Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Network Pharmacology Study on Herb Pair Bletilla striata-Galla chinensis in the Treatment of Chronic Skin Ulcers

Author(s): Yue Wang, Tengteng Ding and Xing Jiang*

Volume 30, Issue 17, 2024

Published on: 03 April, 2024

Page: [1354 - 1376] Pages: 23

DOI: 10.2174/0113816128288490240322055201

Price: $65

Abstract

Background: Herb pair Bletilla striata-Galla chinensis (BS-GC) is a classic combination of topical traditional Chinese medicine formulae in the treatment of chronic skin ulcers (CSUs).

Objective: The aim of this study is to explore the effective active ingredients of BS-GC, as well as the core targets and signal transduction pathways of its action on CSUs.

Methods: The ingredients of BS-GC were obtained from TCMSP and HERB databases. The targets of all active ingredients were retrieved from the SwissTargetPrediction database. The targets of CSUs were obtained from OMIM, GeneCards, Drugbank, and DisGeNET databases. A drug-disease target protein-protein interaction (PPI) network was constructed to select the most core targets, and an herb-ingredient-target network was built by utilizing Cytoscape 3.7.2. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) analysis and verified the results of network pharmacology through molecular docking.

Results: A total of 40 active ingredients from the herb pair BS-GC were initially screened, and a total of 528 targets were retrieved. Meanwhile, the total number of CSU targets was 1032. Then, the number of common targets between BS-GC and CSUs was 107. The 13 core targets of herb pair BS-GC with CSUs were filtered out according to the PPI network, including AKT1, TNF, EGFR, BCL2, HIF1A, MMP-9, etc. The 5 main core active ingredients were 1-(4-Hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene-4,7-diol, 1-(4- Hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol, physcion, dihydromyricetin, and myricetin. The main biological processes were inflammation, oxidative stress, and immune response, involving the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, NF-κB signaling pathway, and calcium signaling pathway. Molecular docking results showed good binding activity between the 5 main core active ingredients and 13 core targets.

Conclusion: This study predicted the core targets and signal transduction pathways in the treatment of CSUs to provide a reference for further molecular mechanism research.

Keywords: Chronic skin ulcers, Bletilla striata, Galla chinensis, network pharmacology, molecular docking, traditional Chinese medicine.

[1]
Charles J, Harrison C, Britt H. Chronic skin ulcers. Aust Fam Physician 2014; 43(9): 587.
[PMID: 25225640]
[2]
Bettle G III, Bell DP, Bakewell SJ. A novel comprehensive therapeutic approach to the challenges of chronic wounds: A brief review and clinical experience report. Adv Ther 2024; 41(2): 492-508.
[http://dx.doi.org/10.1007/s12325-023-02742-4] [PMID: 38104037]
[3]
Graves N, Phillips CJ, Harding K. A narrative review of the epidemiology and economics of chronic wounds. Br J Dermatol 2022; 187(2): 141-8.
[http://dx.doi.org/10.1111/bjd.20692] [PMID: 34549421]
[4]
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146: 97-125.
[http://dx.doi.org/10.1016/j.addr.2018.09.010] [PMID: 30267742]
[5]
Zhou X, Guo Y, Yang K, Liu P, Wang J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. J Ethnopharmacol 2022; 282: 114662.
[http://dx.doi.org/10.1016/j.jep.2021.114662] [PMID: 34555452]
[6]
Werdin F, Tenenhaus M, Rennekampff HO. Chronic wound care. Lancet 2008; 372(9653): 1860-2.
[http://dx.doi.org/10.1016/S0140-6736(08)61793-6] [PMID: 19041788]
[7]
Jones RE, Foster DS, Longaker MT. Management of chronic wounds-2018. JAMA 2018; 320(14): 1481-2.
[http://dx.doi.org/10.1001/jama.2018.12426] [PMID: 30326512]
[8]
Freedman BR, Hwang C, Talbot S, Hibler B, Matoori S, Mooney DJ. Breakthrough treatments for accelerated wound healing. Sci Adv 2023; 9(20): eade7007.
[http://dx.doi.org/10.1126/sciadv.ade7007] [PMID: 37196080]
[9]
Li FL, Wang GC, Wu BQ. Clinical application of traditional Chinese medicine powder in the treatment of acute and chronic wounds. Int Wound J 2023; 20(3): 799-805.
[http://dx.doi.org/10.1111/iwj.13925] [PMID: 36148625]
[10]
Liu FS, Li Y, Guo XS, Liu RC, Zhang HY, Li Z. Advances in traditional Chinese medicine as adjuvant therapy for diabetic foot. World J Diabetes 2022; 13(10): 851-60.
[http://dx.doi.org/10.4239/wjd.v13.i10.851] [PMID: 36312004]
[11]
Zhou E, Xu E, Zhang N, et al. Discussion on medication law of TCM external therapy for the treatment of non-astringent sore based on data mining. Chin J Lib Inf Sci Tradit Chin Med 2023; 47: 39-43.
[12]
Liu X, Xu D, Qu H, et al. Effect of traditional Chinese medicine sitting bath and internal administration combined with Western medicine on pain and wound healing after damp-heat low anal fistula surgery. TCM Res 2022; 35: 30-5.
[13]
Yang S. Clinical observation of 30 cases of diabetic foot treated with internal and external combination. New J Tradit Chin Med 2008; 40: 28-9.
[14]
Xu D, Pan Y, Chen J. Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata. Front Pharmacol 2019; 10: 1168.
[http://dx.doi.org/10.3389/fphar.2019.01168] [PMID: 31736742]
[15]
Chen Z, Cheng L, He Y, Wei X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int J Biol Macromol 2018; 120(Pt B): 2076-85.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.028] [PMID: 30195614]
[16]
He X, Wang X, Fang J, et al. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. J Ethnopharmacol 2017; 195: 20-38.
[http://dx.doi.org/10.1016/j.jep.2016.11.026] [PMID: 27865796]
[17]
Hu Z, Zhao K, Chen X, et al. A berberine-loaded Bletilla striata polysaccharide hydrogel as a new medical dressing for diabetic wound healing. Int J Mol Sci 2023; 24(22): 16286.
[http://dx.doi.org/10.3390/ijms242216286] [PMID: 38003478]
[18]
Li H, Wang Y, Yue Y, et al. Rapid identification of Bletilla striata and its counterfeit Polygonatum odoratum decoction pieces based on gas chromatography-ion mobility spectroscopy. Chin Tradit Herb Drugs 2024; 55: 605-13.
[19]
Zhang Q, Qi C, Wang H, et al. Biocompatible and degradable Bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb Bletilla striata. Carbohydr Polym 2019; 226: 115304.
[http://dx.doi.org/10.1016/j.carbpol.2019.115304] [PMID: 31582069]
[20]
Zhao Y, Wang Q, Yan S, et al. Bletilla striata polysaccharide promotes diabetic wound healing through inhibition of the NLRP3 inflammasome. Front Pharmacol 2021; 12: 659215.
[http://dx.doi.org/10.3389/fphar.2021.659215] [PMID: 33981238]
[21]
Yue L, Wang W, Wang Y, et al. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int J Biol Macromol 2016; 89: 376-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.002] [PMID: 27151672]
[22]
Niu X, Yu J, Huang Q, et al. Immunoenhancement activity of Bletilla striata polysaccharide through MAPK and NF-κB signalling pathways in vivo and in vitro. Autoimmunity 2022; 55(8): 650-60.
[http://dx.doi.org/10.1080/08916934.2022.2103801] [PMID: 35892187]
[23]
Chen Z, Zhao Y, Zhang M, et al. Structural characterization and antioxidant activity of a new polysaccharide from Bletilla striata fibrous roots. Carbohydr Polym 2020; 227: 115362.
[http://dx.doi.org/10.1016/j.carbpol.2019.115362] [PMID: 31590882]
[24]
Liao Z, Zeng R, Hu L, Maffucci KG, Qu Y. Polysaccharides from tubers of Bletilla striata: Physicochemical characterization, formulation of buccoadhesive wafers and preliminary study on treating oral ulcer. Int J Biol Macromol 2019; 122: 1035-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.050] [PMID: 30227203]
[25]
Ren Y, Zhang X, Li T, Zeng Y, Wang J, Huang Q. Galla chinensis, a traditional Chinese medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology. J Ethnopharmacol 2021; 278: 114247.
[http://dx.doi.org/10.1016/j.jep.2021.114247] [PMID: 34052353]
[26]
Liang Z, Xu Q, Zhang Q, Liu T, Zhang C. Research progress on chemical constituents and pharmacological effects of Galla chinensis. Chin Tradit Herb Drugs 2022; 53: 5908-19.
[27]
Fan S, Xu Y, Qiu F, et al. Bioinformatics‐based and molecular docking study on the mechanism of action of Galla chinensis in the treatment of diabetic foot ulcers. Biotechnol Appl Biochem 2023; 70(1): 387-402.
[http://dx.doi.org/10.1002/bab.2365] [PMID: 35661413]
[28]
Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu decoction against sepsis. Comput Biol Med 2022; 144: 105389.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105389] [PMID: 35303581]
[29]
Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol 2023; 309: 116306.
[http://dx.doi.org/10.1016/j.jep.2023.116306] [PMID: 36858276]
[30]
Yang HY, Liu ML, Luo P, Yao XS, Zhou H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine 2022; 104: 154268.
[http://dx.doi.org/10.1016/j.phymed.2022.154268] [PMID: 35777118]
[31]
Sharma B, Yadav DK. Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. Plants 2022; 11(23): 3243.
[http://dx.doi.org/10.3390/plants11233243] [PMID: 36501282]
[32]
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 2019; 20(18): 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[33]
Dong Y, Tao B, Xue X, et al. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology. BMC Complement Med Ther 2021; 21(1): 222.
[http://dx.doi.org/10.1186/s12906-021-03389-w] [PMID: 34479552]
[34]
Ru J, Li P, Wang J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6(1): 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[35]
Fang S, Dong L, Liu L, et al. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res 2021; 49(D1): D1197-206.
[http://dx.doi.org/10.1093/nar/gkaa1063] [PMID: 33264402]
[36]
Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Res 2023; 51(D1): D1373-80.
[http://dx.doi.org/10.1093/nar/gkac956] [PMID: 36305812]
[37]
Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res 2020; 48(D1): D845-55.
[PMID: 31680165]
[38]
Fishilevich S, Zimmerman S, Kohn A, et al. Genic insights from integrated human proteomics in GeneCards. Database (Oxford) 2016; 2016: baw030.
[http://dx.doi.org/10.1093/database/baw030] [PMID: 27048349]
[39]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[40]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[41]
The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res 2017; 45(D1): D158-69.
[http://dx.doi.org/10.1093/nar/gkw1099] [PMID: 27899622]
[42]
Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: An interactive venn diagram viewer. BMC Bioinformatics 2014; 15(1): 293.
[http://dx.doi.org/10.1186/1471-2105-15-293] [PMID: 25176396]
[43]
Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51(D1): D638-46.
[http://dx.doi.org/10.1093/nar/gkac1000] [PMID: 36370105]
[44]
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[45]
The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 2017; 45(D1): D331-8.
[http://dx.doi.org/10.1093/nar/gkw1108] [PMID: 27899567]
[46]
Nguyen NT, Nguyen TH, Pham TNH, et al. Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. J Chem Inf Model 2020; 60(1): 204-11.
[http://dx.doi.org/10.1021/acs.jcim.9b00778] [PMID: 31887035]
[47]
Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res 2023; 51(D1): D488-508.
[http://dx.doi.org/10.1093/nar/gkac1077] [PMID: 36420884]
[48]
Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[49]
Hou F, Yu Z, Cheng Y, Liu Y, Liang S, Zhang F. Deciphering the pharmacological mechanisms of Scutellaria baicalensis Georgi on oral leukoplakia by combining network pharmacology, molecular docking and experimental evaluations. Phytomedicine 2022; 103: 154195.
[http://dx.doi.org/10.1016/j.phymed.2022.154195] [PMID: 35667260]
[50]
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173(2): 370-8.
[http://dx.doi.org/10.1111/bjd.13954] [PMID: 26175283]
[51]
Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements. Cells 2022; 11(15): 2439.
[http://dx.doi.org/10.3390/cells11152439] [PMID: 35954282]
[52]
Diao H, Li X, Chen J, et al. Bletilla striata polysaccharide stimulates inducible nitric oxide synthase and proinflammatory cytokine expression in macrophages. J Biosci Bioeng 2008; 105(2): 85-9.
[http://dx.doi.org/10.1263/jbb.105.85] [PMID: 18343332]
[53]
Luo Y, Diao H, Xia S, Dong L, Chen J, Zhang J. A physiologically active polysaccharide hydrogel promotes wound healing. J Biomed Mater Res A 2010; 94A(1): 193-204.
[http://dx.doi.org/10.1002/jbm.a.32711] [PMID: 20128009]
[54]
Zhang C, Ning D, Pan J, et al. Anti-inflammatory effect fraction of Bletilla striata and its protective effect on LPS-induced acute lung injury. Mediators Inflamm 2021; 2021: 1-16.
[http://dx.doi.org/10.1155/2021/6684120] [PMID: 33776576]
[55]
Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018; 7(8): 98.
[http://dx.doi.org/10.3390/antiox7080098] [PMID: 30042332]
[56]
Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process. Int Wound J 2017; 14(1): 89-96.
[http://dx.doi.org/10.1111/iwj.12557] [PMID: 26688157]
[57]
Zhou D, Chen G, Ma YP, et al. Isolation, structural elucidation, optical resolution, and antineuroinflammatory activity of phenanthrene and 9,10-dihydrophenanthrene derivatives from Bletilla striata. J Nat Prod 2019; 82(8): 2238-45.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00291] [PMID: 31415170]
[58]
XunLi , Liu Y , Chu S , et al. Physcion and physcion 8-O-β-glucopyranoside: A review of their pharmacology, toxicities and pharmacokinetics. Chem Biol Interact 2019; 310: 108722.
[http://dx.doi.org/10.1016/j.cbi.2019.06.035] [PMID: 31226286]
[59]
Wierzchacz C, Su E, Kolander J, Gebhardt R. Differential inhibition of matrix metalloproteinases-2, -9, and -13 activities by selected anthraquinones. Planta Med 2009; 75(4): 327-9.
[http://dx.doi.org/10.1055/s-0028-1112205] [PMID: 19152226]
[60]
Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9(5): 1530-46.
[http://dx.doi.org/10.1039/D0BM01747G] [PMID: 33433534]
[61]
Castleberry SA, Almquist BD, Li W, et al. Self‐assembled wound dressings silence MMP‐9 and improve diabetic wound healing in vivo. Adv Mater 2016; 28(9): 1809-17.
[http://dx.doi.org/10.1002/adma.201503565] [PMID: 26695434]
[62]
Park HH, Park NY, Kim SG, Jeong KT, Lee EJ, Lee E. Potential wound healing activities of Galla rhois in human fibroblasts and keratinocytes. Am J Chin Med 2015; 43(8): 1625-36.
[http://dx.doi.org/10.1142/S0192415X15500925] [PMID: 26621446]
[63]
Chen Y, Tian L, Yang F, et al. Tannic acid accelerates cutaneous wound healing in rats via activation of the ERK 1/2 signaling pathways. Adv Wound Care (New Rochelle) 2019; 8(7): 341-54.
[http://dx.doi.org/10.1089/wound.2018.0853] [PMID: 31737421]
[64]
Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother 2022; 154: 113561.
[http://dx.doi.org/10.1016/j.biopha.2022.113561] [PMID: 36029537]
[65]
Song X, Chen Y, Chen X, et al. Exosomes from tannic acid-stimulated macrophages accelerate wound healing through miR-221-3p mediated fibroblasts migration by targeting CDKN1b. Int J Biol Macromol 2023; 244: 125088.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125088] [PMID: 37270133]
[66]
Yang D, Moh S, Son D, et al. Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules 2016; 21(7): 899.
[http://dx.doi.org/10.3390/molecules21070899] [PMID: 27399667]
[67]
Sklenářová R, Svrčková M, Hodek P, Ulrichová J, Franková J. Effect of the natural flavonoids myricetin and dihydromyricetin on the wound healing process in vitro. J Appl Biomed 2021; 19(3): 149-58.
[http://dx.doi.org/10.32725/jab.2021.017] [PMID: 34907758]
[68]
Elshamy AI, Ammar NM, Hassan HA, et al. Topical wound healing activity of myricetin isolated from Tecomaria capensis v. aurea. Molecules 2020; 25(21): 4870.
[http://dx.doi.org/10.3390/molecules25214870] [PMID: 33105570]
[69]
Somanath PR, Chen J, Byzova TV. Akt1 is necessary for the vascular maturation and angiogenesis during cutaneous wound healing. Angiogenesis 2008; 11(3): 277-88.
[http://dx.doi.org/10.1007/s10456-008-9111-7] [PMID: 18415691]
[70]
Goren I, Müller E, Schiefelbein D, et al. Akt1 controls insulin-driven VEGF biosynthesis from keratinocytes: Implications for normal and diabetes-impaired skin repair in mice. J Invest Dermatol 2009; 129(3): 752-64.
[http://dx.doi.org/10.1038/jid.2008.230] [PMID: 18668138]
[71]
Abdalla M, Goc A, Segar L, Somanath PR. Akt1 mediates α-smooth muscle actin expression and myofibroblast differentiation via myocardin and serum response factor. J Biol Chem 2013; 288(46): 33483-93.
[http://dx.doi.org/10.1074/jbc.M113.504290] [PMID: 24106278]
[72]
Yaseen HS, Asif M, Saadullah M, et al. Methanolic extract of Ephedra ciliata promotes wound healing and arrests inflammatory cascade in vivo through downregulation of TNF-α. Inflammopharmacology 2020; 28(6): 1691-704.
[http://dx.doi.org/10.1007/s10787-020-00713-7] [PMID: 32385747]
[73]
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules 2021; 11(5): 700.
[http://dx.doi.org/10.3390/biom11050700] [PMID: 34066746]
[74]
Sabbah DA, Hajjo R, Sweidan K. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr Top Med Chem 2020; 20(10): 815-34.
[http://dx.doi.org/10.2174/1568026620666200303123102] [PMID: 32124699]
[75]
Sgonc R, Gruber J. Age-related aspects of cutaneous wound healing: A mini-review. Gerontology 2013; 59(2): 159-64.
[http://dx.doi.org/10.1159/000342344] [PMID: 23108154]
[76]
Nanba D, Toki F, Asakawa K, et al. EGFR-mediated epidermal stem cell motility drives skin regeneration through COL17A1 proteolysis. J Cell Biol 2021; 220(11): e202012073.
[http://dx.doi.org/10.1083/jcb.202012073] [PMID: 34550317]
[77]
Catrina SB, Zheng X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021; 64(4): 709-16.
[http://dx.doi.org/10.1007/s00125-021-05380-z] [PMID: 33496820]
[78]
Lin CJ, Lan YM, Ou MQ, Ji LQ, Lin SD. Expression of miR-217 and HIF-1α/VEGF pathway in patients with diabetic foot ulcer and its effect on angiogenesis of diabetic foot ulcer rats. J Endocrinol Invest 2019; 42(11): 1307-17.
[http://dx.doi.org/10.1007/s40618-019-01053-2] [PMID: 31079353]
[79]
Duan Z, Wang Y, Lu Z, et al. Wumei Wan attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD: Network pharmacology analysis and experimental evidence. Phytomedicine 2023; 111: 154658.
[http://dx.doi.org/10.1016/j.phymed.2023.154658] [PMID: 36706698]
[80]
Pierine DT, Navarro MEL, Minatel IO, et al. Lycopene supplementation reduces TNF-α via RAGE in the kidney of obese rats. Nutr Diabetes 2014; 4(11): e142.
[http://dx.doi.org/10.1038/nutd.2014.39] [PMID: 25383746]
[81]
Okamoto T, Yamagishi S, Inagaki Y, et al. Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J 2002; 16(14): 1928-30.
[http://dx.doi.org/10.1096/fj.02-0030fje] [PMID: 12368225]
[82]
Wang Q, Zhu G, Cao X, Dong J, Song F, Niu Y. Blocking AGE-RAGE signaling improved functional disorders of macrophages in diabetic wound. J Diabetes Res 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/1428537] [PMID: 29119117]
[83]
Liu P, Li Y, Wang W, et al. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153: 113513.
[http://dx.doi.org/10.1016/j.biopha.2022.113513] [PMID: 36076600]
[84]
Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1(6): a001651.
[http://dx.doi.org/10.1101/cshperspect.a001651] [PMID: 20457564]
[85]
Cai F, Chen W, Zhao R, Liu Y. Mechanisms of Nrf2 and NF-κB pathways in diabetic wound and potential treatment strategies. Mol Biol Rep 2023; 50(6): 5355-67.
[http://dx.doi.org/10.1007/s11033-023-08392-7] [PMID: 37029875]
[86]
Hirota S, Beck P, MacDonald J. Targeting hypoxia-inducible factor-1 (HIF-1) signaling in therapeutics: Implications for the treatment of inflammatory bowel disease. Recent Pat Inflamm Allergy Drug Discov 2009; 3(1): 1-16.
[http://dx.doi.org/10.2174/187221309787158434] [PMID: 19149741]
[87]
Krizanova O, Penesova A, Sokol J, Hokynkova A, Samadian A, Babula P. Signaling pathways in cutaneous wound healing. Front Physiol 2022; 13: 1030851.
[http://dx.doi.org/10.3389/fphys.2022.1030851] [PMID: 36505088]
[88]
Bagheri M, Jahromi BM, Mirkhani H, et al. Azelnidipine, a new calcium channel blocker, promotes skin wound healing in diabetic rats. J Surg Res 2011; 169(1): e101-7.
[http://dx.doi.org/10.1016/j.jss.2011.02.039] [PMID: 21571319]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy