. Role of mirnas in melanoma metastasis. Cancers, 2019, 11(3), 326.
[http://dx.doi.org/10.3390/cancers11030326] [PMID: 30866509]
[103]
Zaki, K. A.; Basu, B.; Corrie, P. The role of angiogenesis inhibitors in the management of melanoma Curr Top Med Chem, 2012, 12(1), 32-49.
[http://dx.doi.org/10.2174/156802612798919240] [PMID: 22196268]
[104]
Fleming, N.H.; Zhong, J.; da Silva, I.P.; Vega-Saenz de Miera, E.; Brady, B.; Han, S.W.; Hanniford, D.; Wang, J.; Shapiro, R.L.; Hernando, E.; Osman, I. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer, 2015, 121(1), 51-59.
[http://dx.doi.org/10.1002/cncr.28981] [PMID: 25155861]
[105]
Shiiyama, R.; Fukushima, S.; Jinnin, M.; Yamashita, J.; Miyashita, A.; Nakahara, S.; Kogi, A.; Aoi, J.; Masuguchi, S.; Inoue, Y.; Ihn, H. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res., 2013, 23(5), 366-372.
[http://dx.doi.org/10.1097/CMR.0b013e328363e485] [PMID: 23863473]
[106]
Solé, C.; Tramonti, D.; Schramm, M.; Goicoechea, I.; Armesto, M.; Hernandez, L.; Manterola, L.; Fernandez-Mercado, M.; Mujika, K.; Tuneu, A.; Jaka, A.; Tellaetxe, M.; Friedländer, M.; Estivill, X.; Piazza, P.; Ortiz-Romero, P.; Middleton, M.; Lawrie, C. The circulating transcriptome as a source of biomarkers for melanoma. Cancers, 2019, 11(1), 70.
[http://dx.doi.org/10.3390/cancers11010070] [PMID: 30634628]
[107]
Kanemaru, H.; Fukushima, S.; Yamashita, J.; Honda, N.; Oyama, R.; Kakimoto, A.; Masuguchi, S.; Ishihara, T.; Inoue, Y.; Jinnin, M.; Ihn, H. The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J. Dermatol. Sci., 2011, 61(3), 187-193.
[http://dx.doi.org/10.1016/j.jdermsci.2010.12.010] [PMID: 21273047]
[108]
Fogli, S.; Polini, B.; Carpi, S.; Pardini, B.; Naccarati, A.; Dubbini, N.; Lanza, M.; Breschi, M.C.; Romanini, A.; Nieri, P. Identification of plasma microRNAs as new potential biomarkers with high diagnostic power in human cutaneous melanoma. Tumour Biol., 2017, 39(5), 1010428317701646.
[http://dx.doi.org/10.1177/1010428317701646] [PMID: 28466785]
[109]
Van Laar, R.; Lincoln, M.; Van Laar, B. Development and validation of a plasma-based melanoma biomarker suitable for clinical use. Br. J. Cancer, 2018, 118(6), 857-866.
[http://dx.doi.org/10.1038/bjc.2017.477] [PMID: 29360813]
[110]
Laar, R.V.; King, S.; McCoy, R.; Saad, M.; Fereday, S.; Winship, I.; Uzzell, C.; Landgren, A. Translation of a circulating miRNA signature of melanoma into a solid tissue assay to improve diagnostic accuracy and precision. Biomarkers Med., 2021, 15(13), 1111-1122.
[http://dx.doi.org/10.2217/bmm-2021-0289] [PMID: 34184547]
[111]
Poniewierska-Baran, A.; Zadroga, Ł.; Danilyan, E.; Małkowska, P.; Niedźwiedzka-Rystwej, P.; Pawlik, A. MicroRNA as a diagnostic tool, therapeutic target and potential biomarker in cutaneous malignant melanoma detection—narrative review. Int. J. Mol. Sci., 2023, 24(6), 5386.
[http://dx.doi.org/10.3390/ijms24065386] [PMID: 36982460]
[112]
Xiong, J.; Xue, Y.; Xia, Y.; Zhao, J.; Wang, Y. Identification of key microRNAs of plasma extracellular vesicles and their diagnostic and prognostic significance in melanoma. Open Med., 2020, 15(1), 464-482.
[http://dx.doi.org/10.1515/med-2020-0111] [PMID: 33313406]
[113]
Guo, Y.; Zhang, X.; Wang, L.; Li, M.; Shen, M.; Zhou, Z.; Zhu, S.; Li, K.; Fang, Z.; Yan, B.; Zhao, S.; Su, J.; Chen, X.; Peng, C. The plasma exosomal miR-1180-3p serves as a novel potential diagnostic marker for cutaneous melanoma. Cancer Cell Int., 2021, 21(1), 487.
[http://dx.doi.org/10.1186/s12935-021-02164-8] [PMID: 34544412]
[114]
Armand-Labit, V.; Meyer, N.; Casanova, A.; Bonnabau, H.; Platzer, V.; Tournier, E.; Sansas, B.; Verdun, S.; Thouvenot, B.; Hilselberger, B.; Doncescu, A.; Lamant, L.; Lacroix-Triki, M.; Favre, G.; Pradines, A. Identification of a circulating MicroRNA profile as a biomarker of metastatic cutaneous melanoma. Acta Derm. Venereol., 2016, 96(1), 29-34.
[http://dx.doi.org/10.2340/00015555-2156] [PMID: 26039581]
[115]
Babapoor, S.; Horwich, M.; Wu, R.; Levinson, S.; Gandhi, M.; Makkar, H.; Kristjansson, A.; Chang, M.; Dadras, S.S. microRNA in situ hybridization for miR-211 detection as an ancillary test in melanoma diagnosis. Mod. Pathol., 2016, 29(5), 461-475.
[http://dx.doi.org/10.1038/modpathol.2016.44] [PMID: 26916074]
[116]
Sahranavardfard, P.; Firouzi, J.; Azimi, M.; Khosravani, P.; Heydari, R.; Emami Razavi, A.; Dorraj, M.; Keighobadi, F.; Ebrahimi, M. MicroRNA-203 reinforces stemness properties in melanoma and augments tumorigenesis in vivo. J. Cell. Physiol., 2019, 234(11), 20193-20205.
[http://dx.doi.org/10.1002/jcp.28619] [PMID: 31016725]
[117]
Torres, R.; Lang, U.E.; Hejna, M.; Shelton, S.J.; Joseph, N.M.; Shain, A.H.; Yeh, I.; Wei, M.L.; Oldham, M.C.; Bastian, B.C.; Judson-Torres, R.L. MicroRNA ratios distinguish melanomas from nevi. J. Invest. Dermatol., 2020, 140(1), 164-173.
[http://dx.doi.org/10.1016/j.jid.2019.06.126] [PMID: 31580842]
[118]
Sun, X.; Li, J.; Sun, Y.; Zhang, Y.; Dong, L.; Shen, C.; Yang, L.; Yang, M.; Li, Y.; Shen, G.; Tu, Y.; Tao, J. miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget, 2016, 7(33), 53558-53570.
[http://dx.doi.org/10.18632/oncotarget.10669] [PMID: 27448964]
[119]
Stark, M.S. miR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma Available from: www.impactjournals.com/oncotarget/
[120]
Fattore, L.; Mancini, R.; Acunzo, M.; Romano, G.; Laganà, A.; Pisanu, M.E.; Malpicci, D.; Madonna, G.; Mallardo, D.; Capone, M.; Fulciniti, F.; Mazzucchelli, L.; Botti, G.; Croce, C.M.; Ascierto, P.A.; Ciliberto, G. miR-579-3p controls melanoma progression and resistance to target therapy. Proc. Natl. Acad. Sci. USA, 2016, 113(34), E5005-E5013.
[http://dx.doi.org/10.1073/pnas.1607753113] [PMID: 27503895]
[121]
Vergani, E. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b Available from: www.impactjournals.com/oncotarget/
[122]
Díaz-Martínez, M.; Benito-Jardón, L.; Alonso, L.; Koetz-Ploch, L.; Hernando, E.; Teixidó, J. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res., 2018, 78(4), 1017-1030.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1318] [PMID: 29229605]
[123]
Gaziel-Sovran, A.; Segura, M.F.; Di Micco, R.; Collins, M.K.; Hanniford, D.; Vega-Saenz de Miera, E.; Rakus, J.F.; Dankert, J.F.; Shang, S.; Kerbel, R.S.; Bhardwaj, N.; Shao, Y.; Darvishian, F.; Zavadil, J.; Erlebacher, A.; Mahal, L.K.; Osman, I.; Hernando, E. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell, 2011, 20(1), 104-118.
[http://dx.doi.org/10.1016/j.ccr.2011.05.027] [PMID: 21741600]
[124]
Heinemann, A.; Zhao, F.; Pechlivanis, S.; Eberle, J.; Steinle, A.; Diederichs, S.; Schadendorf, D.; Paschen, A. Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res., 2012, 72(2), 460-471.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1977] [PMID: 22102694]
[125]
Liu, Y.; Lai, L.; Chen, Q.; Song, Y.; Xu, S.; Ma, F.; Wang, X.; Wang, J.; Yu, H.; Cao, X.; Wang, Q. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J. Immunol., 2012, 188(11), 5500-5510.
[http://dx.doi.org/10.4049/jimmunol.1103505] [PMID: 22544933]
[126]
Arts, N.; Cané, S.; Hennequart, M.; Lamy, J.; Bommer, G.; Van den Eynde, B.; De Plaen, E. microRNA-155, induced by interleukin-1ß, represses the expression of microphthalmia-associated transcription factor (MITF-M) in melanoma cells. PLoS One, 2015, 10(4), e0122517.
[http://dx.doi.org/10.1371/journal.pone.0122517] [PMID: 25853464]
[127]
Bustos, M.A.; Ono, S.; Marzese, D.M.; Oyama, T.; Iida, Y.; Cheung, G.; Nelson, N.; Hsu, S.C.; Yu, Q.; Hoon, D.S.B. MiR-200a regulates CDK4/6 inhibitor effect by targeting CDK6 in metastatic melanoma. J. Invest. Dermatol., 2017, 137(9), 1955-1964.
[http://dx.doi.org/10.1016/j.jid.2017.03.039] [PMID: 28526299]
[128]
Huber, V.; Vallacchi, V.; Fleming, V.; Hu, X.; Cova, A.; Dugo, M.; Shahaj, E.; Sulsenti, R.; Vergani, E.; Filipazzi, P.; De Laurentiis, A.; Lalli, L.; Di Guardo, L.; Patuzzo, R.; Vergani, B.; Casiraghi, E.; Cossa, M.; Gualeni, A.; Bollati, V.; Arienti, F.; De Braud, F.; Mariani, L.; Villa, A.; Altevogt, P.; Umansky, V.; Rodolfo, M.; Rivoltini, L. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest., 2018, 128(12), 5505-5516.
[http://dx.doi.org/10.1172/JCI98060] [PMID: 30260323]
[129]
Taganov, K.D.; Boldin, M.P.; Chang, K-J.; Baltimore, D. NF-B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses Proc Natl Acad Sci, 2006, 103(33), 12481-12486.
[http://dx.doi.org/10.1073/pnas.0605298103]
[130]
Lee, H.M.; Kim, T.S.; Jo, E.K. MiR-146 and miR-125 in the regulation of innate immunity and inflammation In: BMB Reports; The Biochemical Society of the Republic of Korea, 2016; 49, pp. (6)311-318.
[http://dx.doi.org/10.5483/BMBRep.2016.49.6.056]
[131]
Hildebrand, D.; Eberle, M.E.; Wölfle, S.M.; Egler, F.; Sahin, D.; Sähr, A.; Bode, K.A.; Heeg, K. Hsa-miR-99b/let-7e/miR-125a cluster regulates pathogen recognition receptor-stimulated suppressive antigen-presenting cells. Front. Immunol., 2018, 9, 1224.
[http://dx.doi.org/10.3389/fimmu.2018.01224] [PMID: 29967604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy