Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Ligand-based Molecular Modeling of HDL Receptor SR-BI Inhibitors as Potent Anti-hyperlipidemic Agents

Author(s): Swati Verma* and Sarvesh Paliwal

Volume 21, Issue 16, 2024

Published on: 05 April, 2024

Page: [3375 - 3388] Pages: 14

DOI: 10.2174/0115701808239749230921113101

Price: $65

Abstract

Introduction: The High-density lipoprotein (HDL) receptor, Scavenger receptor class B, type I (SRBI) plays a crucial role in lipoprotein metabolism, cholesterol homeostasis, and atherosclerosis. In the present study, a quantitative structure-activity relationship study (QSAR) investigation was conducted on a data set of 31 novel indolinyl thiazole-based inhibitors of SR-BI mediated lipid uptake.

Methods: To build the QSAR model, Multiple linear regression analysis (MLR), partial least square analysis (PLS), and neural analysis (NN) were performed which were further evaluated internally as well as externally for the prediction of activity. The best QSAR model for MLR was selected with a correlation coefficient (r2) of 0.937, cross-validation r2cv of 0.908, and a standard error (S) value of 0.253. For PLS, r2 was 0.937 and for FFNN r2 was 0.961 (for the training set). This was further evaluated externally by a test set having r2 values 0.870 (MLR), 0.863(PLS), and 0.933(neural network) analysis.

Results: The final model comprised hydrophobic parameters (Lipole Z component) and steric parameters (molar refractivity and K alpha2 index).

Conclusion: All these descriptors generated comparable results which prove that the model generated is sound and has good predictability.

Keywords: HDL, SR-BI, QSAR, MLR, PLS, FFNN, TSAR, drug design.

Graphical Abstract
[1]
Shah, A.M.; Banerjee, T.; Mukherjee, D. Coronary, peripheral and cerebrovascular disease: A complex relationship. J. Indian Med. Assoc., 2010, 108(5), 292-294.
[PMID: 21121404]
[2]
Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[3]
Cleeman, J.I.; Lenfant, C. The national cholesterol education program. J. Am. Diet. Assoc., 1988, 88(11), 1401-1408.
[http://dx.doi.org/10.1016/S0002-8223(21)08024-X] [PMID: 3183260]
[4]
Gillotte-Taylor, K.; Boullier, A.; Witztum, J.L.; Steinberg, D.; Quehenberger, O. Scavenger receptor class B type I as a receptor for oxi-dized low density lipoprotein. J. Lipid Res., 2001, 42(9), 1474-1482.
[http://dx.doi.org/10.1016/S0022-2275(20)30281-9] [PMID: 11518768]
[5]
Acton, S.L.; Kozarsky, K.F.; Rigotti, A. The HDL receptor SR-BI: A new therapeutic target for atherosclerosis? Mol. Med. Today, 1999, 5(12), 518-524.
[http://dx.doi.org/10.1016/S1357-4310(99)01600-7] [PMID: 10562717]
[6]
Stangl, H.; Strobl, W.M. Role of SR-BI in HDL Metabolism; The HDL Handbook, 2017, pp. 171-185.
[7]
Nieland, T.J.F.; Shaw, J.T.; Jaipuri, F.A.; Maliga, Z.; Duffner, J.L.; Koehler, A.N.; Krieger, M. Influence of HDL-cholesterol-elevating drugs on the in vitro activity of the HDL receptor SR-BI. J. Lipid Res., 2007, 48(8), 1832-1845.
[http://dx.doi.org/10.1194/jlr.M700209-JLR200] [PMID: 17533223]
[8]
Rosenson, R.S.; Brewer, H.B., Jr; Davidson, W.S.; Fayad, Z.A.; Fuster, V.; Goldstein, J.; Hellerstein, M.; Jiang, X.C.; Phillips, M.C.; Rader, D.J.; Remaley, A.T.; Rothblat, G.H.; Tall, A.R.; Yvan-Charvet, L. Cholesterol efflux and atheroprotection: Advancing the concept of reverse cholesterol transport. Circulation, 2012, 125(15), 1905-1919.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.066589] [PMID: 22508840]
[9]
Dockendorff, C.; Faloon, P.W.; Yu, M.; Youngsaye, W.; Penman, M.; Nieland, T.J.F.; Nag, P.P.; Lewis, T.A.; Pu, J.; Bennion, M.; Negri, J.; Paterson, C.; Lam, G.; Dandapani, S.; Perez, J.R.; Munoz, B.; Palmer, M.A.; Schreiber, S.L.; Krieger, M. Indolinyl-thiazole based inhibitors of scavenger receptor-BI (SR-BI)-mediated lipid transport. ACS Med. Chem. Lett., 2015, 6(4), 375-380.
[http://dx.doi.org/10.1021/ml500154q] [PMID: 26478787]
[10]
Kubinyi, H. Evolutionary variable selection in regression and PLS analyses. J. Chemometr., 1996, 10(2), 119-133.
[http://dx.doi.org/10.1002/(SICI)1099-128X(199603)10:2<119::AID-CEM409>3.0.CO;2-4]
[11]
Sadowski, J.; Gasteiger, J. From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem. Rev., 1993, 93, 2567-2581.
[http://dx.doi.org/10.1021/cr00023a012]
[12]
Todeschini, V. Handbook of molecular descriptors; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/9783527613106]
[13]
Karelson, M. Molecular Descriptors in QSAR/QSPR; John Wiley & Sons: New York, 2000.
[14]
M.M. C. Multivariate QSAR. J. Braz. Chem. Soc., 2002, 13, 742-753.
[15]
Kowalski, B.R.; Bender, C.F. Pattern recognition. II. Linear and nonlinear methods for displaying chemical data. J. Am. Chem. Soc., 1973, 95(3), 686-693.
[http://dx.doi.org/10.1021/ja00784a007]
[16]
World, S.; Johansson, E.; Cocchi, M. PLS-partial least squares projections to latent str. In: 3D-QSAR in Drug Design, Theory, Methods, and Applications; Kubinyi, H., Ed.; ESCOM Science Publishers: Leiden, 1993, pp. 523-550.
[17]
Tetko, I.V.; Luik, A.I.; Poda, G.I. Applications of neural networks in structure-activity relationships of a small number of molecules. J. Med. Chem., 1993, 36(7), 811-814.
[http://dx.doi.org/10.1021/jm00059a003] [PMID: 8464034]
[18]
McFarland, J.W.; Gans, D.J. Cluster significance analysis contrasted with three other quantitative structure-activity relationship methods. J. Med. Chem., 1987, 30(1), 46-49.
[http://dx.doi.org/10.1021/jm00384a008] [PMID: 3806603]
[19]
World, S.; Eriksson, L. Statistical validation of QSAR results. In: Chemometric methods in molecular design; VCH: New York, 1995; pp. 309-318.

© 2024 Bentham Science Publishers | Privacy Policy