Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Elucidation of the Molecular Mechanism of Compound Danshen Dripping Pills against Angina Pectoris based on Network Pharmacology and Molecular Docking

Author(s): Xiaocui Tian, Shiqi Yin, Zhiguang Liu, Jinglin Cao, Xinyu Liu and Qi Qiu*

Volume 30, Issue 16, 2024

Published on: 03 April, 2024

Page: [1247 - 1264] Pages: 18

DOI: 10.2174/0113816128287109240321074628

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Compound Danshen dripping pills (CDDP), a traditional Chinese medicine, has had an extensive application in the treatment of angina pectoris (AP) in China. However, research on the bioactive ingredients and underlying mechanisms of CDDP in AP remains unclear.

Objective: In the present study, we explored the major chemical components and potential molecular mechanisms linked to the anti-angina effects of CDDP through the application of network pharmacology and molecular docking.

Methods: The potential targets of active ingredients in CDDP were sourced from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and the Swiss Target Prediction Database (STPD). Additionally, targets related to angina pectoris (AP) were retrieved from various databases, including Gene Cards, DisGeNET, Dis Genet, the Drug Bank database (DBD), and the Therapeutic Target Database (TDD). Protein- protein interaction networks were also established, and core targets were identified based on their topological significance. GO enrichment analysis and KEGG pathway analysis were conducted using the R software. Interactions between active ingredients and potential targets selected through the above process were investigated through molecular docking.

Results: Seventy-six active ingredients were selected with the following criteria: OB ≥ 30%, DL ≥ 0.18. 383 targets of CDDP and 1488 targets on AP were gathered, respectively. Afterwards, 194 common targets of CDDP and anti-AP targets were defined, of which 12 were core targets. GO enrichment analysis indicated that CDDP acted on AP by response to lipopolysaccharide, regulating the reactive oxygen species and metal ion metabolism, and epithelial cell proliferation. In addition, KEGG enrichment analysis indicated that the signaling pathways were notably enriched in lipid and atherosclerosis, fluid shear stress and atherosclerosis, IL-17 signaling pathway, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, and TNF signaling pathway. Moreover, the molecular docking manifested excellent binding capacity between the active ingredients and targets on AP.

Conclusion: This study comprehensively illustrated the bioactive, potential targets, and molecular mechanisms of CDDP against AP, offering fresh perspectives into the molecular mechanisms of CDDP in preventing and treating AP.

Keywords: Compound Danshen dripping pills, angina pectoris, network pharmacology, molecular docking, TCMSP, protein-protein interaction.

[1]
Writing Group of Recommendations of Expert Panel from Chinese Geriatrics Society on the Clinical Use of Compound Danshen Dripping Pills. Recommendations on the clinical use of Compound Danshen dripping pills. Chin Med J 2017; 130(8): 972-8.
[http://dx.doi.org/10.4103/0366-6999.204106] [PMID: 28397728]
[2]
Balla C, Pavasini R, Ferrari R. Treatment of Angina: Where are we? Cardiology 2018; 140(1): 52-67.
[http://dx.doi.org/10.1159/000487936] [PMID: 29874661]
[3]
Joshi PH, de Lemos JA. Diagnosis and management of stable angina. JAMA 2021; 325(17): 1765-78.
[http://dx.doi.org/10.1001/jama.2021.1527] [PMID: 33944871]
[4]
Gillen C, Goyal A. Stable angina. StatPearls. Treasure Island (FL): StatPearls Publishing 2022.
[5]
Tousoulis D, Androulakis E, Kontogeorgou A, et al. Insight to the pathophysiology of stable angina pectoris. Curr Pharm Des 2013; 19(9): 1593-600.
[PMID: 23016715]
[6]
Dibben GO, Faulkner J, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: A meta-analysis. Eur Heart J 2023; 44(6): 452-69.
[http://dx.doi.org/10.1093/eurheartj/ehac747] [PMID: 36746187]
[7]
Ferrari R, Camici PG, Crea F, et al. A ‘diamond’ approach to personalized treatment of angina. Nat Rev Cardiol 2018; 15(2): 120-32.
[http://dx.doi.org/10.1038/nrcardio.2017.131] [PMID: 28880025]
[8]
Conti CR. Treatment of ischaemic heart disease. Role of drugs, surgery and angioplasty in unstable angina patients. Eur Heart J 1997; 18: B11-5.
[9]
Frampton J, Buckley MM, Fitton A. Nicorandil. Drugs 1992; 44(4): 625-55.
[http://dx.doi.org/10.2165/00003495-199244040-00008] [PMID: 1281076]
[10]
Lardizabal JA, Deedwania PC. The anti-ischemic and anti-anginal properties of statins. Curr Atheroscler Rep 2011; 13(1): 43-50.
[http://dx.doi.org/10.1007/s11883-010-0147-y] [PMID: 21107759]
[11]
Giannopoulos AA, Giannoglou GD, Chatzizisis YS. Pharmacological approaches of refractory angina. Pharmacol Ther 2016; 163: 118-31.
[http://dx.doi.org/10.1016/j.pharmthera.2016.03.008] [PMID: 27013345]
[12]
Russell RP. Side effects of calcium channel blockers. Hypertension 1988; 11(3 Pt 2): II42-4.
[PMID: 3280492]
[13]
Frishman WH. Beta-adrenergic receptor blockers. Adverse effects and drug interactions. Hypertension 1988; 11(3_pt_2): II21-9.
[http://dx.doi.org/10.1161/01.HYP.11.3_Pt_2.II21] [PMID: 2895072]
[14]
Li M, Ding YT, Miao X, et al. Difference between ancient and modern syndrome-treatment in Chest Bi and causes analysis. J Tradit Chin Med 2018; 59: 546-9.
[15]
Li L, Liu JX. Current status of integrating syndrome and objective research in coronary heart disease with blood stasis syndrome. J Herb Med 2008; 2008: 396-397+400.
[16]
Yan KJ, Chu Y, Huang JH, et al. Qualitative and quantitative analyses of Compound Danshen extract based on 1H NMR method and its application for quality control. J Pharm Biomed Anal 2016; 131: 183-7.
[http://dx.doi.org/10.1016/j.jpba.2016.08.017] [PMID: 27596830]
[17]
Li Q. Research progress and clinical application of Compound Danshen dripping pills. Chin J Trad Chin Med Phar 2018; 33(7): 2989-91.
[18]
Zhou Y, Cui Y, Zhao X, et al. The safety and tolerance of herbal anti-angina drug Compound Danshen droplet pill in healthy volunteers. Pharmacol Pharm 2013; 4(6): 490-5.
[http://dx.doi.org/10.4236/pp.2013.46071]
[19]
Xiao Y, Liu YJ. Meta-analysis of CSDP for coronary heart disease angina. Chin J Drug Eval 2013; 30: 32-6.
[20]
Xue JZ, Chen Y, Ma Z, Si X, Feng WY. Meta analysis of efficacy comparison of Compound Danshen dropping pills and isosorbide mononitrate in treatment for angina pectoris of coronary heart disease. Chin Med J 2013; 2013: 35.
[21]
Li J, Wang Q. Research progress on the pharmacological effects of Compound Danshen dripping pills in the treatment of coronary heart disease. Shanxi J Trad Chin Med 2001; 2001: 56-7.
[22]
Guo J, Zhang L, Zeng Z, et al. Effects of Compound Danshen root dropping pill on hemorheology in high-fat diet induced hyperlipidemia in dogs. Clin Hemorheol Microcirc 2005; 32(1): 19-30.
[23]
Jun Y, Chunju Y, Qi A, Liuxia D, Guolong Y. The effects of Compound Danshen dripping pills and human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. Exp Clin Transplant 2014; 12(2): 123-8.
[PMID: 24702144]
[24]
Pan C, Lou L, Huo Y, et al. Salvianolic acid B and tanshinone IIA attenuate myocardial ischemia injury in mice by NO production through multiple pathways. Ther Adv Cardiovasc Dis 2011; 5(2): 99-111.
[http://dx.doi.org/10.1177/1753944710396538] [PMID: 21282198]
[25]
Pan C, Huo Y, An X, et al. Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation. Vascul Pharmacol 2012; 56(3-4): 150-8.
[http://dx.doi.org/10.1016/j.vph.2011.12.006] [PMID: 22239978]
[26]
Wang YP. Research on the mechanism of Compound Danshen dripping pills in treating coronary heart disease. Clin J Anhui Trad Chin Med 2001; 2001: 13.
[27]
Luo J, Song W, Yang G, Xu H, Chen K. Compound Danshen (Salvia miltiorrhiza) dripping pill for coronary heart disease: An overview of systematic reviews. Am J Chin Med 2015; 43(1): 25-43.
[http://dx.doi.org/10.1142/S0192415X15500020] [PMID: 25582415]
[28]
Xin X, Zou H, Zheng N, et al. Metabonomic strategy to the evaluation of Chinese medicine Compound Danshen dripping pills interfering myocardial ischemia in rats. Evid Based Complement Alternat Med 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/718305] [PMID: 23737844]
[29]
Zhang H, Cheng Y. Solid-phase extraction and liquid chromatography-electrospray mass spectrometric analysis of saponins in a Chinese patent medicine of formulated Salvia miltiorrhizae and Panax notoginseng. J Pharm Biomed Anal 2006; 40: 429-32.
[30]
Phase II multi-center study of T89 to treat chronic stable angina (T89 phase 2). Patent NCT00797953, 2008.
[31]
Phase III trial of dantonic® (T89) capsule to prevent and treat stable angina. Patent NCT01659580, 2017.
[32]
Sun H, Guo ZX, Li LY, et al. Case study of compound traditional Chinese medicine globalization. Modern Trad Chin Med Materia Medica-World Sci Technol 2017; 19: 914-23.
[33]
Barton HA, Pastoor TP, Baetcke K, et al. The acquisition and application of absorption, distribution, metabolism, and excretion (ADME) data in agricultural chemical safety assessments. Crit Rev Toxicol 2006; 36(1): 9-35.
[http://dx.doi.org/10.1080/10408440500534362] [PMID: 16708693]
[34]
Nekohashi M, Ogawa M, Ogihara T, et al. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter niemann-pick c1-like 1 in caco-2 cells and rats. PLoS One 2014; 9(5): e97901.
[http://dx.doi.org/10.1371/journal.pone.0097901] [PMID: 24859282]
[35]
Xu X, Zhang W, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 2012; 13(6): 6964-82.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[36]
Liu ZW, Luo ZH, Meng QQ, Zhong PC, Hu YJ, Shen XL. Network pharmacology-based investigation on the mechanisms of action of Morinda officinalis How. in the treatment of osteoporosis. Comput Biol Med 2020; 127: 104074.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104074] [PMID: 33126122]
[37]
Ma C, Wang L, Xie XQ. GPU accelerated chemical similarity calculation for compound library comparison. J Chem Inf Model 2011; 51(7): 1521-7.
[http://dx.doi.org/10.1021/ci1004948] [PMID: 21692447]
[38]
Gilbert CJ, Longenecker JZ, Accornero F. ERK1/2: An integrator of signals that alters cardiac homeostasis and growth. Biology 2021; 10(4): 346.
[http://dx.doi.org/10.3390/biology10040346] [PMID: 33923899]
[39]
Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 2015; 127: 67-72.
[http://dx.doi.org/10.1016/j.biosystems.2014.11.005] [PMID: 25451770]
[40]
Levy BI, Heusch G, Camici PG. The many faces of myocardial ischaemia and angina. Cardiovasc Res 2019; 115(10): 1460-70.
[http://dx.doi.org/10.1093/cvr/cvz160] [PMID: 31228187]
[41]
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol 2020; 76(25): 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[42]
Severino P, D’Amato A, Pucci M, et al. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int J Mol Sci 2020; 21(21): 8118.
[http://dx.doi.org/10.3390/ijms21218118] [PMID: 33143256]
[43]
Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physiol 2015; 5(4): 1841-75.
[http://dx.doi.org/10.1002/cphy.c150006] [PMID: 26426469]
[44]
Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 2014; 11(5): 255-65.
[http://dx.doi.org/10.1038/nrcardio.2014.28] [PMID: 24663091]
[45]
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction. Circ Res 2016; 119(1): 91-112.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303577] [PMID: 27340270]
[46]
Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis 2020; 1866(7): 165768.
[http://dx.doi.org/10.1016/j.bbadis.2020.165768] [PMID: 32173461]
[47]
van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: Past, present and future. Eur J Heart Fail 2019; 21(4): 425-35.
[http://dx.doi.org/10.1002/ejhf.1320] [PMID: 30338885]
[48]
Ridker PM, Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ Res 2021; 128(11): 1728-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319077] [PMID: 33998272]
[49]
Goumans MJ, ten Dijke P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol 2018; 10(2): a022210.
[http://dx.doi.org/10.1101/cshperspect.a022210] [PMID: 28348036]
[50]
Fraccarollo D, Galuppo P, Bauersachs J. Novel therapeutic approaches to post-infarction remodelling. Cardiovasc Res 2012; 94(2): 293-303.
[http://dx.doi.org/10.1093/cvr/cvs109] [PMID: 22387461]
[51]
Liang X, Ding Y, Lin F, et al. Overexpression of ERBB4 rejuvenates aged mesenchymal stem cells and enhances angiogenesis via PI3K/AKT and MAPK/ERK pathways. FASEB J 2019; 33(3): 4559-70.
[http://dx.doi.org/10.1096/fj.201801690R] [PMID: 30566395]
[52]
LI Q. Research progress and clinical application of Compound Danshen dripping pills. Chin J Chin Mater Medica 2018; 33: 2989-91.
[53]
Hao CW, Li ZX, Zhang MH, Han B. Research progress of Salvia miltiorrhiza and its compatible preparations in treatment of coronary heart disease. Chin Tradit Herbal Drugs 2021; 52: 4096-106.
[54]
Yang Y, Wang XL, Bi YF, et al. Meta-analysis and GRADE assessment of Compound Danshen dripping pills combined with conventional western medicine treatment for unstable angina. J Tradit Chin Med 2019; 60: 1815-26.
[55]
Ting-Ting Q. Meta analysis on efficacy of Compound Danshen dropping pills in treating angina based on syndrome differentiation. Chin Tradit Herbal Drugs 2020; 51: 6310-23.
[56]
Rahmani AH, Alsahli MA, Khan AA, Almatroodi SA. Quercetin, a plant flavonol attenuates diabetic complications, renal tissue damage, renal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Metabolites 2023; 13(1): 130.
[http://dx.doi.org/10.3390/metabo13010130] [PMID: 36677055]
[57]
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018; 155: 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[58]
Liu CJ, Yao L, Hu YM, Zhao BT. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int J Nanomed 2021; 16: 741-52.
[http://dx.doi.org/10.2147/IJN.S277377] [PMID: 33564233]
[59]
Dagher O, Mury P, Thorin-Trescases N, Noly PE, Thorin E, Carrier M. Therapeutic potential of quercetin to alleviate endothelial dysfunction in age-related cardiovascular diseases. Front Cardiovasc Med 2021; 8: 658400.
[http://dx.doi.org/10.3389/fcvm.2021.658400] [PMID: 33860002]
[60]
Han JJ, Hao J, Kim CH, Hong JS, Ahn HY, Lee YS. Quercetin prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Med Sci 2009; 71(6): 737-43.
[http://dx.doi.org/10.1292/jvms.71.737] [PMID: 19578281]
[61]
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. Arch Physiol Biochem 2022; 128(1): 200-8.
[http://dx.doi.org/10.1080/13813455.2019.1671458] [PMID: 31564166]
[62]
Wan LL, Xia J, Ye D, Liu J, Chen J, Wang G. Effects of quercetin on gene and protein expression of NOX and NOS after myocardial ischemia and reperfusion in rabbit. Cardiovasc Ther 2009; 27(1): 28-33.
[http://dx.doi.org/10.1111/j.1755-5922.2009.00071.x] [PMID: 19207477]
[63]
Tang J, Lu L, Liu Y, et al. Quercetin improve ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro and in vivo study via SIRT1/PGC-1α signaling. J Cell Biochem 2019; 120(6): 9747-57.
[http://dx.doi.org/10.1002/jcb.28255] [PMID: 30656723]
[64]
Najafi M, Tavakol S, Zarrabi A, Ashrafizadeh M. Dual role of quercetin in enhancing the efficacy of cisplatin in chemotherapy and protection against its side effects: A review. Arch Physiol Biochem 2022; 128(6): 1438-52.
[http://dx.doi.org/10.1080/13813455.2020.1773864] [PMID: 32521182]
[65]
Dong LY, Chen F, Xu M, Yao LP, Zhang YJ, Zhuang Y. Quercetin attenuates myocardial ischemia-reperfusion injury via downregulation of the HMGB1-TLR4-NF-κB signaling pathway. Am J Transl Res 2018; 10(5): 1273-83.
[PMID: 29887944]
[66]
Bartekova M, Radosinska J, Pancza D, Barancik M, Ravingerova T. Cardioprotective effects of quercetin against ischemia-reperfusion injury are age-dependent. Physiol Res 2016; 65(S1): S101-7.
[http://dx.doi.org/10.33549/physiolres.933390] [PMID: 27643931]
[67]
Luo Y, Shang P, Li D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front Pharmacol 2017; 8: 692.
[http://dx.doi.org/10.3389/fphar.2017.00692] [PMID: 29056912]
[68]
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol 2018; 225: 342-58.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[69]
Si L, Xu J, Yi C, et al. Asiatic acid attenuates the progression of left ventricular hypertrophy and heart failure induced by pressure overload by inhibiting myocardial remodeling in mice. J Cardiovasc Pharmacol 2015; 66(6): 558-68.
[http://dx.doi.org/10.1097/FJC.0000000000000304] [PMID: 26647013]
[70]
Yi C, Song M, Sun L, et al. Asiatic acid alleviates myocardial ischemia-reperfusion injury by inhibiting the ROS-mediated mitochondria-dependent apoptosis pathway. Oxid Med Cell Longev 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/3267450] [PMID: 35198095]
[71]
Lin P, Shi H, Lu Y, Lin J. Centella asiatica alleviates psoriasis through JAK/STAT3-mediated inflammation: An in vitro and in vivo study. J Ethnopharmacol 2023; 317: 116746.
[http://dx.doi.org/10.1016/j.jep.2023.116746] [PMID: 37295572]
[72]
Puthongking P, Yongram C, Katekaew S, Sungthong B, Weerapreeyakul N. Dipterocarpol in oleoresin of Dipterocarpus alatus attributed to cytotoxicity and apoptosis-inducing effect. Molecules 2022; 27(10): 3187.
[http://dx.doi.org/10.3390/molecules27103187] [PMID: 35630669]
[73]
Naito AT, Okada S, Minamino T, et al. Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res 2010; 106(11): 1692-702.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.214346] [PMID: 20413784]
[74]
Ribeiro AB, Ozelin SD, da Silva LHD, et al. Influence of asiatic acid on cell proliferation and DNA damage in vitro and in vivo systems. J Biochem Mol Toxicol 2021; 35(4): e22712.
[http://dx.doi.org/10.1002/jbt.22712] [PMID: 33484013]
[75]
Huminiecki L. Evidence for multilevel chemopreventive activities of natural phenols from functional genomic studies of curcumin, resveratrol, genistein, quercetin, and luteolin. Int J Mol Sci 2022; 23(23): 14957.
[http://dx.doi.org/10.3390/ijms232314957] [PMID: 36499286]
[76]
Wang H, Lafdil F, Kong X, Gao B. Signal transducer and activator of transcription 3 in liver diseases: A novel therapeutic target. Int J Biol Sci 2011; 7(5): 536-50.
[http://dx.doi.org/10.7150/ijbs.7.536] [PMID: 21552420]
[77]
Xue F, Nie X, Shi J, et al. Quercetin inhibits LPS-induced inflammation and ox-LDL-induced lipid deposition. Front Pharmacol 2017; 8: 40.
[http://dx.doi.org/10.3389/fphar.2017.00040] [PMID: 28217098]
[78]
Liu D, Luo H, Qiao C. SHP-1/STAT3 interaction is related to luteolin-induced myocardial ischemia protection. Inflammation 2022; 45(1): 88-99.
[http://dx.doi.org/10.1007/s10753-021-01530-y] [PMID: 34460026]
[79]
Karin M, Liu Z, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997; 9(2): 240-6.
[http://dx.doi.org/10.1016/S0955-0674(97)80068-3] [PMID: 9069263]
[80]
Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci 2008; 105(21): 7534-9.
[http://dx.doi.org/10.1073/pnas.0802865105] [PMID: 18490655]
[81]
Crespo I, Mediavilla GMV, Gutiérrez B, Campos SS, Tuñón MJ, Gallego GJ. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr 2008; 100(5): 968-76.
[http://dx.doi.org/10.1017/S0007114508966083] [PMID: 18394220]
[82]
Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine 2020; 99(38): e22241.
[http://dx.doi.org/10.1097/MD.0000000000022241] [PMID: 32957369]
[83]
Park CM, Jin KS, Cho CW, et al. Luteolin inhibits inflammatory responses by downregulating the JNK, NF-κB, and AP-1 pathways in TNF-α activated HepG2 cells. Food Sci Biotechnol 2012; 21(1): 279-83.
[http://dx.doi.org/10.1007/s10068-012-0037-x]
[84]
Feng Y, Ye D, Wang Z, et al. The role of interleukin-6 family members in cardiovascular diseases. Front Cardiovasc Med 2022; 9: 818890.
[http://dx.doi.org/10.3389/fcvm.2022.818890] [PMID: 35402550]
[85]
Wu W, Li D, Zong Y, et al. Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Molecules 2013; 18(7): 8083-94.
[http://dx.doi.org/10.3390/molecules18078083] [PMID: 23839113]
[86]
Li Z, Xiao X, Yang M. Asiatic acid inhibits lipopolysaccharide-induced acute lung injury in mice. Inflammation 2016; 39(5): 1642-8.
[http://dx.doi.org/10.1007/s10753-016-0398-z] [PMID: 27395046]
[87]
Guo W, Liu W, Jin B, et al. Asiatic acid ameliorates dextran sulfate sodium-induced murine experimental colitis via suppressing mitochondria-mediated NLRP3 inflammasome activation. Int Immunopharmacol 2015; 24(2): 232-8.
[http://dx.doi.org/10.1016/j.intimp.2014.12.009] [PMID: 25523461]
[88]
Anderson P. Post-transcriptional control of cytokine production. Nat Immunol 2008; 9(4): 353-9.
[http://dx.doi.org/10.1038/ni1584] [PMID: 18349815]
[89]
Yokota T, Wang Y. p38 MAP kinases in the heart. Gene 2016; 575(2): 369-76.
[http://dx.doi.org/10.1016/j.gene.2015.09.030] [PMID: 26390817]
[90]
Min Z, Yangchun L, Yuquan W, Changying Z. Quercetin inhibition of myocardial fibrosis through regulating MAPK signaling pathway via ROS. Pak J Pharm Sci 2019; 32(3 Special): 1355-9.
[PMID: 31551215]
[91]
Venegas GG, Ceballos TA, Mora GJA, Rojas FB. Luteolin, quercetin, genistein and quercetagetin inhibit the effects of lipopolysaccharide obtained from Porphyromonas gingivalis in H9c2 cardiomyoblasts. Cell Mol Biol Lett 2017; 22(1): 19.
[http://dx.doi.org/10.1186/s11658-017-0047-z] [PMID: 28878808]
[92]
Shimoi K, Saka N, Kaji K, Kinae RNN, Kinae N. Metabolic fate of luteolin and its functional activity at focal site. Biofactors 2000; 12(1-4): 181-6.
[http://dx.doi.org/10.1002/biof.5520120129] [PMID: 11216484]
[93]
Jeong YJ, Choi YJ, Choi JS, et al. Attenuation of monocyte adhesion and oxidised LDL uptake in luteolin-treated human endothelial cells exposed to oxidised LDL. Br J Nutr 2007; 97(3): 447-57.
[http://dx.doi.org/10.1017/S0007114507657894] [PMID: 17313705]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy