Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Biosensor Based on Zif-8-905% Metal-organic Nanocomposite and Carbon Nanotubes Associated with Concanavalin a for Detection of Alpha-fetoprotein

Author(s): Aiany Maria Queiroz Felix, Severino Alves Júnior, Alberto Galdino da Silva Júnior, Michelly Cristiny Pereira, Maria Danielly Lima Oliveira and César Augusto Souza de Andrade*

Volume 20, Issue 7, 2024

Published on: 26 March, 2024

Page: [516 - 525] Pages: 10

DOI: 10.2174/0115734110298095240320083449

Abstract

Introduction: Lung carcinoma presents an aggressive evolution, with its carriers having reduced survival. Late diagnosis is one of the main factors of death. In the neoplasia in question, there is an established correlation with increases in Alpha-Fetoprotein (AFP) serum concentrations.

Methods: Commonly used diagnostic methods are invasive or inaccessible. Therefore, a low-cost, non-invasive method would be extremely promising, and biomarkers can be used to achieve this goal. Electrochemical biosensors are a promising approach for detecting analytes of clinical interest using innovative bioreceptors. In this work, we obtained an electrochemical biosensor based on a hybrid ligand metal-organic structure (ZIF-8-905%) and functionalized carbon nanotubes (MWCNTs- COOH) in association with the lectin Concanavalin A (ConA), as a biorecognition element for detecting AFP in human serum from patients with lung carcinoma. Cyclic Voltammetry (CV), Square Wave Voltammetry (SWV), and Electrochemical Impedance Spectroscopy (EIS) were used to characterize the development of this biosensor. Microscopic analysis through Atomic Force Microscopy (AFM) revealed the formation of ConA-AFP complexes, pointing out the sensor's ability to identify the target analyte.

Results: The blocking electron transfer effect in the electrode-redox pair interface assessed AFP detection. The ZIF-8-905%/MWCNTs-COOH/ConA platform exhibited a limit of detection (LOD) of 7.98 ng/mL, and a limit of quantification (LOQ) of 23.78ng/mL was also estimated. In addition, the biosensor showed excellent selectivity towards interfering biomolecules.

Conclusion: Therefore, the biosensor represents an efficient form of detection, contributing to research that aims to detect tumor biomarkers and ensure better prognoses.

Keywords: Biosensor, MOFs, carbon nanotubes, concanavalin A, alpha-fetoprotein, lung carcinoma.

Graphical Abstract
[1]
Ring Madsen, L.; Vinther Krarup, N.H.; Bergmann, T.K.; Bærentzen, S.; Neghabat, S.; Duval, L.; Knudsen, S.T. A cancer that went up in smoke. Chest, 2016, 149(3), e65-e67.
[http://dx.doi.org/10.1016/j.chest.2015.09.003] [PMID: 26965975]
[2]
Tian, Z.; Liang, C.; Zhang, Z.; Wen, H.; Feng, H.; Ma, Q.; Liu, D.; Qiang, G. Prognostic value of neuron-specific enolase for small cell lung cancer: A systematic review and meta-analysis. World J. Surg. Oncol., 2020, 18(1), 116.
[http://dx.doi.org/10.1186/s12957-020-01894-9] [PMID: 32473655]
[3]
Domingues, P.M.; Zylberberg, R.; da Matta de Castro, T.; Baldotto, C.S.; de Lima Araujo, L.H. Survival data in elderly patients with locally advanced non-small cell lung cancer. Med. Oncol., 2013, 30(1), 449.
[http://dx.doi.org/10.1007/s12032-012-0449-8] [PMID: 23307257]
[4]
Kim, J.; Kim, K.H. Role of chest radiographs in early lung cancer detection. Transl. Lung Cancer Res., 2020, 9(3), 522-531.
[http://dx.doi.org/10.21037/tlcr.2020.04.02] [PMID: 32676316]
[5]
Zamay, T.; Zamay, G.; Kolovskaya, O.; Zukov, R.; Petrova, M.; Gargaun, A.; Berezovski, M.; Kichkailo, A. Current and prospective protein biomarkers of lung cancer. Cancers, 2017, 9(12), 155.
[http://dx.doi.org/10.3390/cancers9110155] [PMID: 29137182]
[6]
Mauro, C.; Passerini, R.; Spaggiari, L.; Galetta, D.; Radice, D.; Lentati, P.; Sandri, M.T. New and old biomarkers in the differential diagnosis of lung cancer: Pro-gastrin-releasing peptide in comparison with neuron-specific enolase, carcinoembryonic antigen, and CYFRA 21-1. Int. J. Biol. Markers, 2019, 34(2), 163-167.
[http://dx.doi.org/10.1177/1724600819834235] [PMID: 30994045]
[7]
Yasunami, R.; Hashimoto, Z.; Ogura, T.; Hirao, F.; Yamamura, Y. Primary lung cancer producing alpha-fetoprotein: A case report. Cancer, 1981, 47(5), 926-929.
[http://dx.doi.org/10.1002/1097-0142(19810301)47:5<926::AID-CNCR2820470518>3.0.CO;2-O] [PMID: 6164468]
[8]
Kitada, M.; Ozawa, K.; Sato, K.; Matsuda, Y.; Hayashi, S.; Tokusashi, Y.; Miyokawa, N.; Sasajima, T. Alpha-fetoprotein-producing primary lung carcinoma: A case report. World J. Surg. Oncol., 2011, 9(1), 47.
[http://dx.doi.org/10.1186/1477-7819-9-47] [PMID: 21554678]
[9]
Yu, J.H.; Ahn, J.H.; Chung, H.H.; Kim, Y.W.; Yu, J.S.; Kim, J.S. A case of primary lung cancer producing alpha-fetoprotein. Tuberc. Respir. Dis., 2012, 72(1), 72-76.
[http://dx.doi.org/10.4046/trd.2012.72.1.72]
[10]
Yamagata, T.; Yamagata, Y.; Nakanishi, M.; Matsunaga, K.; Minakata, Y.; Ichinose, M. A case of primary lung cancer producing alpha-fetoprotein. Can. Respir. J., 2004, 11(7), 504-506.
[http://dx.doi.org/10.1155/2004/510350] [PMID: 15505704]
[11]
Lakard, B. Electrochemical biosensors based on conducting polymers: A review. Appl. Sci., 2020, 10(18), 6614.
[http://dx.doi.org/10.3390/app10186614]
[12]
Baracu, A.M.; Dinu Gugoasa, L.A. Review—recent advances in microfabrication, design and applications of amperometric sensors and biosensors. J. Electrochem. Soc., 2021, 168(3), 037503.
[http://dx.doi.org/10.1149/1945-7111/abe8b6]
[13]
Suvarna, G.; Sharma, B.B. Concanavalin -A potential glycoprotein. J. Proteins Proteomics., 2018, 9, 77-90.
[14]
Coelho, L.; dos Santos Silva, P.; Lima, V.L.; Pontual, E.; Paiva, P.M.; Napoleao, T.H.; dos Santos Correia, M.T. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evidence-Based Complement. Altern, 2017, 2017, 1-22.
[15]
Xu, X.; Yuan, Y.; Hu, G.; Wang, X.; Qi, P.; Wang, Z.; Wang, Q.; Wang, X.; Fu, Y.; Li, Y.; Yang, H. Exploiting pH-regulated dimer-tetramer transformation of concanavalin a to develop colorimetric biosensing of bacteria. Sci. Rep., 2017, 7(1), 1452.
[http://dx.doi.org/10.1038/s41598-017-01371-6] [PMID: 28469128]
[16]
da Silva Junior, A.G.; Frias, I.A.M.; Lima-Neto, R.G.; Sá, S.R.; Oliveira, M.D.L.; Andrade, C.A.S. Concanavalin A differentiates gram-positive bacteria through hierarchized nanostructured transducer. Microbiol. Res., 2021, 251, 126834.
[http://dx.doi.org/10.1016/j.micres.2021.126834] [PMID: 34364021]
[17]
Lucena, R.P.S.; Silva-Junior, A.G.; Gil, L.H.V.; Cordeiro, M.T.; Andrade, C.A.S.; Oliveira, M.D.L. Application of concanavalin A as a new diagnostic strategy for SARS-COV-2 spike protein. Biochem. Eng. J., 2024, 201, 109116.
[http://dx.doi.org/10.1016/j.bej.2023.109116]
[18]
Simão, E.P.; Silva, D.B.S.; Cordeiro, M.T.; Gil, L.H.V.; Andrade, C.A.S.; Oliveira, M.D.L. Nanostructured impedimetric lectin-based biosensor for arboviruses detection. Talanta, 2020, 208, 120338.
[http://dx.doi.org/10.1016/j.talanta.2019.120338] [PMID: 31816752]
[19]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[20]
Morris, W.; Doonan, C.J.; Furukawa, H.; Banerjee, R.; Yaghi, O.M. Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. J. Am. Chem. Soc., 2008, 130(38), 12626-12627.
[http://dx.doi.org/10.1021/ja805222x] [PMID: 18754585]
[21]
Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors, 2022, 13(1), 40.
[http://dx.doi.org/10.3390/bios13010040] [PMID: 36671875]
[22]
Liao, M.; Wan, P.; Wen, J.; Gong, M.; Wu, X.; Wang, Y.; Shi, R.; Zhang, L. Wearable, healable, and adhesive epidermal sensors assembled from mussel‐inspired conductive hybrid hydrogel framework. Adv. Funct. Mater., 2017, 27(48), 1703852.
[http://dx.doi.org/10.1002/adfm.201703852]
[23]
Chronopoulos, D.D.; Saini, H.; Tantis, I.; Zbořil, R.; Jayaramulu, K.; Otyepka, M. Carbon nanotube based metal–organic framework hybrids from fundamentals toward applications. Small, 2022, 18(4), 2104628.
[http://dx.doi.org/10.1002/smll.202104628] [PMID: 34894080]
[24]
Nataraj, N.; Chen, T.W.; Chen, S.M.; Tseng, T.W.; Bian, Y.; Sun, T.T.; Jiang, J. Metal-organic framework (ZIF-67) interwoven multiwalled carbon nanotubes as a sensing platform for rapid administration of serotonin. J. Taiwan Inst. Chem. Eng., 2021, 129, 299-310.
[http://dx.doi.org/10.1016/j.jtice.2021.09.034]
[25]
Şimşek, Ç.; Karaboğa, M.; Sezgintürk, M.K. A new immobilization procedure for development of an electrochemical immunosensor for parathyroid hormone detection based on gold electrodes modified with 6-mercaptohexanol and silane. Talanta, 2015, 144, 210-218.
[http://dx.doi.org/10.1016/j.talanta.2015.06.010] [PMID: 26452812]
[26]
Thompson, J.A.; Blad, C.R.; Brunelli, N.A.; Lydon, M.E.; Lively, R.P.; Jones, C.W.; Nair, S. Hybrid zeolitic imidazolate frameworks: Controlling framework porosity and functionality by mixed-linker synthesis. Chem. Mater., 2012, 24(10), 1930-1936.
[http://dx.doi.org/10.1021/cm3006953]
[27]
Bolat, G. Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan. Microchem. J., 2020, 159, 105426.
[http://dx.doi.org/10.1016/j.microc.2020.105426]
[28]
Nabipour, H.; Sadr, M.H.; Bardajee, G.R. Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem., 2017, 41(15), 7364-7370.
[http://dx.doi.org/10.1039/C7NJ00606C]
[29]
Tanaka, S.; Fujita, K.; Miyake, Y.; Miyamoto, M.; Hasegawa, Y.; Makino, T.; Van der Perre, S.; Saint Remi, J.; Van Assche, T.; Baron, G.V.; Denayer, J.F.M. Adsorption and diffusion phenomena in crystal size engineered ZIF-8 MOF. J. Phys. Chem. C, 2015, 119(51), 28430-28439.
[http://dx.doi.org/10.1021/acs.jpcc.5b09520]
[30]
Liu, C.; Liu, Q.; Huang, A. A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols. Chem. Commun., 2016, 52(16), 3400-3402.
[http://dx.doi.org/10.1039/C5CC10171A] [PMID: 26878906]
[31]
Zhu, L.P.; Liao, G.H.; Huang, W.Y.; Ma, L.L.; Yang, Y.; Yu, Y.; Fu, S.Y. Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes. Mater. Sci. Eng. B, 2009, 163(3), 194-198.
[http://dx.doi.org/10.1016/j.mseb.2009.05.021]
[32]
Hu, Y.; Kazemian, H.; Rohani, S.; Huang, Y.; Song, Y. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem. Commun., 2011, 47(47), 12694-12696.
[http://dx.doi.org/10.1039/c1cc15525c] [PMID: 22037659]
[33]
Jose, T.; Hwang, Y.; Kim, D.W.; Kim, M.I.; Park, D.W. Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether. Catal. Today, 2015, 245, 61-67.
[http://dx.doi.org/10.1016/j.cattod.2014.05.022]
[34]
Zhang, H.; James, J.; Zhao, M.; Yao, Y.; Zhang, Y.; Zhang, B.; Lin, Y.S. Improving hydrostability of ZIF-8 membranes via surface ligand exchange. J. Membr. Sci., 2017, 532, 1-8.
[http://dx.doi.org/10.1016/j.memsci.2017.01.065]
[35]
Huang, A.; Tong, L.; Kou, X.; Gao, R.; Li, Z.W.; Huang, S.; Zhu, F.; Chen, G.; Ouyang, G. Structural and functional insights into the biomineralized zeolite imidazole frameworks. ACS Nano, 2023, 17(23), 24130-24140.
[http://dx.doi.org/10.1021/acsnano.3c09118] [PMID: 38015792]
[36]
Feng, Z.; Lim, H.N.; Ibrahim, I.; Gowthaman, N.S.K. A review of zeolitic imidazolate frameworks (ZIFs) as electrochemical sensors for important small biomolecules in human body fluids. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(38), 9099-9127.
[http://dx.doi.org/10.1039/D3TB01221B] [PMID: 37650588]
[37]
Hu, C.Y.; Xu, Y.J.; Duo, S.W.; Zhang, R.F.; Li, M.S. Non‐covalent functionalization of carbon nanotubes with surfactants and polymers. J. Chin. Chem. Soc., 2009, 56(2), 234-239.
[http://dx.doi.org/10.1002/jccs.200900033]
[38]
Qin, D.; Li, T.; Li, X.; Feng, J.; Tang, T.; Cheng, H. A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin. Anal. Methods, 2021, 13(45), 5450-5457.
[http://dx.doi.org/10.1039/D1AY01421H] [PMID: 34755722]
[39]
Korkmaz, S.; Kariper, İ.A.; Karaman, C.; Karaman, O. MWCNT/Ruthenium hydroxide aerogel supercapacitor production and investigation of electrochemical performances. Sci. Rep., 2022, 12(1), 12862.
[http://dx.doi.org/10.1038/s41598-022-17286-w] [PMID: 35896810]
[40]
Abraham, P.; Renjini, S.; Nancy, T.E.M.; Kumary, V.A. Electrochemical synthesis of thin-layered graphene oxide-poly(CTAB) composite for detection of morphine. J. Appl. Electrochem., 2020, 50(1), 41-50.
[http://dx.doi.org/10.1007/s10800-019-01367-2]
[41]
Bolat, G.; Yaman, Y.T.; Abaci, S. Highly sensitive electrochemical assay for Bisphenol A detection based on poly (CTAB)/MWCNTs modified pencil graphite electrodes. Sens. Actuators B Chem., 2018, 255, 140-148.
[http://dx.doi.org/10.1016/j.snb.2017.08.001]
[42]
Henstridge, M.C.; Dickinson, E.J.F.; Aslanoglu, M.; Batchelor-McAuley, C.; Compton, R.G. Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes. Sens. Actuators B Chem., 2010, 145(1), 417-427.
[http://dx.doi.org/10.1016/j.snb.2009.12.046]
[43]
Srisomwat, C.; Teengam, P.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sens. Actuators B Chem., 2020, 316, 128077.
[http://dx.doi.org/10.1016/j.snb.2020.128077]
[44]
Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends Analyt. Chem., 2016, 76, 15-29.
[http://dx.doi.org/10.1016/j.trac.2015.09.006]
[45]
Scholz, F. Electroanalytical Methods; Springer: Berlin, Heidelberg, 2010.
[http://dx.doi.org/10.1007/978-3-642-02915-8]
[46]
Houssin, T.; Bridle, H.; Senez, V. Electrochemical detection. In: H.B.T.-W.P; Bridle, S.E., Ed.; Academic Press, 2021; pp. 147-187.
[47]
Zawodzinski, T.; Minteer, S.; Brisard, G. Physical and analytical electrochemistry: The fundamental core of electrochemistry. Electrochem. Soc. Interface, 2006, 15(1), 62-65.
[http://dx.doi.org/10.1149/2.F18061IF]
[48]
Ramström, O.; Lohmann, S.; Bunyapaiboonsri, T.; Lehn, J.M. Dynamic combinatorial carbohydrate libraries: Probing the binding site of the concanavalin A lectin. Chemistry, 2004, 10(7), 1711-1715.
[http://dx.doi.org/10.1002/chem.200305551] [PMID: 15054758]
[49]
Oliveira, L.S.; Avelino, K.Y.P.S.; Oliveira, S.R.D.E.; Lucena-Silva, N.; de Oliveira, H.P.; Andrade, C.A.S.; Oliveira, M.D.L. Flexible genosensors based on polypyrrole and graphene quantum dots for PML/RARα fusion gene detection: A study of acute promyelocytic leukemia in children. J. Pharm. Biomed. Anal., 2023, 235, 115606.
[http://dx.doi.org/10.1016/j.jpba.2023.115606] [PMID: 37544275]
[50]
da Silva Junior, A.G.; Frias, I.A.M.; Lima-Neto, R.G.; Franco, O.L.; Oliveira, M.D.L.; Andrade, C.A.S. Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle. Enzyme Microb. Technol., 2022, 160, 110088.
[http://dx.doi.org/10.1016/j.enzmictec.2022.110088]
[51]
Wang, F.; Zhao, D.; Li, W.; Zhang, H.; Li, B.; Hu, T.; Fan, L. Rod-shaped units based cobalt(II) organic framework as an efficient electrochemical sensor for uric acid detection in serum. Microchem. J., 2023, 185, 108154.
[http://dx.doi.org/10.1016/j.microc.2022.108154]
[52]
Lei, N.; Li, W.; Zhao, D.; Li, W.; Liu, X.; Liu, L.; Yin, J.; Muddassir, M.; Wen, R.; Fan, L. A bifunctional luminescence sensor for biomarkers detection in serum and urine based on chemorobust Nickel(II) metal-organic framework. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2024, 306, 123585.
[http://dx.doi.org/10.1016/j.saa.2023.123585]
[53]
Wang, X.; Gao, H.; Qi, H.; Gao, Q.; Zhang, C. Proximity hybridization-regulated immunoassay for cell surface protein and protein-overexpressing cancer cells via electrochemiluminescence. Anal. Chem., 2018, 90(5), 3013-3018.
[http://dx.doi.org/10.1021/acs.analchem.7b04359] [PMID: 29433314]
[54]
Han, R.; Sun, Y.; Lin, Y.; Liu, H.; Dai, Y.; Zhu, X.; Gao, D.; Wang, X.; Luo, C. A simple chemiluminescent aptasensor for the detection of α-fetoprotein based on iron-based metal organic frameworks. New J. Chem., 2020, 44(10), 4099-4107.
[http://dx.doi.org/10.1039/C9NJ05870B]
[55]
Lu, C.; Wei, D.; Li, G. A fluorescence turn-on biosensor based on gold nanoclusters and aptamer for alpha fetoprotein detection. IOP Conf. Ser. Earth Environ. Sci., 2019, 218, 012106.
[http://dx.doi.org/10.1088/1755-1315/218/1/012106]
[56]
Li, G.; Zeng, J.; Liu, H.; Ding, P.; Liang, J.; Nie, X.; Zhou, Z. A fluorometric aptamer nanoprobe for alpha-fetoprotein by exploiting the FRET between 5-carboxyfluorescein and palladium nanoparticles. Mikrochim. Acta, 2019, 186(5), 314.
[http://dx.doi.org/10.1007/s00604-019-3403-z] [PMID: 31041529]
[57]
Li, W.; Jiang, X.; Xue, J.; Zhou, Z.; Zhou, J. Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein. Biosens. Bioelectron., 2015, 68, 468-474.
[http://dx.doi.org/10.1016/j.bios.2015.01.033] [PMID: 25621998]
[58]
Xu, T.; Chi, B.; Gao, J.; Chu, M.; Fan, W.; Yi, M.; Xu, H.; Mao, C. Novel electrochemical immune sensor based on Hep-PGA-PPy nanoparticles for detection of α-Fetoprotein in whole blood. Anal. Chim. Acta, 2017, 977, 36-43.
[http://dx.doi.org/10.1016/j.aca.2017.04.045] [PMID: 28577596]
[59]
Ma, L.; Jayachandran, S.; Li, Z.; Song, Z.; Wang, W.; Luo, X. Antifouling and conducting PEDOT derivative grafted with polyglycerol for highly sensitive electrochemical protein detection in complex biological media. J. Electroanal. Chem., 2019, 840, 272-278.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.002]
[60]
Li, L.; Zhang, L.; Yu, J.; Ge, S.; Song, X. All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens. Bioelectron., 2015, 71, 108-114.
[http://dx.doi.org/10.1016/j.bios.2015.04.032] [PMID: 25897879]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy