Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Neuropilin-1 Binding Peptide as Fusion to Diphtheria Toxin Induces Apoptosis in Non-small Cell Lung Cancer Cell Line

Author(s): Sara Eghtedari, Mahdi Behdani and Fatemeh Kazemi-Lomedasht*

Volume 30, Issue 17, 2024

Published on: 04 April, 2024

Page: [1317 - 1325] Pages: 9

DOI: 10.2174/0113816128292382240325074032

Abstract

Background: Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells.

Methods: The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR.

Results: Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24 h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells.

Conclusion: Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.

Keywords: NRP-1, diphtheria toxin, apoptosis, target therapy, peptide, angiogenesis.

[1]
Guo Q, Liu L, Chen Z, et al. Current treatments for non-small cell lung cancer. Front Oncol 2022; 12: 945102.
[http://dx.doi.org/10.3389/fonc.2022.945102] [PMID: 36033435]
[2]
Ruiz-Ceja KA, Chirino YI. Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomed Pharmacother 2017; 90: 24-37.
[http://dx.doi.org/10.1016/j.biopha.2017.03.018] [PMID: 28340378]
[3]
Dashtiahangar M, Rahbarnia L, Farajnia S, Salmaninejad A, Shabgah AG, Ghasemali S. Anti-cancer immunotoxins, challenges, and approaches. Curr Pharm Des 2021; 27(7): 932-41.
[http://dx.doi.org/10.2174/1381612826666201006155346] [PMID: 33023437]
[4]
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-based immunotoxins for colorectal cancer therapy. Biomedicines 2021; 9(11): 1729.
[http://dx.doi.org/10.3390/biomedicines9111729] [PMID: 34829955]
[5]
Kreitman RJ, Pastan I. Immunotoxins: From design to clinical application. Biomolecules 2021; 11(11): 1696.
[http://dx.doi.org/10.3390/biom11111696] [PMID: 34827694]
[6]
Khirehgesh MR, Sharifi J, Safari F, Akbari B. Immunotoxins and nanobody-based immunotoxins: Review and update. J Drug Target 2021; 29(8): 848-62.
[http://dx.doi.org/10.1080/1061186X.2021.1894435] [PMID: 33615933]
[7]
Grant MJ, Herbst RS, Goldberg SB. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol 2021; 18(10): 625-44.
[http://dx.doi.org/10.1038/s41571-021-00520-1] [PMID: 34168333]
[8]
Roshan R, Naderi S, Behdani M, Ahangari Cohan R, Kazemi-Lomedasht F. A novel immunotoxin targeting epithelial cell adhesion molecule using single domain antibody fused to diphtheria toxin. Mol Biotechnol 2023; 65(4): 637-44.
[PMID: 36129635]
[9]
Allred CA, Gormley C, Venugopal I, Li S, McGuire MJ, Brown KC. Tumor-specific intracellular delivery: Peptide-guided transport of a catalytic toxin. Commun Biol 2023; 6(1): 60.
[http://dx.doi.org/10.1038/s42003-022-04385-7] [PMID: 36650239]
[10]
Wenzel EV, Bosnak M, Tierney R, et al. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep 2020; 10(1): 571.
[http://dx.doi.org/10.1038/s41598-019-57103-5] [PMID: 31953428]
[11]
Murphy JR. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins 2011; 3(3): 294-308.
[http://dx.doi.org/10.3390/toxins3030294] [PMID: 22069710]
[12]
Sugiman-Marangos SN, Gill SK, Mansfield MJ, Orrell KE, Doxey AC, Melnyk RA. Structures of distant diphtheria toxin homologs reveal functional determinants of an evolutionarily conserved toxin scaffold. Commun Biol 2022; 5(1): 375.
[http://dx.doi.org/10.1038/s42003-022-03333-9] [PMID: 35440624]
[13]
Naderi S, Roshan R, Behdani M, Kazemi-Lomedasht F. Inhibition of neovascularisation in human endothelial cells using anti NRP-1 nanobody fused to truncated form of diphtheria toxin as a novel immunotoxin. Immunopharmacol Immunotoxicol 2021; 43(2): 230-8.
[http://dx.doi.org/10.1080/08923973.2021.1888114] [PMID: 33657977]
[14]
Shajari S, Farajollahi MM, Behdani M, Tarighi P. Production and conjugation of truncated recombinant diphtheria toxin to VEGFR-2 specific nanobody and evaluation of its cytotoxic effect on PC-3 cell line. Mol Biotechnol 2022; 64(11): 1218-26.
[http://dx.doi.org/10.1007/s12033-022-00485-1] [PMID: 35478310]
[15]
Hu C, Jiang X. Role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis. Target Oncol 2016; 11(4): 501-5.
[http://dx.doi.org/10.1007/s11523-016-0422-0] [PMID: 26916409]
[16]
Tillo M, Erskine L, Cariboni A, et al. VEGF189 binds NRP1 and is sufficient for VEGF/NRP1-dependent neuronal patterning in the developing brain. Development 2015; 142(2): dev.115998.
[http://dx.doi.org/10.1242/dev.115998] [PMID: 25519242]
[17]
Napolitano V, Tamagnone L. Neuropilins controlling cancer therapy responsiveness. Int J Mol Sci 2019; 20(8): 2049.
[http://dx.doi.org/10.3390/ijms20082049] [PMID: 31027288]
[18]
Hong TM, Chen YL, Wu YY, et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 2007; 13(16): 4759-68.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0001] [PMID: 17699853]
[19]
Douyère M, Chastagner P, Boura C. Neuropilin-1: A key protein to consider in the progression of pediatric brain tumors. Front Oncol 2021; 11: 665634.
[http://dx.doi.org/10.3389/fonc.2021.665634] [PMID: 34277411]
[20]
Yamada KM, Sixt M. Mechanisms of 3D cell migration. Nat Rev Mol Cell Biol 2019; 20(12): 738-52.
[http://dx.doi.org/10.1038/s41580-019-0172-9] [PMID: 31582855]
[21]
Feron O. Tumor-penetrating peptides: A shift from magic bullets to magic guns. Sci Transl Med 2010; 2(34): 34ps26.
[http://dx.doi.org/10.1126/scitranslmed.3001174] [PMID: 20519716]
[22]
Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev 2017; 110-111: 3-12.
[http://dx.doi.org/10.1016/j.addr.2016.03.008] [PMID: 27040947]
[23]
Savier E, Tuffery P, Bruzzoni-Giovanelli H, Rebollo A. Isolation of primary hepatocytes for testing tumor penetrating peptides. Methods Mol Biol 2022; 2383: 413-27.
[http://dx.doi.org/10.1007/978-1-0716-1752-6_26] [PMID: 34766304]
[24]
Liu D, Wang C, Yang J, An Y, Yang R, Teng G. CRGDK-functionalized PAMAM-based drug-delivery system with high permeability. ACS Omega 2020; 5(16): 9316-23.
[http://dx.doi.org/10.1021/acsomega.0c00202] [PMID: 32363282]
[25]
Sugahara KN, Braun GB, de Mendoza TH, et al. Tumor-penetrating iRGD peptide inhibits metastasis. Mol Cancer Ther 2015; 14(1): 120-8.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0366] [PMID: 25392370]
[26]
Kumar A, Huo S, Zhang X, et al. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano 2014; 8(5): 4205-20.
[http://dx.doi.org/10.1021/nn500152u] [PMID: 24730557]
[27]
Wang E, Sorolla A, Cunningham PT, et al. Tumor penetrating peptides inhibiting MYC as a potent targeted therapeutic strategy for triple-negative breast cancers. Oncogene 2019; 38(1): 140-50.
[http://dx.doi.org/10.1038/s41388-018-0421-y] [PMID: 30076412]
[28]
Takata T, Tanaka F, Yamada T, et al. Clinical significance of caspase-3 expression in pathologic-stage I, nonsmall-cell lung cancer. Int J Cancer 2001; 96(S1) (Suppl.): 54-60.
[http://dx.doi.org/10.1002/ijc.10347] [PMID: 11992386]
[29]
Alam M, Hasan GM, Eldin SM, et al. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161: 114452.
[http://dx.doi.org/10.1016/j.biopha.2023.114452] [PMID: 36878052]
[30]
Ozcan G, Singh M, Vredenburgh JJ. Leptomeningeal metastasis from non–small cell lung cancer and current landscape of treatments. Clin Cancer Res 2023; 29(1): 11-29.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-1585] [PMID: 35972437]
[31]
Jimenez-Hernandez LE, Vazquez-Santillan K, Castro-Oropeza R, et al. NRP1-positive lung cancer cells possess tumor-initiating properties. Oncol Rep 2018; 39(1): 349-57.
[PMID: 29138851]
[32]
Liu SD, Zhong LP, He J, Zhao YX. Targeting neuropilin-1 interactions is a promising anti-tumor strategy. Chin Med J 2021; 134(5): 508-17.
[http://dx.doi.org/10.1097/CM9.0000000000001200] [PMID: 33177389]
[33]
Ding Z, Du W, Lei Z, et al. Neuropilin 1 modulates TGF-β1-induced epithelial-mesenchymal transition in non-small cell lung cancer. Int J Oncol 2020; 56(2): 531-43.
[PMID: 31894269]
[34]
Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 1996; 94(7): 1506-12.
[http://dx.doi.org/10.1161/01.CIR.94.7.1506] [PMID: 8840837]
[35]
Ali D, Tripathi A, Alali H, et al. ROS-dependent Bax/Bcl2 and caspase 3 pathway-mediated apoptosis induced by zineb in human keratinocyte cells. OncoTargets Ther 2018; 11: 489-97.
[http://dx.doi.org/10.2147/OTT.S140358] [PMID: 29416349]
[36]
Yoo J, Kim CH, Song SH, et al. Expression of caspase-3 and c-myc in non-small cell lung cancer. Cancer Res Treat 2004; 36(5): 303-7.
[http://dx.doi.org/10.4143/crt.2004.36.5.303] [PMID: 20368820]
[37]
Zhou M, Liu X, Li Z, Huang Q, Li F, Li CY. Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells. Int J Cancer 2018; 143(4): 921-30.
[http://dx.doi.org/10.1002/ijc.31374] [PMID: 29524226]
[38]
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15(1): 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[39]
Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int 2015; 15(1): 55.
[http://dx.doi.org/10.1186/s12935-015-0204-2] [PMID: 26074734]
[40]
Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct activation of bax protein for cancer therapy. Med Res Rev 2016; 36(2): 313-41.
[http://dx.doi.org/10.1002/med.21379] [PMID: 26395559]
[41]
Roshan R, Naderi S, Behdani M, et al. Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Mol Immunol 2021; 129: 70-7.
[http://dx.doi.org/10.1016/j.molimm.2020.10.021] [PMID: 33183767]
[42]
Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research progress and applications of multivalent, multispecific and modified nanobodies for disease treatment. Front Immunol 2022; 12: 838082.
[http://dx.doi.org/10.3389/fimmu.2021.838082] [PMID: 35116045]
[43]
Voltà-Durán E, Sánchez JM, Parladé E, et al. The diphtheria toxin translocation domain impairs receptor selectivity in cancer cell-targeted protein nanoparticles. Pharmaceutics 2022; 14(12): 2644.
[http://dx.doi.org/10.3390/pharmaceutics14122644] [PMID: 36559138]
[44]
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5(1): 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[45]
Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis. J Bone Miner Res 2018; 33(12): 2099-113.
[http://dx.doi.org/10.1002/jbmr.3618] [PMID: 30476357]
[46]
Azam F, Mehta S, Harris AL. Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer 2010; 46(8): 1323-32.
[http://dx.doi.org/10.1016/j.ejca.2010.02.020] [PMID: 20236818]
[47]
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575(7782): 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[48]
Ahadi M, Ghasemian H, Behdani M, Kazemi-Lomedasht F. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. J Immunotoxicol 2019; 16(1): 34-42.
[http://dx.doi.org/10.1080/1547691X.2018.1526234] [PMID: 30409071]
[49]
Yamaizumi M, Mekada E, Uchida T, Okada Y. One molecule of diphtheria toxin fragment a introduced into a cell can kill the cell. Cell 1978; 15(1): 245-50.
[http://dx.doi.org/10.1016/0092-8674(78)90099-5] [PMID: 699044]
[50]
Zhi X, Wang Y, Zhou X, et al. RNAi-mediated CD73 suppression induces apoptosis and cell-cycle arrest in human breast cancer cells. Cancer Sci 2010; 101(12): 2561-9.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01733.x] [PMID: 20874842]
[51]
Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 2019; 21: 101095.

© 2024 Bentham Science Publishers | Privacy Policy