Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Celastrol Elicits Antitumor Effects through Inducing Immunogenic Cell Death and Downregulating PD-L1 in ccRCC

Author(s): Hong-Fang Li, Neng Zhu, Jia-Jun Wu, Ya-Ning Shi, Jia Gu and Li Qin*

Volume 30, Issue 16, 2024

Published on: 04 April, 2024

Page: [1265 - 1278] Pages: 14

DOI: 10.2174/0113816128288970240321073436

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Targeting immunogenic cell death (ICD) is considered a promising therapeutic strategy for cancer. However, the commonly identified ICD inducers promote the expression of programmed cell death ligand 1 (PD-L1) in tumor cells, thus aiding them to evade the recognition and killing by the immune system. Therefore, the finding of novel ICD inducers to avoid enhanced PD-L1 expression is of vital significance for cancer therapy. Celastrol (CeT), a triterpene isolated from Tripterygium wilfordii Hook. F induces various forms of cell death to exert anti-cancer effects, which may make celastrol an attractive candidate as an inducer of ICD.

Methods: In the present study, bioinformatics analysis was combined with experimental validation to explore the underlying mechanism by which CeT induces ICD and regulates PD-L1 expression in clear cell renal cell carcinoma (ccRCC).

Results: The results showed that EGFR, IKBKB, PRKCQ and MAPK1 were the crucial targets for CeT-induced ICD, and only MAPK1 was an independent prognostic factor for the overall survival (OS) of ccRCC patients. In addition, CeT triggered autophagy and up-regulated the expressions of HMGB1 and CRT to induce ICD in 786-O cells in vitro. Importantly, CeT can down-regulate PD-L1 expression through activating autophagy. At the molecular level, CeT suppressed PD-L1 via the inhibition of MAPK1 expression. Immunologically, the core target of celastrol, MAPK1, was tightly correlated with CD8+ T cells and CD4+ T cells in ccRCC.

Conclusion: These findings indicate that CeT not only induces ICD but also suppresses PD-L1 by down-regulating MAPK1 expression, which will provide an attractive strategy for ccRCC immunotherapy.

Keywords: Immunogenic cell death, clear cell renal cell carcinoma, celastrol, PD-L1, MAPK1, overall survival.

[1]
Li X, Li H, Yang C, Liu L, Deng S, Li M. Comprehensive analysis of ATP6V1s family members in renal clear cell carcinoma with prognostic values. Front Oncol 2020; 10: 567970.
[http://dx.doi.org/10.3389/fonc.2020.567970] [PMID: 33194650]
[2]
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015; 161(2): 205-14.
[http://dx.doi.org/10.1016/j.cell.2015.03.030] [PMID: 25860605]
[3]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[4]
Zhang C, Fan Y, Che X, et al. Anti-PD-1 therapy response predicted by the combination of exosomal PD-L1 and CD28. Front Oncol 2020; 10: 760.
[http://dx.doi.org/10.3389/fonc.2020.00760] [PMID: 32528882]
[5]
Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014; 515(7528): 558-62.
[http://dx.doi.org/10.1038/nature13904] [PMID: 25428503]
[6]
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711-23.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[7]
Chen L, Sun R, Xu J, et al. Tumor-derived IL33 promotes tissue-resident CD8+ T cells and is required for checkpoint blockade tumor immunotherapy. Cancer Immunol Res 2020; 8(11): 1381-92.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-1024] [PMID: 32917659]
[8]
Anker JF, Naseem AF, Mok H, Schaeffer AJ, Abdulkadir SA, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun 2018; 9(1): 1591.
[http://dx.doi.org/10.1038/s41467-018-03900-x] [PMID: 29686284]
[9]
Sen T, Rodriguez BL, Chen L, et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 2019; 9(5): 646-61.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1020] [PMID: 30777870]
[10]
Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp HS. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest 2018; 128(6): 2356-69.
[http://dx.doi.org/10.1172/JCI97354] [PMID: 29708510]
[11]
Li Y, Gong S, Pan W, et al. A tumor acidity activatable and Ca2+-assisted immuno-nanoagent enhances breast cancer therapy and suppresses cancer recurrence. Chem Sci 2020; 11(28): 7429-37.
[http://dx.doi.org/10.1039/D0SC00293C] [PMID: 34123024]
[12]
Li Z, Wang Y, Shen Y, Qian C, Oupicky D, Sun M. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti–PD-L1 immunotherapy. Sci Adv 2020; 6(20): eaaz9240.
[http://dx.doi.org/10.1126/sciadv.aaz9240] [PMID: 32440550]
[13]
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25(3): 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[14]
Duewell P, Steger A, Lohr H, et al. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differ 2014; 21(12): 1825-37.
[http://dx.doi.org/10.1038/cdd.2014.96] [PMID: 25012502]
[15]
Li Y, Hahn T, Garrison K, et al. The vitamin E analogue α-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res 2012; 72(14): 3535-45.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3103] [PMID: 22745370]
[16]
Hou W, Zhang Q, Yan Z, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013; 4(12): e966.
[http://dx.doi.org/10.1038/cddis.2013.493] [PMID: 24336086]
[17]
Mathew M, Enzler T, Shu CA, Rizvi NA. Combining chemotherapy with PD-1 blockade in NSCLC. Pharmacol Ther 2018; 186: 130-7.
[http://dx.doi.org/10.1016/j.pharmthera.2018.01.003] [PMID: 29352857]
[18]
Feng B, Zhou F, Hou B, et al. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv Mater 2018; 30(38): 1803001.
[http://dx.doi.org/10.1002/adma.201803001] [PMID: 30063262]
[19]
Rios-Doria J, Durham N, Wetzel L, et al. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia 2015; 17(8): 661-70.
[http://dx.doi.org/10.1016/j.neo.2015.08.004] [PMID: 26408258]
[20]
Liu P, Zhao L, Pol J, et al. Crizotinib-induced immunogenic cell death in non-small cell lung cancer. Nat Commun 2019; 10(1): 1486.
[http://dx.doi.org/10.1038/s41467-019-09415-3] [PMID: 30940805]
[21]
Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD, Kaufman HL. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med 2018; 10(471): eaau0417.
[http://dx.doi.org/10.1126/scitranslmed.aau0417] [PMID: 30541787]
[22]
Li M, Wang G, Yan Y, et al. Triptolide and L-ascorbate palmitate co-loaded micelles for combination therapy of rheumatoid arthritis and side effect attenuation. Drug Deliv 2022; 29(1): 2751-8.
[http://dx.doi.org/10.1080/10717544.2022.2115162] [PMID: 35999774]
[23]
Yang J, Tang X, Ke X, Dai Y, Shi J. Triptolide suppresses NF-κB-mediated inflammatory responses and activates expression of Nrf2-mediated antioxidant genes to alleviate caerulein-induced acute pancreatitis. Int J Mol Sci 2022; 23(3): 1252.
[http://dx.doi.org/10.3390/ijms23031252]
[24]
Yuan Z, Wang J, Zhang H, et al. Triptolide increases resistance to bile duct ligation-induced liver injury and fibrosis in mice by inhibiting RELB. Front Nutr 2022; 9: 1032722.
[http://dx.doi.org/10.3389/fnut.2022.1032722] [PMID: 36313114]
[25]
Zhang CJ, Zhu N, Wang YX, et al. Celastrol attenuates lipid accumulation and stemness of clear cell renal cell carcinoma via CAV-1/LOX-1 pathway. Front Pharmacol 2021; 12: 658092.
[http://dx.doi.org/10.3389/fphar.2021.658092] [PMID: 33935779]
[26]
Zhang C, Zhu N, Long J, et al. Celastrol induces lipophagy via the LXRα/ABCA1 pathway in clear cell renal cell carcinoma. Acta Pharmacol Sin 2021; 42(9): 1472-85.
[http://dx.doi.org/10.1038/s41401-020-00572-6] [PMID: 33303989]
[27]
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455-61.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[28]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[29]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[30]
Liu T, Xiang W, Chen Z, et al. Hypoxia-induced PLOD2 promotes clear cell renal cell carcinoma progression via modulating EGFR-dependent AKT pathway activation. Cell Death Dis 2023; 14(11): 774.
[http://dx.doi.org/10.1038/s41419-023-06298-7] [PMID: 38008826]
[31]
Yu Y, Liang Y, Li D, et al. Glucose metabolism involved in PD-L1-mediated immune escape in the malignant kidney tumour microenvironment. Cell Death Discov 2021; 7(1): 15.
[http://dx.doi.org/10.1038/s41420-021-00401-7] [PMID: 33462221]
[32]
Wan B, Liu B, Yu G, Huang Y, Lv C. Differentially expressed autophagy-related genes are potential prognostic and diagnostic biomarkers in clear-cell renal cell carcinoma. Aging 2019; 11(20): 9025-42.
[http://dx.doi.org/10.18632/aging.102368] [PMID: 31626592]
[33]
Abdelatty A, Sun Q, Hu J, et al. Pan-cancer study on protein kinase C family as a potential biomarker for the tumors immune landscape and the response to immunotherapy. Front Cell Dev Biol 2022; 9: 798319.
[http://dx.doi.org/10.3389/fcell.2021.798319] [PMID: 35174160]
[34]
Krazinski BE, Kowalczyk AE, Sliwinska-Jewsiewicka A, et al. IKBKB expression in clear cell renal cell carcinoma is associated with tumor grade and patient outcomes. Oncol Rep 2019; 41(2): 1189-97.
[PMID: 30483769]
[35]
Smereczańska M, Domian N, Młynarczyk G, Kasacka I. The effect of CacyBP/SIP on the phosphorylation of ERK1/2 and p38 kinases in clear cell renal cell carcinoma. Int J Mol Sci 2023; 24(12): 10362.
[http://dx.doi.org/10.3390/ijms241210362] [PMID: 37373509]
[36]
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[37]
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 2019; 28(11): 1947-51.
[http://dx.doi.org/10.1002/pro.3715] [PMID: 31441146]
[38]
Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 2023; 51(D1): D587-92.
[http://dx.doi.org/10.1093/nar/gkac963] [PMID: 36300620]
[39]
Gong Z, Yang Q, Wang Y, et al. Pharmacokinetic differences of wuji pill components in normal and chronic visceral hypersensitivity irritable bowel syndrome rats attributable to changes in tight junction and transporters. Front Pharmacol 2022; 13: 948678.
[http://dx.doi.org/10.3389/fphar.2022.948678] [PMID: 35873589]
[40]
Chen C, Shen JL, Liang CS, Sun ZC, Jiang HF. First discovery of beta-sitosterol as a novel antiviral agent against white spot syndrome virus. Int J Mol Sci 2022; 23(18): 10448.
[http://dx.doi.org/10.3390/ijms231810448] [PMID: 36142360]
[41]
Huang Z, Xie L, Xu Y, et al. Essential oils from zingiber striolatum diels attenuate inflammatory response and oxidative stress through regulation of MAPK and NF-κB signaling pathways. Antioxidants 2021; 10(12): 2019.
[http://dx.doi.org/10.3390/antiox10122019]
[42]
Xu H, Zhao H, Ding C, et al. Celastrol suppresses colorectal cancer via covalent targeting peroxiredoxin 1. Signal Transduct Target Ther 2023; 8(1): 51.
[http://dx.doi.org/10.1038/s41392-022-01231-4] [PMID: 36732502]
[43]
Xiao S, Huang S, Yang X, et al. The development and evaluation of hyaluronic acid coated mitochondrial targeting liposomes for celastrol delivery. Drug Deliv 2023; 30(1): 2162156.
[http://dx.doi.org/10.1080/10717544.2022.2162156] [PMID: 36600637]
[44]
Qiu N, Liu Y, Liu Q, et al. Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy. Biomaterials 2021; 269: 120604.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120604] [PMID: 33383300]
[45]
Huang X, Zhou S, Tóth J, Hajdu A. Cuproptosis-related gene index: A predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity. Front Immunol 2022; 13: 978865.
[http://dx.doi.org/10.3389/fimmu.2022.978865] [PMID: 36090999]
[46]
Zhao D, Liu X, Shan Y, et al. Recognition of immune-related tumor antigens and immune subtypes for mRNA vaccine development in lung adenocarcinoma. Comput Struct Biotechnol J 2022; 20: 5001-13.
[http://dx.doi.org/10.1016/j.csbj.2022.08.066] [PMID: 36187916]
[47]
Huang L, Rong Y, Tang X, et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol Cancer 2022; 21(1): 45.
[http://dx.doi.org/10.1186/s12943-022-01515-x] [PMID: 35148751]
[48]
Song W, Shen L, Wang Y, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat Commun 2018; 9(1): 2237.
[http://dx.doi.org/10.1038/s41467-018-04605-x] [PMID: 29884866]
[49]
Zhang W, Wu Z, Qi H, et al. Celastrol upregulated ATG7 triggers autophagy via targeting Nur77 in colorectal cancer. Phytomedicine 2022; 104: 154280.
[http://dx.doi.org/10.1016/j.phymed.2022.154280] [PMID: 35752079]
[50]
Feng Y, Zhang B, Lv J, et al. Scaffold hopping of celastrol provides derivatives containing pepper ring, pyrazine and oxazole substructures as potent autophagy inducers against breast cancer cell line MCF-7. Eur J Med Chem 2022; 234: 114254.
[http://dx.doi.org/10.1016/j.ejmech.2022.114254] [PMID: 35290844]
[51]
Wang L, Tang L, Yao C, Liu C, Shu Y. The synergistic effects of celastrol in combination with tamoxifen on apoptosis and autophagy in MCF-7 cells. J Immunol Res 2021; 2021: 1-13.
[http://dx.doi.org/10.1155/2021/5532269] [PMID: 34337076]
[52]
Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, inflammation, and immunity: A troika governing cancer and its treatment. Cell 2016; 166(2): 288-98.
[http://dx.doi.org/10.1016/j.cell.2016.05.051] [PMID: 27419869]
[53]
Shteingauz A, Porat Y, Voloshin T, et al. AMPK-dependent autophagy upregulation serves as a survival mechanism in response to tumor treating fields (TTFields). Cell Death Dis 2018; 9(11): 1074.
[http://dx.doi.org/10.1038/s41419-018-1085-9] [PMID: 30341282]
[54]
Voloshin T, Kaynan N, Davidi S, et al. Tumor-treating fields (TTFields) induce immunogenic cell death resulting in enhanced antitumor efficacy when combined with anti-PD-1 therapy. Cancer Immunol Immunother 2020; 69(7): 1191-204.
[http://dx.doi.org/10.1007/s00262-020-02534-7] [PMID: 32144446]
[55]
Park SS, Kim JI, Lee CH, et al. Temsirolimus enhances anti- cancer immunity by inducing autophagy-mediated degradation of the secretion of small extracellular vesicle PD-L1. Cancers 2022; 14(17): 4081.
[http://dx.doi.org/10.3390/cancers14174081] [PMID: 36077620]
[56]
Zarogoulidis P, Petanidis S, Domvri K, et al. Autophagy inhibition upregulates CD4+ tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation. Mol Oncol 2016; 10(10): 1516-31.
[http://dx.doi.org/10.1016/j.molonc.2016.08.005] [PMID: 27692344]
[57]
Liang J, Wang L, Wang C, et al. Verteporfin inhibits PD-L1 through autophagy and the STAT1–IRF1–TRIM28 signaling axis, exerting antitumor efficacy. Cancer Immunol Res 2020; 8(7): 952-65.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0159] [PMID: 32265228]
[58]
An G, Acharya C, Feng X, et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: Therapeutic implication. Blood 2016; 128(12): 1590-603.
[http://dx.doi.org/10.1182/blood-2016-03-707547] [PMID: 27418644]
[59]
Yu M, Wang H, Zhao W, et al. Targeting type Iγ phosphatidylinositol phosphate kinase overcomes oxaliplatin resistance in colorectal cancer. Theranostics 2022; 12(9): 4386-98.
[http://dx.doi.org/10.7150/thno.69863] [PMID: 35673560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy