Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

A Deep Dive into PDE5 Inhibition: Innovative Discoveries via Virtual Screening

Author(s): Abhijit Debnath, Hema Chaudhary*, Parul Sharma, Rajesh Singh and Shikha Srivastava

Volume 21, Issue 16, 2024

Published on: 03 April, 2024

Page: [3425 - 3442] Pages: 18

DOI: 10.2174/0115701808279586231221043744

Price: $65

Abstract

Background: PDE5 inhibitors have had a surge in popularity over the last decade owing to their efficacy in the treatment of erectile dysfunction, coronary vasculopathy, and pulmonary arterial hypertension. These inhibitors exhibit competitive binding with phosphodiesterase type 5 and inhibit the hydrolysis of cyclic guanosine monophosphate, hence elevating the levels of cGMP in smooth muscle cells and prolonging the duration of an erection. However, due to production costs and side effects, further research is needed to discover new PDE5 inhibitors.

Objectives: The study aimed to identify potent PDE5 inhibitors by employing the extensive application of computer-aided drug design.

Methods: Three different databases, named Million Molecules Database, Natural Product Database, and NCI Database, have been screened, which has been followed by filtering based on various druglikeness rules, docking, ADME, toxicity, consensus molecular docking, and 100 ns molecular dynamics simulation.

Results: Three compounds (ZINC05351336, ZINC12030898, and ZINC17949426) have exhibited stable-binding characteristics at the active site of PDE5, demonstrating a robust binding affinity. These molecules have been found to possess drug-like capabilities, effective ADME features, low toxicity, and high stability.

Conclusion: The study has delved into the realm of PDE5 inhibitors, which have been found to be effective in treating erectile dysfunction, but high production costs and side effects necessitate new ones. Through computer-aided drug design and screening, three compounds have been identified with promising binding characteristics, drug-appropriate properties, effective ADME profiles, minimal toxicity, and stability, making them potential candidates for future PDE5 inhibitors.

Keywords: PDE5, PDE5 inhibitors, erectile dysfunction, pulmonary arterial hypertension, benign prostatic hyperplasia, ADME profile.

Graphical Abstract
[1]
Haning, H.; Niewöhner, U.; Bischoff, E. Phosphodiesterase type 5 (PDE5) inhibitors. Prog. Med. Chem., 2003, 41, 249-306.
[2]
Zhang, K.Y.J.; Card, G.L.; Suzuki, Y.; Artis, D.R.; Fong, D.; Gillette, S.; Hsieh, D.; Neiman, J.; West, B.L.; Zhang, C.; Milburn, M.V.; Kim, S.H.; Schlessinger, J.; Bollag, G. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol. Cell, 2004, 15(2), 279-286.
[http://dx.doi.org/10.1016/j.molcel.2004.07.005] [PMID: 15260978]
[3]
Giovannoni, M.P.; Vergelli, C.; Graziano, A.; Dal Piaz, V. PDE5 inhibitors and their applications. Curr. Med. Chem., 2010, 17(24), 2564-2587.
[http://dx.doi.org/10.2174/092986710791859360] [PMID: 20491634]
[4]
Noel, S.; Dhooghe, B.; Leal, T. PDE5 inhibitors as potential tools in the treatment of cystic fibrosis. Front. Pharmacol., 2012, 3(September), 167.
[http://dx.doi.org/10.3389/fphar.2012.00167] [PMID: 23024633]
[5]
Ahmed, W.S.; Geethakumari, A.M.; Biswas, K.H. Phosphodiesterase 5 (PDE5): Structure-function regulation and therapeutic applications of inhibitors. Biomed. Pharmacother., 2021, 134, 111128.
[http://dx.doi.org/10.1016/j.biopha.2020.111128] [PMID: 33348311]
[6]
Cesarini, V.; Pisano, C.; Rossi, G.; Balistreri, C.R.; Botti, F.; Antonelli, G.; Ruvolo, G.; Jannini, E.A.; Dolci, S. Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms. Sci. Rep., 2019, 9(1), 12206.
[http://dx.doi.org/10.1038/s41598-019-48432-6] [PMID: 31434939]
[7]
Huang, S.A.; Lie, J.D. Phosphodiesterase-5 (PDE5) inhibitors in the management of erectile dysfunction. P&T, 2013, 38(7), 407-419.
[8]
Sandner, P.; Hütter, J.; Tinel, H.; Ziegelbauer, K.; Bischoff, E. PDE5 inhibitors beyond erectile dysfunction. Int. J. Impot. Res., 2007, 19(6), 533-543.
[http://dx.doi.org/10.1038/sj.ijir.3901577] [PMID: 17625575]
[9]
Corbin, J.D. Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int. J. Impot. Res., 2004, 16(S1), S4-S7.
[http://dx.doi.org/10.1038/sj.ijir.3901205] [PMID: 15224127]
[10]
Kloner, R. Erectile dysfunction and hypertension. Int. J. Impot. Res., 2007, 19(3), 296-302.
[http://dx.doi.org/10.1038/sj.ijir.3901527] [PMID: 17151696]
[11]
Andersson, K-E. PDE5 inhibitors – pharmacology and clinical applications 20 years after sildenafil discovery. Br. J. Pharmacol., 2018, 175(13), 2554-2565.
[http://dx.doi.org/10.1111/bph.14205] [PMID: 29667180]
[12]
Scherzer, N.D.; Le, T.V.; Hellstrom, W.J.G. Sildenafil’s impact on male infertility: What has changed in 20 years? Int. J. Impot. Res., 2019, 31(2), 71-73.
[http://dx.doi.org/10.1038/s41443-018-0067-x] [PMID: 30837720]
[13]
Das, A.; Durrant, D.; Salloum, F.N.; Xi, L.; Kukreja, R.C. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol. Ther., 2015, 147, 12-21.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.003] [PMID: 25444755]
[14]
Kumar, P.; Francis, G.S.; Wilson Tang, W.H. Phosphodiesterase 5 inhibition in heart failure: Mechanisms and clinical implications. Nat. Rev. Cardiol., 2009, 6(5), 349-355.
[http://dx.doi.org/10.1038/nrcardio.2009.32] [PMID: 19377497]
[15]
Peak, T.C.; Richman, A.; Gur, S.; Yafi, F.A.; Hellstrom, W.J.G. The role of PDE5 inhibitors and the NO/cGMP pathway in cancer. Sex. Med. Rev., 2016, 4(1), 74-84.
[http://dx.doi.org/10.1016/j.sxmr.2015.10.004] [PMID: 27872007]
[16]
Klutzny, S.; Anurin, A.; Nicke, B.; Regan, J.L.; Lange, M.; Schulze, L.; Parczyk, K.; Steigemann, P. PDE5 inhibition eliminates cancer stem cells via induction of PKA signaling. Cell Death Dis., 2018, 9(2), 192.
[http://dx.doi.org/10.1038/s41419-017-0202-5] [PMID: 29416006]
[17]
Corbin, J. PDE5 inhibition and fibrosis. Int. J. Impot. Res., 2005, 17(6), 546-546.
[http://dx.doi.org/10.1038/sj.ijir.3901362] [PMID: 16258527]
[18]
Armani, A.; Marzolla, V.; Rosano, G.M.C.; Fabbri, A.; Caprio, M. Phosphodiesterase type 5 (PDE5) in the adipocyte: A novel player in fat metabolism? Trends Endocrinol. Metab., 2011, 22(10), 404-411.
[http://dx.doi.org/10.1016/j.tem.2011.05.004] [PMID: 21741267]
[19]
Paick, J.S.; Ahn, T.Y.; Choi, H.K.; Chung, W.S.; Kim, J.J.; Kim, S.C.; Kim, S.W.; Lee, S.W.; Min, K.S.; Moon, K.H.; Park, J.K.; Park, K.; Park, N.C.; Suh, J.K.; Yang, D.Y.; Jung, H.G. Efficacy and safety of mirodenafil, a new oral phosphodiesterase type 5 inhibitor, for treatment of erectile dysfunction. J. Sex. Med., 2008, 5(11), 2672-2680.
[http://dx.doi.org/10.1111/j.1743-6109.2008.00945.x] [PMID: 18638004]
[20]
Mirodenafil : A new PDE5 inhibitor for the treatment of erectile dysfunction Holmium laser enucleation of the prostate : A new gold standard for BPH? Intracorporeal laparoscopic bladder augmentation. Nat. Clin. Pract. Urol., 2009, 6(2), 2009.
[21]
Wright, P.J. Comparison of phosphodiesterase type 5 (PDE5) inhibitors. Int. J. Clin. Pract., 2006, 60(8), 967-975.
[http://dx.doi.org/10.1111/j.1742-1241.2006.01049.x] [PMID: 16780568]
[22]
Rashid, A. The efficacy and safety of PDE5 inhibitors. Clin. Cornerstone, 2005, 7(1), 47-55.
[http://dx.doi.org/10.1016/S1098-3597(05)80048-1] [PMID: 16156423]
[23]
Mukherjee, G.; Jayaram, B. A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Phys. Chem. Chem. Phys., 2013, 15(23), 9107-9116.
[http://dx.doi.org/10.1039/c3cp44697b] [PMID: 23646352]
[24]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[25]
Zehnacker, M.T.; Brennan, R.H.; Milne, G.W.A.; Miller, J.A.; Hammel, M.J. The NCI drug information system. 6. System maintenance. J. Chem. Inf. Comput. Sci., 1986, 26(4), 193-197.
[http://dx.doi.org/10.1021/ci00052a007] [PMID: 3580042]
[26]
Dunkel, M.; Fullbeck, M.; Neumann, S.; Preissner, R. SuperNatural: A searchable database of available natural compounds. Nucleic Acids Res., 2006, 34(90001), D678-D683.
[http://dx.doi.org/10.1093/nar/gkj132] [PMID: 16381957]
[27]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The protein data bank. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(6), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[28]
Landrum, G. RDKit: Open-Source Cheminformatics Software. 2016. Available from https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4
[29]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[30]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A Qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[31]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[32]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[33]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[34]
Singh, T.; Biswas, D.; Jayaram, B. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J. Chem. Inf. Model., 2011, 51(10), 2515-2527.
[http://dx.doi.org/10.1021/ci200193z] [PMID: 21877713]
[35]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[36]
Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol. Direct, 2020, 15(1), 12.
[http://dx.doi.org/10.1186/s13062-020-00267-2] [PMID: 32938494]
[37]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[38]
Lee, S.K.; Lee, I.H.; Kim, H.J.; Chang, G.S. The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. In: Euroqsar 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions; Blackwell Publishing: Massachusetts, USA, 2003.
[39]
Schyman, P.; Liu, R.; Desai, V.; Wallqvist, A. vNN Web Server for ADMET Predictions. Front. Pharmacol., 2017, 8(December), 889.
[http://dx.doi.org/10.3389/fphar.2017.00889] [PMID: 29255418]
[40]
Maunz, A.; Gütlein, M.; Rautenberg, M.; Vorgrimmler, D.; Gebele, D.; Helma, C. lazar: A modular predictive toxicology framework. Front. Pharmacol., 2013, 4(April), 38.
[PMID: 23761761]
[41]
Palacio-Rodríguez, K.; Lans, I.; Cavasotto, C.N.; Cossio, P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep., 2019, 9(1), 5142.
[http://dx.doi.org/10.1038/s41598-019-41594-3] [PMID: 30914702]
[42]
Blanes-Mira, C.; Fernández-Aguado, P.; de Andrés-López, J.; Fernández-Carvajal, A.; Ferrer-Montiel, A.; Fernández-Ballester, G. Comprehensive survey of consensus docking for high-throughput virtual screening. Molecules, 2022, 28(1), 175.
[http://dx.doi.org/10.3390/molecules28010175] [PMID: 36615367]
[43]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[44]
Alhossary, A.; Handoko, S.D.; Mu, Y.; Kwoh, C.K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 2015, 31(13), 2214-2216.
[http://dx.doi.org/10.1093/bioinformatics/btv082] [PMID: 25717194]
[45]
Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 2011, 39(Web Server issue), W270-W277.
[http://dx.doi.org/10.1093/nar/gkr366] [PMID: 21624888]
[46]
Li, H.; Leung, K.S.; Wong, M.H. Idock: A multithreaded virtual screening tool for flexible ligand docking. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), San Diego, CA, USA 09-12 May2012, pp. 77-84.
[http://dx.doi.org/10.1109/CIBCB.2012.6217214]
[47]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009.
[48]
Debnath, A.; Mazumder, R.; Mazumder, A.; Singh, R.; Srivastava, S. In silico Identification of HDAC inhibitors for multiple myeloma: a structure-based virtual screening, drug likeness, admet profiling, molecular docking, and molecular dynamics simulation study. Lett. Drug Des. Discov., 2023, 20, 1.
[http://dx.doi.org/10.2174/1570180820666230125102954]
[49]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[50]
Brooks, B.R.; Brooks, C.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B. CHARMM: Molecular dynamics simulation package. J. Comput. Chem., 2009, 30(10), 1545-1614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[51]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[52]
Pillai, G.G. Jupyter Notebook for MD using Gromacs. 2020. Available from: https://zenodo.org/records/3832358
[53]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2009, 32.
[PMID: 19575467]
[54]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[55]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[56]
Waals, D.; Waals, D.; Waals, D. Van der waals volumes and radii. J. Phys. Chem., 1964, 68(3), 441-451.
[57]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[58]
Poli, G.; Tuccinardi, T. Consensus docking in drug discovery. Curr. Bioact. Compd., 2020, 16(3), 182-190.
[http://dx.doi.org/10.2174/1573407214666181023114820]
[59]
Houston, D.R.; Walkinshaw, M.D. Consensus docking: Improving the reliability of docking in a virtual screening context. J. Chem. Inf. Model., 2013, 53(2), 384-390.
[http://dx.doi.org/10.1021/ci300399w] [PMID: 23351099]
[60]
Xu, L.; Sun, L.; Su, P.; Ma, T.; Yu, Y.; Liu, H. Identification of potential inhibitors of pde5 based on structure-based virtual screening approaches. Curr. Comput. Aided. Drug Des., 2023, 19(3), 234-242.
[http://dx.doi.org/10.2174/1573409919666221208143327]
[61]
Amin, K.M.; El-Badry, O.M.; Abdel Rahman, D.E.; Abdellattif, M.H.; Abourehab, M.A.S.; El-Maghrabey, M.H.; Elsaid, F.G.; El Hamd, M.A.; Elkamhawy, A.; Ammar, U.M. Scaffold repurposing reveals new nanomolar phosphodiesterase type 5 (pde5) inhibitors based on pyridopyrazinone scaffold: Investigation of in vitro and in silico properties. Pharmaceutics, 2022, 14(9), 1954.
[http://dx.doi.org/10.3390/pharmaceutics14091954] [PMID: 36145702]
[62]
Palanichamy, C.; Pavadai, P.; Panneerselvam, T.; Arunachalam, S.; Babkiewicz, E.; Ram Kumar Pandian, S.; Shanmugampillai Jeyarajaguru, K.; Nayak Ammunje, D.; Kannan, S.; Chandrasekaran, J.; Sundar, K.; Maszczyk, P.; Kunjiappan, S. Aphrodisiac Performance of Bioactive Compounds from Mimosa pudica Linn.: in silico Molecular Docking and Dynamics Simulation Approach. Molecules, 2022, 27(12), 3799.
[http://dx.doi.org/10.3390/molecules27123799] [PMID: 35744923]
[63]
Hussein, A.H.M.; Khames, A.A.; El-Adasy, A.B.A.; Atalla, A.A.; Abdel-Rady, M.; Hassan, M.I.A.; Abou-Salim, M.A.; Elshaier, Y.A.M.M.; Barakat, A. Multifunctional isosteric pyridine analogs-based 2-aminothiazole: Design, synthesis, and potential phosphodiesterase-5 inhibitory activity. Molecules, 2021, 26(4), 902.
[http://dx.doi.org/10.3390/molecules26040902] [PMID: 33572094]
[64]
Ehigiator, B.E.; Adesida, A.S.; Omotuyi, I.O. Chicoric acid, a phytochemical compound of solenostemon monostachyus: Possible drug candidate for the relief of erectile dysfunction. Int. J. Eng. Appl. Sci. Technol., 2020, 4(11), 509-518.
[http://dx.doi.org/10.33564/IJEAST.2020.v04i11.091]
[65]
Hussein, A.H.M.; Khames, A.A.; El-Adasy, A.B.A.; Atalla, A.A.; Abdel-Rady, M.; Hassan, M.I.A.; Nemr, M.T.M.; Elshaier, Y.A.A.M. Design, synthesis and biological evaluation of new 2-aminothiazole scaffolds as phosphodiesterase type 5 regulators and COX-1/COX-2 inhibitors. RSC Advances, 2020, 10(50), 29723-29736.
[http://dx.doi.org/10.1039/D0RA05561A] [PMID: 35518254]
[66]
Rastija, V.; Brahmbhatt, H.; Molnar, M.; Lončarić, M.; Strelec, I.; Komar, M.; Pavić, V. Synthesis, tyrosinase inhibiting activity and molecular docking of fluorinated pyrazole aldehydes as phosphodiesterase inhibitors. Appl. Sci., 2019, 9(8), 1704.
[http://dx.doi.org/10.3390/app9081704]
[67]
Shaik, A.; Agarwal, H.K.; Bhakuni, R.; Kirubakaran, S. Novel Pyrazolo[4, 3-c]Quinolin-3-One Derivatives as PDE5A Inhibitors. Curr. Top. Med. Chem., 2019, 19(4), 305-315.
[http://dx.doi.org/10.2174/1568026619666190208164402] [PMID: 30747070]
[68]
Huang, X.; Xu, P.; Cao, Y.; Liu, L.; Song, G.; Xu, L. Exploring the binding mechanisms of PDE5 with chromeno[2,3- c]pyrrol-9(2 H)-one by theoretical approaches. RSC Advances, 2018, 8(53), 30481-30490.
[http://dx.doi.org/10.1039/C8RA06405A] [PMID: 35546827]
[69]
Mittal, A.; Paliwal, S.; Sharma, M.; Singh, A.; Sharma, S.; Yadav, D. Pharmacophore based virtual screening, molecular docking and biological evaluation to identify novel PDE5 inhibitors with vasodilatory activity. Bioorg. Med. Chem. Lett., 2014, 24(14), 3137-3141.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.004] [PMID: 24856068]
[70]
Mazumder, R.; Kaushik, K.K.; Debnath, A.; Patel, M. A brief study on drug repurposing: New way of boosting drug discovery. Lett. Drug Des. Discov., 2023, 20(3), 264-278. [Internet].
[http://dx.doi.org/10.2174/1570180819666220901170016]
[71]
Tremaine, L.; Brian, W.; DelMonte, T.; Francke, S.; Groenen, P.; Johnson, K.; Li, L.; Pearson, K.; Marshall, J.C. The role of ADME pharmacogenomics in early clinical trials: Perspective of the Industry Pharmacogenomics Working Group (I-PWG). Pharmacogenomics, 2015, 16(18), 2055-2067.
[http://dx.doi.org/10.2217/pgs.15.141] [PMID: 26616152]
[72]
Van Norman, G.A. Limitations of animal studies for predicting toxicity in clinical trials. JACC Basic Transl. Sci., 2019, 4(7), 845-854.
[http://dx.doi.org/10.1016/j.jacbts.2019.10.008] [PMID: 31998852]
[73]
Stensland, K.D.; DePorto, K.; Ryan, J.; Kaffenberger, S.; Reinstatler, L.S.; Galsky, M. Estimating the rate and reasons of clinical trial failure in urologic oncology. Urol. Oncol. Semin. Orig. Investig, 2021, 39(3), 154-160.
[http://dx.doi.org/10.1016/j.urolonc.2020.10.070]
[74]
Kukol, A. Consensus virtual screening approaches to predict protein ligands. Eur. J. Med. Chem., 2011, 46(9), 4661-4664.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.026] [PMID: 21640444]
[75]
Debnath, A.; Chaudhary, H.; Kumar, R.; Shokeen, A.; Khurana, R. Discovery of novel cathepsin D inhibitors by high- throughput virtual screening. Biointerface Res. Appl. Chem., 2023, 13(5), 483.
[76]
Ochoa, R.; Palacio-Rodriguez, K.; Clemente, C.M.; Adler, N.S. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules. J. Mol. Graph. Model., 2021, 109(August), 108023.
[http://dx.doi.org/10.1016/j.jmgm.2021.108023] [PMID: 34555725]

© 2024 Bentham Science Publishers | Privacy Policy