Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

CASC19: An Oncogenic Long Non-coding RNA in Different Cancers

Author(s): Yinxin Wu, Jie Mou, Gang Zhou* and Chengfu Yuan*

Volume 30, Issue 15, 2024

Published on: 27 March, 2024

Page: [1157 - 1166] Pages: 10

DOI: 10.2174/0113816128300061240319034243

Price: $65

Abstract

A 324 bp lncRNA called CASC19 is found on chromosome 8q24.21. Recent research works have revealed that CASC19 is involved in the prognosis of tumors and related to the regulation of the radiation tolerance mechanisms during tumor radiotherapy (RT). This review sheds light on the changes and roles that CASC19 plays in many tumors and diseases, such as nasopharyngeal carcinoma (NPC), cervical cancer, colorectal cancer (CRC), non-small cell lung cancer (NSCLC), clear cell renal cell carcinoma (ccRCC), gastric cancer (GC), pancreatic cancer (PC), hepatocellular carcinoma (HCC), glioma, and osteoarthritis (OA). CASC19 provides a new strategy for targeted therapy, and the regulatory networks of CASC19 expression levels play a key role in the occurrence and development of tumors and diseases. In addition, the expression level of CASC19 has predictive roles in the prognosis of some tumors and diseases, which has major implications for clinical diagnoses and treatments. CASC19 is also unique in that it is a key gene affecting the efficacy of RT in many tumors, and its expression level plays a decisive role in improving the success rate of treatments. Further research is required to determine the precise process by which CASC19 causes changes in diseased cells in some tumors and diseases.

Keywords: LncRNA, CASC19, tumors, biomarkers, radiation resistance, gastric cancer.

[1]
Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018; 172(3): 393-407.
[http://dx.doi.org/10.1016/j.cell.2018.01.011] [PMID: 29373828]
[2]
Bartonicek N, Maag JLV, Dinger ME. Long noncoding RNAs in cancer: Mechanisms of action and technological advancements. Mol Cancer 2016; 15(1): 43.
[http://dx.doi.org/10.1186/s12943-016-0530-6] [PMID: 27233618]
[3]
Xiao JN, Yan TH, Yu RM, et al. Long non-coding RNA UCA1 regulates the expression of Snail2 by miR-203 to promote hepatocellular carcinoma progression. J Cancer Res Clin Oncol 2017; 143(6): 981-90.
[http://dx.doi.org/10.1007/s00432-017-2370-1] [PMID: 28271214]
[4]
Kalmár A, Nagy ZB, Galamb O, et al. Genome-wide expression profiling in colorectal cancer focusing on lncRNAs in the adenoma-carcinoma transition. BMC Cancer 2019; 19(1): 1059.
[http://dx.doi.org/10.1186/s12885-019-6180-5] [PMID: 31694571]
[5]
Wang Y, Chen W, Lian J, et al. The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ 2020; 27(2): 695-710.
[http://dx.doi.org/10.1038/s41418-019-0381-y] [PMID: 31320749]
[6]
Wang XD, Lu J, Lin YS, Gao C, Qi F. Functional role of long non-coding RNA CASC19/miR-140-5p/CEMIP axis in colorectal cancer progression in vitro. World J Gastroenterol 2019; 25(14): 1697-714.
[http://dx.doi.org/10.3748/wjg.v25.i14.1697] [PMID: 31011255]
[7]
Liu H, Zheng W, Chen Q, et al. lncRNA CASC19 contributes to radioresistance of nasopharyngeal carcinoma by promoting autophagy via AMPK-mTOR pathway. Int J Mol Sci 2021; 22(3): 1407.
[http://dx.doi.org/10.3390/ijms22031407] [PMID: 33573349]
[8]
Kim T, Cui R, Jeon YJ, et al. Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci 2014; 111(11): 4173-8.
[http://dx.doi.org/10.1073/pnas.1400350111] [PMID: 24594601]
[9]
Sun Q, Liu T, Yuan Y, et al. MiR-200c inhibits autophagy and enhances radiosensitivity in breast cancer cells by targeting UBQLN1. Int J Cancer 2015; 136(5): 1003-12.
[http://dx.doi.org/10.1002/ijc.29065] [PMID: 25044403]
[10]
Chen C, Wang K, Wang Q, Wang X. LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells. Braz J Med Biol Res 2018; 51(6): e7080.
[11]
Zhang Y, Fan Y, Huang S, et al. Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway. Cancer Sci 2018; 109(12): 3865-73.
[http://dx.doi.org/10.1111/cas.13808] [PMID: 30259603]
[12]
Chen H, Ji Y, Yan X, Su G, Chen L, Xiao J. Berberine attenuates apoptosis in rat retinal Müller cells stimulated with high glucose via enhancing autophagy and the AMPK/mTOR signaling. Biomed Pharma 2018; 108: 1201-7.
[13]
Diamantopoulos PT, Sofotasiou M, Papadopoulou V, Polonyfi K, Iliakis T, Viniou NA. PARP1-driven apoptosis in chronic lymphocytic leukemia. BioMed Res Int 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/106713] [PMID: 25161998]
[14]
Hähle A, Merz S, Meyners C, Hausch F. The many faces of FKBP51. Biomolecules 2019; 9(1): 35.
[http://dx.doi.org/10.3390/biom9010035] [PMID: 30669684]
[15]
Liu H, Chen Q, Zheng W, et al. LncRNA CASC19 enhances the radioresistance of nasopharyngeal carcinoma by regulating the miR-340-3p/FKBP5 Axis. Int J Mol Sci 2023; 24(3): 3047.
[http://dx.doi.org/10.3390/ijms24033047]
[16]
Johnson CA, James D, Marzan A, Armaos M. Cervical cancer: An overview of pathophysiology and management. Semin Oncol Nurs 2019; 35(2): 166-74.
[http://dx.doi.org/10.1016/j.soncn.2019.02.003] [PMID: 30878194]
[17]
Olusola P, Banerjee HN, Philley JV, Dasgupta S. Human papilloma virus-associated cervical cancer and health disparities. Cells 2019; 8(6): 622.
[http://dx.doi.org/10.3390/cells8060622] [PMID: 31234354]
[18]
Nagelkerke A, Span PN. Staining against phospho-H2AX (γ-H2AX) as a marker for DNA damage and genomic instability in cancer tissues and cells. Adv Exp Med Biol 2016; 899: 1-10.
[http://dx.doi.org/10.1007/978-3-319-26666-4_1] [PMID: 27325258]
[19]
Liu YJ, Guo RX, Han LP, Gu H, Liu MZ. Effect of CASC19 on proliferation, apoptosis and radiation sensitivity of cervical cancer cells by regulating miR-449b-5p expression. Zhonghua Fu Chan Ke Za Zhi 2020; 55(1): 36-44.
[PMID: 32074771]
[20]
Gallagher DJ, Kemeny N. Metastatic colorectal cancer: From improved survival to potential cure. Oncology 2010; 78(3-4): 237-48.
[http://dx.doi.org/10.1159/000315730] [PMID: 20523084]
[21]
Wu YJ, Yang QS, Chen H, Wang JT, Wang WB, Zhou L. Long non-coding RNA CASC19 promotes glioma progression by modulating the miR-454-3p/RAB5A axis and is associated with unfavorable MRI features. Oncol Rep 2020; 45(2): 728-37.
[http://dx.doi.org/10.3892/or.2020.7876] [PMID: 33416169]
[22]
Terashima M, Fujita Y, Togashi Y, et al. KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival. Oncotarget 2014; 5(16): 7040-50.
[http://dx.doi.org/10.18632/oncotarget.2220] [PMID: 25051373]
[23]
Pelletier J, Bellot G, Gounon P, Lacas-Gervais S, Pouysségur J, Mazure NM. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Front Oncol 2012; 2: 18.
[http://dx.doi.org/10.3389/fonc.2012.00018] [PMID: 22649778]
[24]
Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit Rev Oncol Hematol 2021; 157: 103194.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103194] [PMID: 33316418]
[25]
Ko EC, Raben D, Formenti SC. The integration of radiotherapy with immunotherapy for the treatment of non–small cell lung cancer. Clin Cancer Res 2018; 24(23): 5792-806.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3620] [PMID: 29945993]
[26]
Zhao X, Yuan C, He X, et al. Identification and in vitro validation of diagnostic and prognostic biomarkers for lung squamous cell carcinoma. J Thorac Dis 2022; 14(4): 1243-55.
[http://dx.doi.org/10.21037/jtd-22-343] [PMID: 35572889]
[27]
Song J, Zhang S, Sun Y, et al. A radioresponse-related lncrna biomarker signature for risk classification and prognosis prediction in non-small-cell lung cancer. J Oncol 2021; 2021: 1-16.
[http://dx.doi.org/10.1155/2021/4338838] [PMID: 34594376]
[28]
Li D, Li H, Yang Y, Kang L. Long noncoding RNA urothelial carcinoma-associated 1 promotes the proliferation and metastasis of human lung tumor cells by regulating MicroRNA-144. Oncol Res 2018; 26(4): 537-46.
[http://dx.doi.org/10.3727/096504017X15009792179602] [PMID: 28762326]
[29]
Wang L, Lin C, Sun N, Wang Q, Ding X, Sun Y. Long non-coding RNA CASC19 facilitates non-small cell lung cancer cell proliferation and metastasis by targeting the miR-301b-3p/LDLR axis. J Gene Med 2020; 22(12): e3254.
[http://dx.doi.org/10.1002/jgm.3254] [PMID: 32677267]
[30]
Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010; 7(5): 245-57.
[http://dx.doi.org/10.1038/nrurol.2010.46] [PMID: 20448658]
[31]
Wolf MM, Rathmell KW, Beckermann KE. Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene 2020; 39(17): 3413-26.
[http://dx.doi.org/10.1038/s41388-020-1234-3] [PMID: 32123314]
[32]
Luo Y, Liu F, Yan C, et al. Long Non-Coding RNA CASC19 sponges microRNA-532 and promotes oncogenicity of clear cell renal cell carcinoma by increasing ets1 expression. Cancer Manag Res 2020; 12: 2195-207.
[http://dx.doi.org/10.2147/CMAR.S242472] [PMID: 32273759]
[33]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[34]
Xu F, Ji S, Yang L, Li Y, Shen P. Potential upstream lncRNA-miRNA-mRNA regulatory network of the ferroptosis-related gene SLC7A11 in renal cell carcinoma. Transl Androl Urol 2023; 12(1): 33-57.
[http://dx.doi.org/10.21037/tau-22-663] [PMID: 36760866]
[35]
Correa P. Gastric cancer. Gastroenterol Clin North Am 2013; 42(2): 211-7.
[http://dx.doi.org/10.1016/j.gtc.2013.01.002] [PMID: 23639637]
[36]
Ang TL, Fock KM. Clinical epidemiology of gastric cancer. Singapore Med J 2014; 55(12): 621-8.
[http://dx.doi.org/10.11622/smedj.2014174] [PMID: 25630323]
[37]
Song Z, Wu Y, Yang J, Yang D, Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol 2017; 39(7)
[http://dx.doi.org/10.1177/1010428317714626] [PMID: 28671042]
[38]
Wang WJ, Guo CA, Li R, et al. Long non-coding RNA CASC19 is associated with the progression and prognosis of advanced gastric cancer. Aging (Albany NY) 2019; 11(15): 5829-47.
[http://dx.doi.org/10.18632/aging.102190] [PMID: 31422382]
[39]
Swatek KN, Komander D. Ubiquitin modifications. Cell Res 2016; 26(4): 399-422.
[http://dx.doi.org/10.1038/cr.2016.39] [PMID: 27012465]
[40]
Wang S, Qiao C, Li J, Liu S, Li P. LncRNA CASC19 promotes gastric cancer progression through preventing CREB1 protein ubiquitin/proteasome-dependent degradation. Carcinogenesis 2023; 44(3): 209-20.
[http://dx.doi.org/10.1093/carcin/bgad001] [PMID: 36651836]
[41]
Huang B, Liu J, Lu J, et al. Aerial view of the association between m6A-related LncRNAs and clinicopathological characteristics of pancreatic cancer. Front Oncol 2022; 11: 812785.
[http://dx.doi.org/10.3389/fonc.2021.812785] [PMID: 35047414]
[42]
Lu T, Wei GH, Wang J, Shen J. LncRNA CASC19 contributed to the progression of pancreatic cancer through modulating miR-148b/E2F7 axis. Eur Rev Med Pharmacol Sci 2020; 24(20): 10462-71.
[PMID: 33155202]
[43]
Li F, He C, Yao H, et al. GLUT1 regulates the tumor immune microenvironment and promotes tumor metastasis in pancreatic adenocarcinoma via NCRNA-mediated network. J Cancer 2022; 13(8): 2540-58.
[http://dx.doi.org/10.7150/jca.72161] [PMID: 35711842]
[44]
Liu JKH, Irvine AF, Jones RL, Samson A. Immunotherapies for hepatocellular carcinoma. Cancer Med 2022; 11(3): 571-91.
[http://dx.doi.org/10.1002/cam4.4468] [PMID: 34953051]
[45]
Cheng H, Sun G, Chen H, et al. Trends in the treatment of advanced hepatocellular carcinoma: Immune checkpoint blockade immunotherapy and related combination therapies. Am J Cancer Res 2019; 9(8): 1536-45.
[PMID: 31497341]
[46]
Xu Q, Wang Y, Huang W. Identification of immune-related lncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. Int Immunopharmacol 2021; 92: 107333.
[http://dx.doi.org/10.1016/j.intimp.2020.107333] [PMID: 33486322]
[47]
Luo T, Chen M, Zhao Y, et al. Macrophage-associated lncRNA ELMO1-AS1: A novel therapeutic target and prognostic biomarker for hepatocellular carcinoma. OncoTargets Ther 2019; 12: 6203-16.
[http://dx.doi.org/10.2147/OTT.S213833] [PMID: 31498334]
[48]
Hou Y, Tang Y, Ma C, Yu J, Jia Y. Overexpression of CASC19 contributes to tumor progression and predicts poor prognosis after radical resection in hepatocellular carcinoma. Digestive Liver Dis 2023; 55(6): 799-806.
[49]
Wirsching HG, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol 2016; 134: 381-97.
[http://dx.doi.org/10.1016/B978-0-12-802997-8.00023-2] [PMID: 26948367]
[50]
Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476: 1-12.
[http://dx.doi.org/10.1016/j.canlet.2020.02.002] [PMID: 32044356]
[51]
Tom MC, Park DYJ, Yang K, et al. Malignant transformation of molecularly classified adult low-grade glioma. Int J Radiat Oncol Biol Phys 2019; 105(5): 1106-12.
[http://dx.doi.org/10.1016/j.ijrobp.2019.08.025] [PMID: 31461674]
[52]
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis. JAMA 2021; 325(6): 568-78.
[http://dx.doi.org/10.1001/jama.2020.22171] [PMID: 33560326]
[53]
Pereira D, Ramos E, Branco J. Osteoarthritis. Acta Med Port 2014; 28(1): 99-106.
[http://dx.doi.org/10.20344/amp.5477] [PMID: 25817486]
[54]
Zhou C, He T, Chen L. LncRNA CASC19 accelerates chondrocytes apoptosis and proinflammatory cytokine production to exacerbate osteoarthritis development through regulating the miR-152-3p/DDX6 axis. J Orthop Surg Res 2021; 16(1): 399.
[http://dx.doi.org/10.1186/s13018-021-02543-x] [PMID: 34158095]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy