Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Silica-Based 1,3-Diphenyl-1,3-Propanedione Composites: Efficient Uranium Capture for Environmental Remediation

Author(s): Mohammed A. Al-Anber*, Wala' Al-Qaisi, Idrees F. Al-Momani, Ahmed K. Hijazi, Dinara Sobola, Wasim Alhalasah and Zaid A. Al-Anber

Volume 20, Issue 7, 2024

Published on: 03 April, 2024

Page: [500 - 515] Pages: 16

DOI: 10.2174/0115734110300973240325131908

Abstract

Introduction: This study synthesizes and characterizes a novel hybrid composite, SGdpm, to capture UO2 2+ ions from water. The composite has successfully formed by hosting covalently diphenylmethane-1,3-dione (dpm) within an inorganic silica gel matrix, showing promising potential for environmental remediation and nuclear waste management.

Methods: The preparation involved the reaction of tetraethylorthosilicate (TEOS) with diphenylmethane- 1,3-dione (dpm) under acidic conditions, resulting in white solids. The doped composite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), revealing the presence of siloxane and Si-O-C bonds. The application of SG-dpm for capturing UO2 2+ ions from water was investigated, showing a shift in FTIR peaks and confirming the formation of SG-dpm-UO2 2+ as inner-sphere complexes. Scanning Electron Microscopy (SEM) revealed a non-uniform distribution of particles, essential for consistent behavior in applications such as adsorption.

Results and Discussion: Batch sorption experiments demonstrated temperature-dependent sorption behavior with increased efficiency at higher temperatures (T = 55°C). The study also explored the influence of pH and initial concentration on UO2 2+ sorption, revealing optimal conditions at pH 5 and lower initial concentrations (1.0 mg L-1). Kinetic studies using pseudo-second-order models indicated a high efficiency of UO2 2+ ion removal (99%) as a chemisorption process. Intraparticle diffusion models highlighted three distinct sorption stages. Sorption isotherm studies favored the Langmuir model, emphasizing monolayer adsorption. The thermodynamic analysis suggested an endothermic (ΔH = + 16.120 kJ mol-1) and spontaneous (ΔG = −25.113 to − 29.2449 kJ mol-1) sorption process. Selectivity studies demonstrated high efficiency in capturing Cu2+, Co2+, and Cr3+ ions, high degree selectivity of UO2 2+ ions (74%), moderate efficiency for Fe3+ and Zn2+, and lower efficiency for Pb2+, Ni2+, and Cd2+, and poor efficiency for Mn2+ ions.

Conclusion: SG-dpm exhibits promising potential for selective UO2 2+ ion removal, demonstrating favorable characteristics for various applications, including environmental remediation and nuclear waste management.

Keywords: 1, 3-diphenyl-1, 3-propanedione, silica sol-gel matrix, uranyl ion capture, pseudo-first-order, pseudo-second-order, sorption isotherm.

Graphical Abstract
[1]
Eggers, M.; Moore-Nall, A.; Doyle, J.; Lefthand, M.; Young, S.; Bends, A.; Committee, C.; Camper, A. Potential health risks from uranium in home well water: an investigation by the apsaalooke (Crow) tribal research group. Geosciences, 2015, 5(1), 67-94.
[http://dx.doi.org/10.3390/geosciences5010067]
[2]
Banning, A.; Benfer, M. Drinking water uranium and potential health effects in the german federal state of bavaria. Inter. J. Environ. Res. & Public Heal, 2017, 14(8), 927.
[3]
Anna, S.; Maciej, P.; Daniel, L.; Jolanta, G.; Jerzy, K.; Justyna, K. Organically functionalized sol-gel silica network growth. Ceram. Int., 2020, 46(9), 13198-13204.
[4]
Desboeufs, N.; Vu, A.D.; Lahlil, K.; Lassailly, Y.; Martinelli, L.; Boilot, J.P.; Peretti, J.; Gacoin, T. Optical patterning of sol–gel silica coatings. Adv. Opt. Mater., 2016, 4(2), 313-320.
[http://dx.doi.org/10.1002/adom.201500417]
[5]
Timin, A.S.; Rumyantsev, E.V. Sol–gel synthesis of mesoporous silicas containing albumin and guanidine polymers and its application to the bilirubin adsorption. J. Sol-Gel Sci. Technol., 2013, 67(2), 297-303.
[http://dx.doi.org/10.1007/s10971-013-3079-5]
[6]
Islam, S.; Rahman, R.; Othaman, Z.; Riaz, S.; Naseem, S. Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. J. Ind. Eng. Chem., 2014, 20(6), 4408-4414.
[http://dx.doi.org/10.1016/j.jiec.2014.02.008]
[7]
Pan, S-W.; Qiu, K.; Sun, T.; Zhang, H.; Jia, J-P. Application of chelating agents for heavy metal removal from electroplating effluent. Xian Dai Hua Gong, 2015, 35, 61-65.
[8]
Al-Anber, M.A.; Daoud, H.M.; Rüffer, T.; Lang, H. Synthesis, crystal structure and supramolecularity of [Cu(tba)2] complex (tba=deprotonated of 3-benzoyl-1,1,1-trifluoroacetone). Arab. J. Chem., 2016, 9(3), 344-349.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.048]
[9]
Suppapruek, M.; Threepopnatkul, P.; Sittattrakul, Z.; Lerdwijitjarud, W. Effect of chelating agents on removal of heavy metal cations of cellulose-based ion exchange resins from water hyacinth. E3S Web Conf., 2021, 302, 02020.
[10]
Dash, S.; Mishra, S.; Patel, S.; Mishra, B.K. Organically modified silica: Synthesis and applications due to its surface interaction with organic molecules. Adv. Colloid Interface Sci., 2008, 140(2), 77-94.
[http://dx.doi.org/10.1016/j.cis.2007.12.006] [PMID: 18321464]
[11]
Gilliland, J.W.; Yokoyama, K.; Yip, W.T. Solvent effect on mobility and photo-stability of organic dyes embedded inside silica sol-gel thin films. Chem. Mater., 2005, 17(26), 6702-6712.
[http://dx.doi.org/10.1021/cm050658h]
[12]
Ogoshi, T.; Chujo, Y. Organic–inorganic polymer hybrids prepared by the sol-gel method. Compos. Interfaces, 2005, 11(8-9), 539-566.
[http://dx.doi.org/10.1163/1568554053148735]
[13]
Yuan, J.; Zhou, S.; Gu, G.; Wu, L. Encapsulation of organic pigment particles with silica via sol-gel process. J. Sol-Gel Sci. Technol., 2005, 36(3), 265-274.
[http://dx.doi.org/10.1007/s10971-005-4063-5]
[14]
Yang, S.; Qian, J.; Kuang, L.; Hua, D. Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl. Mater. Interfaces, 2017, 9(34), 29337-29344.
[http://dx.doi.org/10.1021/acsami.7b09419] [PMID: 28783297]
[15]
Lee, H.I.; Kim, J.H.; Kim, J.M.; Kim, S.; Park, J.N.; Hwang, J.S.; Yeon, J.W.; Jung, Y. Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions. J. Nanosci. Nanotechnol., 2010, 10(1), 217-221.
[http://dx.doi.org/10.1166/jnn.2010.1498] [PMID: 20352836]
[16]
Cheira, M.F. Performance of poly sulfonamide/nano-silica composite for adsorption of thorium ions from sulfate solution. SN Applied Sciences, 2020, 2(3), 398.
[http://dx.doi.org/10.1007/s42452-020-2221-6]
[17]
Ren, Y.; Yang, R.; Shao, L.; Tang, H.; Wang, S.; Zhao, J.; Zhong, J.; Kong, C. The removal of aqueous uranium by SBA-15 modified with phosphoramide: A combined experimental and DFT study. RSC Advances, 2016, 6(73), 68695-68704.
[http://dx.doi.org/10.1039/C6RA12269H]
[18]
Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng., 2016, 60, 174-184.
[http://dx.doi.org/10.1016/j.jtice.2015.11.004]
[19]
Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J. Environ. Manage., 2016, 169, 8-17.
[http://dx.doi.org/10.1016/j.jenvman.2015.12.005] [PMID: 26720327]
[20]
Ranalda, T. Selective solid phase extraction of uranium using an aminophosphonic acid functionalized composite material; Graduate Student Theses, Dissertations, & Professional Papers, 2015, p. 4563.
[21]
Perlova, O.V.; Dzyazko, Y.S.; Perlova, N.O.; Sazonova, V.F.; Halutska, I.Y. Removal of uranyl cations from iron-containing solutions using composite sorbents based on polymer matrix. Chemistry. Physics and Technology of Surface, 2017, 8(1), 30-43.
[22]
Gaffney, J.S.; Marley, N.A.J. Chemistry of Environmental Systems: Fundamental Principles and Analytical Methods; John Wiley & Sons, 2020.
[23]
Saad, B.; Chong, C.C.; Ali, A.S.M.; Bari, M.F.; Rahman, I.A.; Mohamad, N.; Saleh, M.I. Selective removal of heavy metal ions using sol–gel immobilized and SPE-coated thiacrown ethers. Anal. Chim. Acta, 2006, 555(1), 146-156.
[http://dx.doi.org/10.1016/j.aca.2005.08.070]
[24]
Pogorilyi, R.P.; Goncharik, V.P.; Kozhara, L.I.; Zub, Y.L. Covalent immobilization of urease on polysiloxane matrices containing 3-aminopropyl and 3-mercaptopropyl groups. Appl. Biochem. Microbiol., 2008, 44(6), 561-565.
[http://dx.doi.org/10.1134/S000368380806001X]
[25]
Campero, A.; Cardoso, J.; Pacheco, S. Ethylene glycol-citric acid-silica hybrid organic-inorganic materials obtained by the sol-gel method. J. Sol-Gel Sci. Technol., 1997, 8(1-3), 535-539.
[http://dx.doi.org/10.1007/BF02436895]
[26]
Tani, T.; Makishima, A.; Itani, A.; Itoh, U. Organic Molecule, 1,4-Dihydroxy-9,10-Anthraquinone, Doped Amorphous Silica Prepared by Sol-Gel Method and its Structures Studied by Photochemical Hole Burning. Unconventional Photoactive Solids; Springer, 1988, pp. 185-192.
[http://dx.doi.org/10.1007/978-1-4613-0727-3_19]
[27]
Martínez, J.; Espericueta, D.; Guerrero Serrano, G.; Ortega-Zarzosa, G.; Espericueta, E.; Serrano, A.L. Stabilization of β-carotene embedded in a silica matrix and study of its physical properties. Mater. Res. Express, 2020, 7(1), 051205.
[http://dx.doi.org/10.1088/2053-1591/ab6808]
[28]
Gall, G.J.; King, T.A.; Oliver, S.N.; Capozzi, C.A.; Seddon, A.B.; Hill, C.A.; Underhill, A.E. Third-order nonlinear optical properties of metal dithiolene- and phthalocyanine-doped sol-gel materials; Optics & Photonics, 1994, 2288, pp. 372-381.
[http://dx.doi.org/10.1117/12.188972]
[29]
Mutin, P.H.; Guerrero, G.; Vioux, A. Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem., 2005, 15(35-36), 3761-3768.
[http://dx.doi.org/10.1039/b505422b]
[30]
García-Sánchez, M.; Serratos, I.; Sosa, R.; Tapia-Esquivel, T.; González-García, F.; Rojas-González, F.; Tello-Solís, S.; Palacios-Enriquez, A.; Schulz, J.; Arrieta, A. Chlorophyll a covalently bonded to organo-modified translucent silica xerogels: Optimizing fluorescence and maximum loading. Molecules, 2016, 21(7), 961.
[http://dx.doi.org/10.3390/molecules21070961] [PMID: 27455223]
[31]
Edmiston, P.L.; Underwood, L.A. Remediation of dissolved organic pollutants in water using organosilica-based materials that rapidly and reversibly swell. MRS Online Proceedings Library, 2009, 5, 1169.
[32]
Levy, D.; Avnir, D. Room temperature phosphorescence and delayed fluorescence of organic molecules trapped in silica sol—gel glasses. J. Photochem. Photobiol. Chem., 1991, 57(1-3), 41-63.
[http://dx.doi.org/10.1016/1010-6030(91)85006-3]
[33]
Severin-Vantilt, M.M.E. The incorporation of Rhodamine B in silica sol-gel layers. J. Non-Cryst. Solids, 1993, 159(1–2), 8-48.
[34]
Al-Adaileh, N.F. The siloxane sol-gel matrix impregnated organic moiety: Environmental application vs. Surface-complex reaction mechanism.. MSc Thesis, Department of Chemistry, Mutah University., 2020.
[35]
Al-Mazaydeh, H.A. Utilization of silica gel functionalized organic entities for the environmental applications: Physiochemical study.. MSc Thesis, Department of Chemistry, Mutah University. , 2020.
[36]
Al-Qaisi, W.M. Encapsulation of organic-inorganic hybrid aerogel/xerogel by an approach for reducing the contaminant in water.. MSc Thesis, Department of Chemistry, Mutah University. , 2021.
[37]
Al-Anber, M.A.; Al-Adaileh, N.; Al-Momani, I.F.; Al-Anber, Z. Encapsulation of 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione into the silica gel matrix for capturing uranium(VI) ion species. J. Radioanal. Nucl. Chem., 2021, 329(2), 865-887.
[http://dx.doi.org/10.1007/s10967-021-07811-y]
[38]
Al-Anber, M.A.; Al-Qaisi, W.; Al-Momani, I.F.; Sobola, D.; Hijazi, A.K.; Mousa, M.S.; Madanat, M.A. Utilization of silica gel nanoparticles for selective capturing aqueous uranyl ion. J. Radioanal. Nucl. Chem., 2023, 332(12), 4993-5006.
[http://dx.doi.org/10.1007/s10967-023-09191-x]
[39]
Shamsipur, M.; Zargoosh, K.; Mizani, F.; Eshghi, H.; Rostami, F. A novel PVC-membrane optical sensor for highly sensitive and selective determination of UO22+ ion based on a recently synthesized benzo-substituted macrocyclic diamide and dibenzoylmethane. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 77(1), 319-323.
[http://dx.doi.org/10.1016/j.saa.2010.05.030] [PMID: 20635469]
[40]
Akhter, F.; Jamali, A.R.; Abbasi, M.N.; Mallah, M.A.; Rao, A.A.; Wahocho, S.A.; Anees-ur-Rehman, H.; Chandio, Z.A. A comprehensive review of hydrophobic silica and composite aerogels: Synthesis, properties and recent progress towards environmental remediation and biomedical applications. Environ. Sci. Pollut. Res. Int., 2022, 30(5), 11226-11245.
[http://dx.doi.org/10.1007/s11356-022-24689-9] [PMID: 36513899]
[41]
Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances, 2021, 2(2), 598-627.
[http://dx.doi.org/10.1039/D0MA00087F]
[42]
Al-Anber, M.A. Thermodynamics approach in the adsorption of heavy metals. In: Thermodynamics - Interaction Studies - Solids, Liquids and Gases; InTech, 2011.
[43]
Al-Anber, M.A.; Al-Qaisi, W.; Al-Momani, I.F.; Sobola, D.; Hijazi, A.; Mousa, M.S.; Madanat, M.A. Utilization of silica gel nanoparticles. 2ed International Conference for Science and Pharmacy MSPC2, 2023. Jordan, Mu’tah University October 2023.
[44]
Michard, P.; Guibal, E.; Vincent, T.; Le Cloirec, P. Sorption and desorption of uranyl ions by silica gel: pH, particle size and porosity effects. Microporous Mater., 1996, 5(5), 309-324.
[http://dx.doi.org/10.1016/0927-6513(95)00067-4]
[45]
Van Chinh, N.; Tuyen, N.D.; Nhan, D.D.; Lanh, N. Removal of aqueous uranyl ions using titania-supported mesoporous silica composite with the synergistic effect of coupled adsorption and photocatalytic reduction of U(VI). Results in Chemistry, 2023, 6, 101103.
[http://dx.doi.org/10.1016/j.rechem.2023.101103]
[46]
Ulrich, K.U.; Veeramani, H.; Bernier-Latmani, R.; Giammar, D.E. Speciation-dependent kinetics of uranium(VI) bioreduction. Geomicrobiol. J., 2011, 28(5-6), 396-409.
[http://dx.doi.org/10.1080/01490451.2010.507640]
[47]
Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta, 1978, 42(6), 547-569.
[http://dx.doi.org/10.1016/0016-7037(78)90001-7]
[48]
Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetensk. Akad. Handl., 1898, 24, 1-39.
[49]
Wong, Y.C.; Szeto, Y.S.; Cheung, W.H.; McKay, G. Pseudo-first-order kinetic studies of the sorption of acid dyes onto chitosan. J. Appl. Polym. Sci., 2004, 92(3), 1633-1645.
[http://dx.doi.org/10.1002/app.13714]
[50]
Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem., 1999, 34(5), 451-465.
[http://dx.doi.org/10.1016/S0032-9592(98)00112-5]
[51]
Ho, Y.S.; Ofomaja, A.E. Kinetic studies of copper ion adsorption on palm kernel fibre. J. Hazard. Mater., 2006, 137(3), 1796-1802.
[http://dx.doi.org/10.1016/j.jhazmat.2006.05.023] [PMID: 16875778]
[52]
Arrhenius, S. About the heat of dissociation and the influence of temperature on the degree of dissociation of the electrolytes. Z. Phys. Chem., 1889, 4U(1), 96-116.
[http://dx.doi.org/10.1515/zpch-1889-0408]
[53]
Weber, W.J., Jr; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Engrg. Div., 1963, 89(2), 31-59.
[http://dx.doi.org/10.1061/JSEDAI.0000430]
[54]
Moreno-Pirajan, J.C. Thermodynamics - Interaction Studies - Solids, Liquids and Gases; InTech, 2011.
[55]
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc., 1918, 40(9), 1361-1403.
[http://dx.doi.org/10.1021/ja02242a004]
[56]
Freundlich, H.M. On adsorption in solutions. Z. Phys. Chem., 1906, 57A, 385.
[57]
Cooper, A. Van’t hoff analysis and hidden thermodynamic variables. In: Encyclopedia of Biophysics; Roberts, G.; Watts, A., Eds.; Springer: Berlin, Heidelberg, 2018.
[http://dx.doi.org/10.1007/978-3-642-35943-9_10066-1]

© 2024 Bentham Science Publishers | Privacy Policy