Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Development of UV Method for Simultaneous Estimation of Imipramine and Ferulic Acid in Bulk and Developed Freeze-Dried Mixed Micelles

Author(s): Naman Deep Raj and Dilpreet Singh*

Volume 20, Issue 7, 2024

Published on: 27 March, 2024

Page: [484 - 499] Pages: 16

DOI: 10.2174/0115734110286586240222100116

Abstract

Introduction: A simple, precise, and sensitive UV spectrophotometric method was developed to estimate Imipramine and Ferulic acid in bulk and polymeric micelles formulation. Moreover, imipramine and ferulic acid showed maximum absorbance at 237 nm and 216 nm.

Methods: The method was validated for linearity, accuracy, precision, robustness, and ruggedness. The detector response for the imipramine and ferulic acid was linear over the selected range of 2 to 12 μg/ml with a correlation coefficient of 0.996 and 0.997. The accuracy was 99.4 and 101.02%. The precision (RSD) among six sample preparations was 0.68% and 0.85%. The method was validated as per the ICH guidelines. A polymeric micelle formulation was developed containing Vitamin E TPGS and F-127 as a surfactant and block co-polymer using different solvents. The optimized formulation containing 40 mg of F-127 and 30 mg of TPGS yielded the desired attributes of the optimized formulation.

Results: The optimized formulation was subjected to freeze-drying and yielded nanoparticulate size and excellent flowability. In vitro, the release of both drugs from the polymeric micelles was evaluated using dissolution, and multi-fold enhancement in release behavior was demonstrated compared to pure drugs. Both drugs were simultaneously detected successfully with accuracy and precision in bulk form and during in vitro analysis.

Conclusion: The developed method can be adopted in routine analysis of imipramine and ferulic acid in bulk, and it involves relatively low-cost solvents with no complex extraction techniques.

Keywords: Imipramine, ferulic acid, UV method, solubility, in vitro release, simultaneous estimation, optimization, micelles.

Graphical Abstract
[1]
Zeni, A.L.B.; Zomkowski, A.D.E.; Maraschin, M.; Rodrigues, A.L.S.; Tasca, C.I. Ferulic acid exerts antidepressant-like effect in the tail suspension test in mice: Evidence for the involvement of the serotonergic system. Eur. J. Pharmacol., 2012, 679(1-3), 68-74.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.041] [PMID: 22266492]
[2]
Li, G.; Ruan, L.; Chen, R. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: Involvement of monoaminergic system. Metab. Brain Dis., 2015, 30, 1505-1514.
[http://dx.doi.org/10.1007/s11011-015-9704-y]
[3]
Nishiyama, N.; Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther., 2006, 112(3), 630-648.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[4]
Sawant, R.L.; Hadawale, S.D.; Dhikale, G.K.; Bansode, C.A.; Tajane, P.S. Spectrophotometric methods for simultaneous estimation of rabeprazole sodium and aceclofenac from the combined capsule dosage form. Pharm. Methods, 2011, 2(3), 193-197.
[http://dx.doi.org/10.4103/2229-4708.90362] [PMID: 23781455]
[5]
Harakeh, S.; Saber, S.H.; Al-Raddadi, R.; Alamri, T.; Jaouni, A.S.; Qari, M.; Qari, Y.; Haque, S.; Zawawi, A.; Ali, S.S.; Elmageed, Z.Y.A.; Mousa, S. Novel curcumin nanoformulation induces apoptosis, and reduces migration and angiogenesis in liver cancer cells. Artif. Cells Nanomed. Biotechnol., 2023, 51(1), 361-370.
[http://dx.doi.org/10.1080/21691401.2023.2238756] [PMID: 37524306]
[6]
Sakuntala, S.V.M.; Rao, L.A.; Carey, W.M. Stability-indicating method development and validation for the concurrent determination of darunavir, cobicistat, emtricitabine and tenofovir alafenamide by UPLC in bulk and tablet dosage forms. Future J. Pharm. Sci., 2021, 7(1), 236.
[http://dx.doi.org/10.1186/s43094-021-00384-3]
[7]
Slassi, S.; Aarjane, M.; Amine, A. Novel triazole derivatives possessing imidazole: Synthesis, spectroscopic characterization (FT-IR, NMR, UV–Vis), DFT studies and antibacterial in vitro evaluation. J. Mol. Struct., 2023, 1276, 134788.
[http://dx.doi.org/10.1016/j.molstruc.2022.134788]
[8]
Sobiech, M.; Klejn, D.; Kleniewski, W.; Luliński, P.; Giebułtowicz, J. Imipramine-imprinted polymer: Designing by theoretical and empirical studies. Microchem. J., 2023, 194, 109274.
[http://dx.doi.org/10.1016/j.microc.2023.109274]
[9]
Barati, E.; Alizadeh, N. Simultaneous determination of sertraline, imipramine and alprazolam in human plasma samples using headspace solid phase microextraction based on a nanostructured polypyrrole fiber coupled to ion mobility spectrometry. Anal. Methods, 2020, 12(7), 930-937.
[http://dx.doi.org/10.1039/C9AY02001B]
[10]
Manousi, N.; Samanidou, V.F. Recent advances in the HPLC analysis of tricyclic antidepressants in bio-samples. Mini Rev. Med. Chem., 2020, 20(1), 24-38.
[http://dx.doi.org/10.2174/1389557519666190617150518] [PMID: 31288718]
[11]
(a) Liao, M.; Gao, J.; Shen, Y.; Lv, Z.; Wang, Z.; Liu, J.; Yao, Z. A colorimetric probe for rapid and simultaneous detection of alkylresorcinols and ferulic acid based on in-situ coupling reaction in aqueous media. Food Chemistry, 2024, 440, 138230.;
(b) Oktaviyanti, N.D.; Setiawan, F.; Kartini, K.; Azminah, A.; Avanti, C.; Hayun, H.; Mun’im, A. Development of a simple and rapid HPLC-UV method for ultrasound-assisted deep eutectic solvent extraction optimization of ferulic acid and antioxidant activity from ixora javanica flowers. S. Afr. J. Chem. Eng., 2022, 40(1), 165-175.
[12]
Wei, Z.; Hao, J.; Yuan, S.; Li, Y.; Juan, W.; Sha, X.; Fang, X. Paclitaxel-loaded pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization. Int. J. Pharm., 2009, 376(1-2), 176-185.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.030] [PMID: 19409463]
[13]
Hardainiyan, S.; Kumar, K.; Nandy, B.C. Design, formulation and in vitro drug release from transdermal patches containing imipramine hydrochloride as model drug. Int. J. Pharm. Pharm. Sci., 2017, 9, 220-225.
[http://dx.doi.org/10.22159/ijpps.2017v9i6.16851]
[14]
Verma, P.; Gupta, G.D.; Markandeywar, T.S.; Singh, D. A critical sojourn of polymeric micelles: Technological concepts, recent advances, and future prospects. Assay Drug Dev. Technol., 2023, 21(2), 31-47.
[http://dx.doi.org/10.1089/adt.2022.079] [PMID: 36856457]
[15]
Jain, B.; Jain, R.; Jaiswal, P.K.; Zughaibi, T.; Sharma, T.; Kabir, A.; Singh, R.; Sharma, S. A non-instrumental green analytical method based on surfactant-assisted dispersive liquid–liquid microextraction–thin-layer chromatography–smartphone-based digital image colorimetry (SA-DLLME-TLC-SDIC) for determining favipiravir in biological samples. Molecules, 2023, 28(2), 529.
[http://dx.doi.org/10.3390/molecules28020529] [PMID: 36677588]
[16]
Yang, Z.L.; Li, X.R.; Yang, K.W.; Liu, Y. Amphotericin B‐loaded poly(ethylene glycol)–poly(lactide) micelles: Preparation, freeze‐drying, and in vitro release. J. Biomed. Mater. Res. A, 2008, 85A(2), 539-546.
[http://dx.doi.org/10.1002/jbm.a.31504] [PMID: 17729259]
[17]
Zagorac, T.; López Peña, H.A.; Gross, J.M.; Tibbetts, K.M.; Hanley, L. Experimental and theoretical analysis of tricyclic antidepressants by ultraviolet picosecond laser desorption post-ionization mass spectrometry. Anal. Chem., 2023, 95(48), 17541-17549.
[http://dx.doi.org/10.1021/acs.analchem.3c02735] [PMID: 37983268]
[18]
Geldart, D.; Abdullah, E.C.; Hassanpour, A.; Nwoke, L.C.; Wouters, I. Characterization of powder flowability using measurement of angle of repose. China Particuology, 2006, 4(3-4), 104-107.
[http://dx.doi.org/10.1016/S1672-2515(07)60247-4]
[19]
Durowoju, I.B.; Bhandal, K.S.; Hu, J Differential scanning calorimetry—A method for assessing the thermal stability and conformation of protein antigen. J. Vis. Exp., 2017, 121, e55262.
[20]
Heo, J.W.; Chen, J.; Kim, M.S.; Kim, J.W.; Zhang, Z.; Jeong, H.; Kim, Y.S. Eco-friendly and facile preparation of chitosan-based biofilms of novel acetoacetylated lignin for antioxidant and UV-shielding properties. Int. J. Biol. Macromol., 2023, 225, 1384-1393.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.11.196] [PMID: 36435473]
[21]
Epp, J. X-ray diffraction (XRD) techniques for materials characterization. In: Materials characterization using nondestructive evaluation (NDE) methods; Elsevier, 2016; pp. 81-124.
[http://dx.doi.org/10.1016/B978-0-08-100040-3.00004-3]
[22]
Akhtar, K.; Khan, S.A.; Khan, S.B. Scanning electron microscopy: Principle and applications in nanomaterials characterization. In: Handbook of materials characterization; , 2018; pp. 113-145.
[23]
Fares, A.R.; ElMeshad, A.N.; Kassem, M.A.A. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: Formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv., 2018, 25(1), 132-142.
[http://dx.doi.org/10.1080/10717544.2017.1419512] [PMID: 29275642]
[24]
Validation of analytical procedures: Text and methodology Q2(R1). 2005. Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf
[25]
Ata, S.; Wattoo, F.H.; Ahmed, M.; Wattoo, M.H.S.; Tirmizi, S.A.; Wadood, A. A method optimization study for atomic absorption spectrophotometric determination of total zinc in insulin using direct aspiration technique. Alex. J. Med., 2015, 51(1), 19-23.
[http://dx.doi.org/10.1016/j.ajme.2014.03.004]
[26]
Porel, A.; Sanyal, Y.; Kundu, A. Simultaneous HPLC determination of 22 components of essential oils; method robustness with experimental design. Indian J. Pharm. Sci., 2014, 76(1), 19-30.
[PMID: 24799735]
[27]
Shah, V.P.; Tsong, Y.; Sathe, P.; Liu, J.P. Dissolution testing for generic drugs: An FDA perspective. AAPS J., 2014, 16(3), 465-472.
[PMID: 24578215]
[28]
McAllister, M.; O’Connor, R.; Lynam, P.; O’Donnell, K.; Ahuja, S. Discriminative dissolution method development through an aQbD approach. Pharm. Res., 2015, 32(9), 3019-3028.
[29]
Klick, S.; Muijselaar, P.G.; Waterval, J.; Eichinger, T.; Korn, C.; Gerding, T.K. Development and validation of analytical methods. In: Analytical Method Development and Validation; Elsevier: Amsterdam, 2018; pp. 295-328.
[30]
Dressman, J.B.; Krämer, J. Developing and validating dissolution procedures. LC GC N. Am., 2012, 30(3), 214-223.
[31]
Bou-Chacra, N.A.; Löbenberg, R. Validation of analytical methods involved in dissolution assays. J. Pharm. Biomed. Anal., 2017, 146, 112-118.
[32]
Ba, H.K. The QbD approach to method development and validation for dissolution. In: Handbook of Dissolution Testing, 3rd ed; Taylor & Francis: New York, 2014; pp. 111-134.
[33]
Gray, V.A. The dissolution procedure: Development and validation. Pharmaceut. Forum., 2010, 36(5), 1699-1718.
[34]
Krämer, J.; Chacra, B.N.A. Dissolution method validation - analytical method validation and verification. In: Analytical Method Validation and Verification; John Wiley & Sons: Hoboken, 2018; pp. 277-290.
[35]
Zhang, X.; Lionberger, R.A.; Davit, B.M.; Yu, L.X. Transfer of drug dissolution testing by statistical approaches: Case study. AAPS J., 2015, 17(5), 1214-1222.
[36]
Shukla, D.; Nandi, N.K.; Singh, B.; Singh, A.; Kumar, B.; Narang, R.K.; Singh, C. Ferulic acid-loaded drug delivery systems for biomedical applications. J. Drug Deliv. Sci. Technol., 2022, 75, 103621.
[http://dx.doi.org/10.1016/j.jddst.2022.103621]
[37]
Yücel, Ç.; Karatoprak, S.G.; Tamer, I.S.; Değim, İ.T. Ferulic acid-loaded aspasomes: A new approach to enhance the skin permeation, anti-aging and antioxidant effects. J. Drug Deliv. Sci. Technol., 2023, 86, 104748.
[http://dx.doi.org/10.1016/j.jddst.2023.104748]
[38]
Romeo, A.; Musumeci, T.; Carbone, C.; Bonaccorso, A.; Corvo, S.; Lupo, G.; Anfuso, C.D.; Puglisi, G.; Pignatello, R. Ferulic acid-loaded polymeric nanoparticles for potential ocular delivery. Pharmaceutics, 2021, 13(5), 687.
[http://dx.doi.org/10.3390/pharmaceutics13050687] [PMID: 34064572]
[39]
Kumar, A.; Kurmi, B.D.; Singh, D. Development and method validation of design of experiments-optimized tablet formulation for simultaneous detection of exemestane and everolimus. Assay Drug Dev. Technol., 2023, 21(6), 273-287.
[http://dx.doi.org/10.1089/adt.2023.055] [PMID: 37682343]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy