Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis

Author(s): Bhupendra Kumar and Rohitas Deshmukh*

Volume 30, Issue 12, 2024

Published on: 14 March, 2024

Page: [887 - 901] Pages: 15

DOI: 10.2174/0113816128295952240306072100

Price: $65

Abstract

Allergic rhinitis (AR) is an IgE-mediated atopic disease that occurs due to inhaled antigens in the immediate phase. Misdiagnosis, insufficient treatment, or no treatment at all are frequent problems associated with the widespread condition known as chronic allergic rhinitis. AR symptoms include runny, itchy, stuffy, and sneezing noses. Asthma and nasal polyps, for example, sometimes occur simultaneously in patients. In order for people living with AR to be as comfortable and productive as possible, treatment should center on reducing their symptoms. The online sources and literature, such as Pubmed, ScienceDirect, and Medline, were reviewed to gather information regarding therapeutic modalities of AR and evidence-based treatments for the disease as the objectives of the present study. An increasing number of people are suffering from AR, resulting in a heavy financial and medical burden on healthcare systems around the world. Undertreating AR frequently results in a decline in quality of life. Treatment compliance is a critical challenge in the administration of AR. Innovative therapies are needed for RA to provide patients with symptom alleviation that is less expensive, more effective, and longer duration of action. Evidence-based guidelines are helpful for managing AR illness. Treating AR according to evidence-based standards can help in disease management. AR treatment includes allergen avoidance, drug therapy, immunotherapy, patient education, and follow-up. However, AR treatment with intranasal corticosteroids is more popular. Hence, in this review article, treatment options for AR are discussed in depth. We also discussed the incidence, causes, and new treatments for this clinical condition.

Keywords: Immunotherapy, antihistamines, corticosteroids, allergic rhinitis, pharmacotherapy, novel therapeutic modalities.

Next »
[1]
Swain SK, Behera IC, Das A, Mohanty JN. Normal saline nasal irrigation in childhood allergic rhinosinusitis: Our experiences in a tertiary care teaching hospital of Eastern India. Indian J Child Health 2019; 6(6): 265-8.
[http://dx.doi.org/10.32677/IJCH.2019.v06.i06.002]
[2]
Bousquet J, Anto JM, Bachert C, et al. Allergic rhinitis. Nat Rev Dis Primers 2020; 6(1): 95.
[http://dx.doi.org/10.1038/s41572-020-00227-0] [PMID: 33273461]
[3]
Chandrika D. Allergic rhinitis in India: An overview. Int J Otorhinolaryngol Head Neck Surg 2017; 3(1): 1-6.
[4]
Van Hoecke H, Vandenbulcke L, Van Cauwenberge P. Histamine and leukotriene receptor antagonism in the treatment of allergic rhinitis: An update. Drugs 2007; 67(18): 2717-26.
[http://dx.doi.org/10.2165/00003495-200767180-00006] [PMID: 18062720]
[5]
Lagos JA, Marshall GD. Montelukast in the management of allergic rhinitis. Ther Clin Risk Manag 2007; 3(2): 327-32.
[http://dx.doi.org/10.2147/tcrm.2007.3.2.327] [PMID: 18360641]
[6]
Wheatley LM, Togias A. Allergic rhinitis. N Engl J Med 2015; 372(5): 456-63.
[http://dx.doi.org/10.1056/NEJMcp1412282] [PMID: 25629743]
[7]
Gangwar RS, Friedman S, Seaf M, Levi-Schaffer F. Mast cells and eosinophils in allergy: Close friends or just neighbors. Eur J Pharmacol 2016; 778: 77-83.
[http://dx.doi.org/10.1016/j.ejphar.2015.10.036] [PMID: 26526347]
[8]
Nur Husna SM, Tan HTT, Md Shukri N, Mohd Ashari NS, Wong KK. Nasal epithelial barrier integrity and tight junctions disruption in allergic rhinitis: Overview and pathogenic insights. Front Immunol 2021; 12: 663626.
[http://dx.doi.org/10.3389/fimmu.2021.663626] [PMID: 34093555]
[9]
Tan HTT, Sugita K, Akdis CA. Novel biologicals for the treatment of allergic diseases and asthma. Curr Allergy Asthma Rep 2016; 16(10): 70.
[http://dx.doi.org/10.1007/s11882-016-0650-5] [PMID: 27613653]
[10]
Sani MM, Ashari NSM, Abdullah B, et al. Reduced CD4+ terminally differentiated effector memory T cells in moderate-severe house dust mites sensitized allergic rhinitis patients. Asian Pac J Allergy Immunol 2019; 37(3): 138-46.
[PMID: 29981564]
[11]
Justiz Vaillant AA, Zito PM. Hypersensitivity Reactions, Immediate. Treasure Island, FL: Statpearls 2018.
[12]
He JS, Narayanan S, Subramaniam S, Ho WQ, Lafaille JJ, Curotto de Lafaille MA. Biology of IgE production: IgE cell differentiation and the memory of IgE responses. Curr Top Microbiol Immunol 2015; 388: 1-19.
[http://dx.doi.org/10.1007/978-3-319-13725-4_1] [PMID: 25553792]
[13]
Moon TC, Befus AD, Kulka M. Mast cell mediators: Their differential release and the secretory pathways involved. Front Immunol 2014; 5: 569.
[http://dx.doi.org/10.3389/fimmu.2014.00569] [PMID: 25452755]
[14]
Finkelman FD, Khodoun MV, Strait R. Human IgE-independent systemic anaphylaxis. J Allergy Clin Immunol 2016; 137(6): 1674-80.
[http://dx.doi.org/10.1016/j.jaci.2016.02.015] [PMID: 27130857]
[15]
Sin B, Togias A. Pathophysiology of allergic and nonallergic rhinitis. Proc Am Thorac Soc 2011; 8(1): 106-14.
[http://dx.doi.org/10.1513/pats.201008-057RN] [PMID: 21364228]
[16]
Pawankar R, Yamagishi S, Yagi T. Revisiting the roles of mast cells in allergic rhinitis and its relation to local IgE synthesis. Am J Rhinol 2000; 14(5): 309-18.
[http://dx.doi.org/10.2500/105065800781329582] [PMID: 11068656]
[17]
Plewako H, Holmberg K, Oancea I, Gotlib T, Samoliński B, Rak S. A follow-up study of immunotherapy-treated birch-allergic patients: effect on the expression of chemokines in the nasal mucosa. Clin Exp Allergy 2008; 38(7): 1124-31.
[http://dx.doi.org/10.1111/j.1365-2222.2008.03005.x] [PMID: 18691293]
[18]
Scadding GK, Scadding GW. Innate and adaptive immunity: ILC2 and Th2 cells in upper and lower airway allergic diseases. J Allergy Clin Immunol Pract 2021; 9(5): 1851-7.
[http://dx.doi.org/10.1016/j.jaip.2021.02.013] [PMID: 33618052]
[19]
Li Y, Wang W, Ying S, Lan F, Zhang L. A potential role of group 2 innate lymphoid cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy Asthma Immunol Res 2021; 13(3): 363-74.
[http://dx.doi.org/10.4168/aair.2021.13.3.363] [PMID: 33733633]
[20]
Peng YQ, Qin ZL, Fang SB, et al. Effects of myeloid and plasmacytoid dendritic cells on ILC2s in patients with allergic rhinitis. J Allergy Clin Immunol 2020; 145(3): 855-867.e8.
[http://dx.doi.org/10.1016/j.jaci.2019.11.029] [PMID: 31812574]
[21]
Bozek A, Galuszka B, Gawlik R. Allergen immunotherapy against house dust mites in patients with local allergic rhinitis and asthma. J Asthma 2022; 59(9): 1850-8.
[http://dx.doi.org/10.1080/02770903.2021.1971701] [PMID: 34429002]
[22]
Meng Y, Lu H, Wang C, et al. Naso-ocular neuropeptide interactions in allergic rhinoconjunctivitis, rhinitis, and conjunctivitis. World Allergy Organ J 2021; 14(5): 100540.
[http://dx.doi.org/10.1016/j.waojou.2021.100540] [PMID: 34035875]
[23]
Morita H, Kubo T, Rückert B. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol 2019; 143(6): 2190-201.
[24]
Walker JA, McKenzie ANJ. TH2 cell development and function. Nat Rev Immunol 2018; 18(2): 121-33.
[http://dx.doi.org/10.1038/nri.2017.118] [PMID: 29082915]
[25]
Luce S, Chinthrajah S, Lyu SC, Nadeau KC, Mascarell L. Th2A and Th17 cell frequencies and regulatory markers as follow-up biomarker candidates for successful multifood oral immunotherapy. Allergy 2020; 75(6): 1513-6.
[http://dx.doi.org/10.1111/all.14180] [PMID: 31930521]
[26]
Luce S, Batard T, Bordas-Le Floch V, Le Gall M, Mascarell L. Decrease in CD38+ TH2A cell frequencies following immunotherapy with house dust mite tablet correlates with humoral responses. Clin Exp Allergy 2021; 51(8): 1057-68.
[http://dx.doi.org/10.1111/cea.13891] [PMID: 33938071]
[27]
Hirahara K, Aoki A, Kiuchi M, Nakayama T. Memory-type pathogenic TH2 cells and ILC2s in type 2 allergic inflammation. J Allergy Clin Immunol 2021; 147(6): 2063-6.
[http://dx.doi.org/10.1016/j.jaci.2021.02.006] [PMID: 33592206]
[28]
Iinuma T, Okamoto Y, Morimoto Y, et al. Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy 2018; 73(2): 479-89.
[http://dx.doi.org/10.1111/all.13295] [PMID: 28857184]
[29]
Qi H. T follicular helper cells in space-time. Nat Rev Immunol 2016; 16(10): 612-25.
[http://dx.doi.org/10.1038/nri.2016.94] [PMID: 27573485]
[30]
Scholz J, Kuhrau J, Heinrich F, et al. Vitamin A controls the allergic response through T follicular helper cell as well as plasmablast differentiation. Allergy 2021; 76(4): 1109-22.
[http://dx.doi.org/10.1111/all.14581] [PMID: 32895937]
[31]
Nunokawa H, Murakami Y, Ishii T, et al. Crucial role of stimulator of interferon genes-dependent signaling in house dust mite extract-induced IgE production. Sci Rep 2021; 11(1): 13157.
[http://dx.doi.org/10.1038/s41598-021-92561-w] [PMID: 34162937]
[32]
Zhang B, Liu E, Gertie JA, et al. Divergent T follicular helper cell requirement for IgA and IgE production to peanut during allergic sensitization. Sci Immunol 2020; 5(47): eaay2754.
[http://dx.doi.org/10.1126/sciimmunol.aay2754] [PMID: 32385053]
[33]
Varricchi G, Harker J, Borriello F, Marone G, Durham SR, Shamji MH. T follicular helper (Tfh) cells in normal immune responses and in allergic disorders. Allergy 2016; 71(8): 1086-94.
[http://dx.doi.org/10.1111/all.12878] [PMID: 26970097]
[34]
Yang J, Geng L, Ma Y, et al. SLAMs negatively regulate IL-21 production in Tfh-like cells from allergic rhinitis patients. J Asthma Allergy 2021; 14: 361-9.
[http://dx.doi.org/10.2147/JAA.S291879] [PMID: 33880041]
[35]
Sharif H, Acharya S, Dhondalay GKR, et al. Altered chromatin landscape in circulating T follicular helper and regulatory cells following grass pollen subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol 2021; 147(2): 663-76.
[http://dx.doi.org/10.1016/j.jaci.2020.10.035] [PMID: 33160969]
[36]
Yao Y, Chen CL, Wang N, et al. Correlation of allergen-specific T follicular helper cell counts with specific IgE levels and efficacy of allergen immunotherapy. J Allergy Clin Immunol 2018; 142(1): 321-324.e10.
[http://dx.doi.org/10.1016/j.jaci.2018.03.008] [PMID: 29626573]
[37]
Gowthaman U, Chen JS, Zhang B, et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 2019; 365(6456): eaaw6433.
[http://dx.doi.org/10.1126/science.aaw6433] [PMID: 31371561]
[38]
Kumar S, Fonseca VR, Ribeiro F, et al. Developmental bifurcation of human T follicular regulatory cells. Sci Immunol 2021; 6(59): eabd8411.
[http://dx.doi.org/10.1126/sciimmunol.abd8411] [PMID: 34049865]
[39]
Long Y, Li W, Feng J, et al. Follicular helper and follicular regulatory T cell subset imbalance is associated with higher activated B cells and abnormal autoantibody production in primary anti-phospholipid syndrome patients. Clin Exp Immunol 2021; 206(2): 141-52.
[http://dx.doi.org/10.1111/cei.13647] [PMID: 34309827]
[40]
Long Y, Xia C, Xu L, et al. The imbalance of circulating follicular helper T cells and follicular regulatory T cells is associated with disease activity in patients with ulcerative colitis. Front Immunol 2020; 11: 104.
[http://dx.doi.org/10.3389/fimmu.2020.00104] [PMID: 32117258]
[41]
Yao Y, Chen CL, Yu D, Liu Z. Roles of follicular helper and regulatory T cells in allergic diseases and allergen immunotherapy. Allergy 2021; 76(2): 456-70.
[http://dx.doi.org/10.1111/all.14639] [PMID: 33098663]
[42]
Yao Y, Wang N, Chen CL, et al. CD23 expression on switched memory B cells bridges T-B cell interaction in allergic rhinitis. Allergy 2020; 75(10): 2599-612.
[http://dx.doi.org/10.1111/all.14288] [PMID: 32198890]
[43]
Jiao WE, Sun L, Xu S, et al. Notch2 suppresses the development of allergic rhinitis by promoting FOXP3 expression and Treg cell differentiation. Life Sci 2021; 284: 119922.
[http://dx.doi.org/10.1016/j.lfs.2021.119922] [PMID: 34480930]
[44]
Corrado A, Ramonell RP, Woodruff MC, et al. Extrafollicular IgD+ B cells generate IgE antibody secreting cells in the nasal mucosa. Mucosal Immunol 2021; 14(5): 1144-59.
[http://dx.doi.org/10.1038/s41385-021-00410-w] [PMID: 34050324]
[45]
Hoof I, Schulten V, Layhadi JA, et al. Allergen-specific IgG+ memory B cells are temporally linked to IgE memory responses. J Allergy Clin Immunol 2020; 146(1): 180-91.
[http://dx.doi.org/10.1016/j.jaci.2019.11.046] [PMID: 31883847]
[46]
Testera-Montes A, Palomares F, Jurado-Escobar R, et al. Sequential class switch recombination to IgE and allergen-induced accumulation of IgE + plasmablasts occur in the nasal mucosa of local allergic rhinitis patients. Allergy 2022; 77(9): 2712-24.
[http://dx.doi.org/10.1111/all.15292] [PMID: 35340036]
[47]
Buchheit KM, Hulse KE. Local immunoglobulin production in nasal tissues. Ann Allergy Asthma Immunol 2021; 126(2): 127-34.
[http://dx.doi.org/10.1016/j.anai.2020.09.016] [PMID: 33065294]
[48]
Wang ZZ, Song J, Wang H, et al. B cell-activating factor promotes B cell survival in ectopic lymphoid tissues in nasal polyps. Front Immunol 2021; 11: 625630.
[http://dx.doi.org/10.3389/fimmu.2020.625630] [PMID: 33552090]
[49]
Wang ZZ, Song J, Wang H, et al. Stromal cells and B cells orchestrate ectopic lymphoid tissue formation in nasal polyps. Allergy 2021; 76(5): 1416-31.
[http://dx.doi.org/10.1111/all.14612] [PMID: 33022771]
[50]
Poposki JA, Peterson S, Welch K, et al. Elevated presence of myeloid dendritic cells in nasal polyps of patients with chronic rhinosinusitis. Clin Exp Allergy 2015; 45(2): 384-93.
[http://dx.doi.org/10.1111/cea.12471] [PMID: 25469646]
[51]
He YQ, Qiao YL, Xu S, et al. Allergen induces CD11c+ dendritic cell autophagy to aggravate allergic rhinitis through promoting immune imbalance. Int Immunopharmacol 2022; 106: 108611.
[http://dx.doi.org/10.1016/j.intimp.2022.108611] [PMID: 35158226]
[52]
Liu H, Xia J, Chen Y, Ai J, Wang T, Tan G. Immunosuppressive regulation of dendritic cells and T cells in allergic rhinitis by semaphorin 3A. Am J Rhinol Allergy 2021; 35(6): 846-53.
[http://dx.doi.org/10.1177/19458924211005592] [PMID: 33761786]
[53]
Peng YQ, Chen DH, Xu ZB. IL-33 receptor expression on myeloid and plasmacytoid dendritic cells after allergen challenge in patients with allergic rhinitis. Int Immunopharmacol 2021; 101(Pt B): 108233.
[54]
Kim B, Lee YE, Yeon JW, et al. A novel therapeutic modality using CRISPR-engineered dendritic cells to treat allergies. Biomaterials 2021; 273: 120798.
[http://dx.doi.org/10.1016/j.biomaterials.2021.120798] [PMID: 33895493]
[55]
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 2021; 21(11): 739-51.
[http://dx.doi.org/10.1038/s41577-021-00538-7] [PMID: 33846604]
[56]
Steelant B, Wawrzyniak P, Martens K, et al. Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J Allergy Clin Immunol 2019; 144(5): 1242-1253.e7.
[http://dx.doi.org/10.1016/j.jaci.2019.04.027] [PMID: 31082457]
[57]
Ordovas-Montanes J, Dwyer DF, Nyquist SK, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 2018; 560(7720): 649-54.
[http://dx.doi.org/10.1038/s41586-018-0449-8] [PMID: 30135581]
[58]
Greiner AN, Hellings PW, Rotiroti G, Scadding GK. Allergic rhinitis. Lancet 2011; 378(9809): 2112-22.
[http://dx.doi.org/10.1016/S0140-6736(11)60130-X] [PMID: 21783242]
[59]
Swain S. Current treatment of Meniere’s disease. Matrix Science Medica 2023; 7(1): 1-6.
[http://dx.doi.org/10.4103/mtsm.mtsm_8_22]
[60]
Wahn U, Bachert C, Heinrich J, Richter H, Zielen S. Real-world benefts of allergen immunotherapy for birch pollen-associated allergic rhinitis and asthma. Allergy 2019; 74(3): 594-604.
[61]
Durham SR, Emminger W, Kapp A, et al. SQ-standardized sublingual grass immunotherapy: Confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J Allergy Clin Immunol 2012; 129(3): 717-725.e5.
[http://dx.doi.org/10.1016/j.jaci.2011.12.973] [PMID: 22285278]
[62]
Biedermann T, Kuna P, Panzner P, et al. The SQ tree SLIT-tablet is highly effective and well tolerated: Results from a randomized, double-blind, placebo-controlled phase III trial. J Allergy Clin Immunol 2019; 143(3): 1058-1066.e6.
[http://dx.doi.org/10.1016/j.jaci.2018.12.1001] [PMID: 30654054]
[63]
Emminger W, Hernández MD, Cardona V, et al. The SQ house dust mite SLIT-tablet is well tolerated in patients with house dust mite respiratory allergic disease. Int Arch Allergy Immunol 2017; 174(1): 35-44.
[http://dx.doi.org/10.1159/000478699] [PMID: 28950268]
[64]
Bernstein DI, Murphy KR, Nolte H, Kaur A, Maloney J. Efcacy of short ragweed sublingual immunotherapy tablet (SLIT-T) in mono-sensitized and poly-sensitized subjects. J Allergy Clin Immunol 2014; 133(2): AB218.
[http://dx.doi.org/10.1016/j.jaci.2013.12.780]
[65]
Blaiss M, Creticos P, Hébert J, et al. Efficacy and safety of standardized short ragweed sublingual immunotherapy tablet (SLIT-T) treatment in Canadian subjects with ragweed pollen-induced rhinitis with or without conjunctivitis. Allergy Asthma Clin Immunol 2014; 10(S1): A14.
[http://dx.doi.org/10.1186/1710-1492-10-S1-A14]
[66]
Kim H, Waserman S, Hébert J, et al. Efficacy and safety of ragweed sublingual immunotherapy in Canadian patients with allergic rhinoconjunctivitis. Allergy Asthma Clin Immunol 2014; 10(1): 55.
[http://dx.doi.org/10.1186/1710-1492-10-55]
[67]
Nelson MR, Petersen MM, Wolverton WO, Mikita CP. Allergen immunotherapy extract treatment set preparation: Making a safer and higher quality product for patients. Curr Allergy Asthma Rep 2013; 13(4): 399-405.
[http://dx.doi.org/10.1007/s11882-013-0362-z] [PMID: 23881510]
[68]
Del Carpio J, Fischer D, Frankish C. Immunotherapy manual. CSACI 2016; 1-86.
[69]
Moote W, Kim H, Ellis AK. Allergen-specific immunotherapy. Allergy Asthma Clin Immunol 2018; 14(S2) (Suppl. 2): 53.
[http://dx.doi.org/10.1186/s13223-018-0282-5] [PMID: 30275845]
[70]
Lin WY, Fu LS, Lin HK, Shen CY, Chen YJ. Evaluation of the effect of Lactobacillus paracasei (HF.A00232) in children (6-13 years old) with perennial allergic rhinitis: A 12-week, double-blind, randomized, placebo-controlled study. Pediatr Neonatol 2014; 55(3): 181-8.
[http://dx.doi.org/10.1016/j.pedneo.2013.10.001] [PMID: 24269033]
[71]
Huang Y, Wang C, Wang X, Zhang L, Lou H. Efficacy and safety of subcutaneous immunotherapy with house dust mite for allergic rhinitis: A meta-analysis of randomized controlled trials. Allergy 2019; 74(1): 189-92.
[http://dx.doi.org/10.1111/all.13583] [PMID: 30074245]
[72]
Demoly P, Corren J, Creticos P, et al. A 300 IR sublingual tablet is an effective, safe treatment for house dust mite–induced allergic rhinitis: An international, double-blind, placebo-controlled, randomized phase III clinical trial. J Allergy Clin Immunol 2021; 147(3): 1020-1030.e10.
[http://dx.doi.org/10.1016/j.jaci.2020.07.036] [PMID: 32890575]
[73]
Boldovjáková D, Cordoni S, Fraser CJ, et al. Sublingual immunotherapy vs. placebo in the management of grass pollen-induced allergic rhinitis in adults: A systematic review and meta-analysis. Clin Otolaryngol 2021; 46(1): 52-9.
[http://dx.doi.org/10.1111/coa.13651] [PMID: 32979035]
[74]
Lou H, Wang X, Wei Q, et al. Artemisia annua sublingual immunotherapy for seasonal allergic rhinitis: A multicenter, randomized trial. World Allergy Organ J 2020; 13(9): 100458.
[http://dx.doi.org/10.1016/j.waojou.2020.100458] [PMID: 32963688]
[75]
Jutel M, Brüggenjürgen B, Richter H, Vogelberg C. Real-world evidence of subcutaneous allergoid immunotherapy in house dust mite-induced allergic rhinitis and asthma. Allergy 2020; 75(8): 2050-8.
[http://dx.doi.org/10.1111/all.14240] [PMID: 32080856]
[76]
Fritzsching B, Contoli M, Porsbjerg C, et al. Long-term real- world effectiveness of allergy immunotherapy in patients with allergic rhinitis and asthma: Results from the REACT study, a retrospective cohort study. Lancet Reg Health Eur 2022; 13: 100275.
[http://dx.doi.org/10.1016/j.lanepe.2021.100275] [PMID: 34901915]
[77]
Wang Y, Shi C, Yang Y. Anxiety and depression in allergic rhinitis patients during COVID-19 pandemic in Wuhan. China Asian Pac J Allergy Immunol 2022; 40(3): 210-6.
[http://dx.doi.org/10.12932/AP-140820-0941]
[78]
Pavon-Romero GF, Larenas-Linnemann DE, Xochipa Ruiz KE, Ramirez-Jimenez F, Teran LM. Subcutaneous allergen-specific immunotherapy is safe in pediatric patients with allergic rhinitis. Int Arch Allergy Immunol 2021; 182(6): 553-61.
[http://dx.doi.org/10.1159/000513158] [PMID: 33611315]
[79]
Kim CK, Callaway Z, Park JS, Kwon E. Efficacy of subcutaneous immunotherapy for patients with asthma and allergic rhinitis in Korea: Effect on eosinophilic inflammation. Asia Pac Allergy 2021; 11(4): e43.
[http://dx.doi.org/10.5415/apallergy.2021.11.e43] [PMID: 34786373]
[80]
Proctor T, Morrough E, Fenske O, et al. Impact on quality of life and safety of sublingual and subcutaneous immunotherapy in children with severe house dust mite and pollen-associated allergic rhinoconjunctivitis. Clin Transl Allergy 2020; 10(1): 10.
[http://dx.doi.org/10.1186/s13601-020-00315-0] [PMID: 32337019]
[81]
Xiang L, Liu F, Zhi L, et al. Safety of semi-depot house dust mite allergen extract in children and adolescents with allergic rhinitis and asthma. Immunotherapy 2021; 13(3): 227-39.
[http://dx.doi.org/10.2217/imt-2020-0232] [PMID: 33317341]
[82]
Zhao L, Zhang Y, Zhang S, Zhang L, Lan F. The effect of immunotherapy on cross-reactivity between house dust mite and other allergens in house dust mite-sensitized patients with allergic rhinitis. Expert Rev Clin Immunol 2021; 17(9): 969-75.
[http://dx.doi.org/10.1080/1744666X.2021.1968834] [PMID: 34388949]
[83]
Calderón MA, Cox L, Casale TB, Moingeon P, Demoly P. Multiple-allergen and single-allergen immunotherapy strategies in polysensitized patients: Looking at the published evidence. J Allergy Clin Immunol 2012; 129(4): 929-34.
[http://dx.doi.org/10.1016/j.jaci.2011.11.019] [PMID: 22244595]
[84]
Golebski K, Layhadi JA, Sahiner U, et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 2021; 54(2): 291-307.e7.
[http://dx.doi.org/10.1016/j.immuni.2020.12.013] [PMID: 33450188]
[85]
Boonpiyathad T, Tantilipikorn P, Ruxrungtham K, et al. IL-10-producing innate lymphoid cells increased in patients with house dust mite allergic rhinitis following immunotherapy. J Allergy Clin Immunol 2021; 147(4): 1507-1510.e8.
[http://dx.doi.org/10.1016/j.jaci.2020.10.029] [PMID: 33137358]
[86]
Lou H, Huang Y, Ouyang Y, et al. Artemisia annua-sublingual immunotherapy for seasonal allergic rhinitis: A randomized controlled trial. Allergy 2020; 75(8): 2026-36.
[http://dx.doi.org/10.1111/all.14218] [PMID: 32030780]
[87]
Terada T, Matsuda M, Inaba M, et al. Sublingual immunotherapy for 4 years increased the number of Foxp3+ Treg cells, which correlated with clinical effects. Inflamm Res 2021; 70(5): 581-9.
[http://dx.doi.org/10.1007/s00011-021-01460-3] [PMID: 33837438]
[88]
Kouzaki H, Arikata M, Koji M, et al. Dynamic change of anti-inflammatory cytokine IL-35 in allergen immune therapy for Japanese cedar pollinosis. Allergy 2020; 75(4): 981-3.
[http://dx.doi.org/10.1111/all.14124] [PMID: 31755994]
[89]
Gotoh M, Okubo K, Yuta A, et al. Safety profile and immunological response of dual sublingual immunotherapy with house dust mite tablet and Japanese cedar pollen tablet. Allergol Int 2020; 69(1): 104-10.
[http://dx.doi.org/10.1016/j.alit.2019.07.007] [PMID: 31421989]
[90]
Zheng P, Yan G, Zhang Y, et al. Metabolomics reveals process of allergic rhinitis patients with single- and double-species mite subcutaneous immunotherapy. Metabolites 2021; 11(9): 613.
[http://dx.doi.org/10.3390/metabo11090613] [PMID: 34564431]
[91]
He Y, Liu J, Zhao D, et al. The IgE blocking activity induced by dermatophagoides pteronyssinus subcutaneous immunotherapy does not correlate with specific IgA but with IgG4 in both serum and saliva. Int Arch Allergy Immunol 2021; 182(12): 1231-44.
[http://dx.doi.org/10.1159/000517152] [PMID: 34280916]
[92]
Zheng P, Bian X, Zhai Y, et al. Metabolomics reveals a correlation between hydroxyeicosatetraenoic acids and allergic asthma: Evidence from three years’ immunotherapy. Pediatr Allergy Immunol 2021; 32(8): 1654-62.
[http://dx.doi.org/10.1111/pai.13569] [PMID: 34087025]
[93]
Bordas-Le Floch V, Berjont N, Batard T, et al. Coordinated IgG2 and IgE responses as a marker of allergen immunotherapy efficacy. Allergy 2022; 77(4): 1263-73.
[http://dx.doi.org/10.1111/all.15107] [PMID: 34551124]
[94]
Ma S, Satitsuksanoa P, Jansen K, Cevhertas L, van de Veen W, Akdis M. B regulatory cells in allergy. Immunol Rev 2021; 299(1): 10-30.
[http://dx.doi.org/10.1111/imr.12937] [PMID: 33345311]
[95]
Tian GX, Peng KP, Liu MH, et al. CD38+ B cells affect immunotherapy for allergic rhinitis. J Allergy Clin Immunol 2022; 149(5): 1691-1701.e9.
[http://dx.doi.org/10.1016/j.jaci.2022.01.012] [PMID: 35093485]
[96]
Oka A, Kidoguchi M, Kariya S, et al. Role of salivary microbiome in IL-10 production and efficacy of sublingual immunotherapy. Allergy 2021; 76(8): 2617-20.
[http://dx.doi.org/10.1111/all.14858] [PMID: 33864682]
[97]
Zissler UM, Jakwerth CA, Guerth F, et al. Allergen-specific immunotherapy induces the suppressive secretoglobin 1A1 in cells of the lower airways. Allergy 2021; 76(8): 2461-74.
[http://dx.doi.org/10.1111/all.14756] [PMID: 33528894]
[98]
Schmid JM, Würtzen PA, Siddhuraj P, et al. Basophil sensitivity reflects long-term clinical outcome of subcutaneous immunotherapy in grass pollen-allergic patients. Allergy 2021; 76(5): 1528-38.
[http://dx.doi.org/10.1111/all.14264] [PMID: 32145088]
[99]
Werner MT, Bosso JV. Intralymphatic immunotherapy for allergic rhinitis: A systematic review and meta-analysis. Allergy Asthma Proc 2021; 42(4): 283-92.
[http://dx.doi.org/10.2500/aap.2021.42.210028] [PMID: 34187620]
[100]
Hellkvist L, Hjalmarsson E, Weinfeld D, et al. High-dose pollen intralymphatic immunotherapy: Two RDBPC trials question the benefit of dose increase. Allergy 2022; 77(3): 883-96.
[http://dx.doi.org/10.1111/all.15042] [PMID: 34379802]
[101]
Skaarup SH, Schmid JM, Skjold T, Graumann O, Hoffmann HJ. Intralymphatic immunotherapy improves grass pollen allergic rhinoconjunctivitis: A 3-year randomized placebo-controlled trial. J Allergy Clin Immunol 2021; 147(3): 1011-9.
[http://dx.doi.org/10.1016/j.jaci.2020.07.002] [PMID: 32679209]
[102]
Zaleska A, Eiwegger T, Soyer Ö, et al. Immune regulation by intralymphatic immunotherapy with modular allergen translocation MAT vaccine. Allergy 2014; 69(9): 1162-70.
[http://dx.doi.org/10.1111/all.12461] [PMID: 24934402]
[103]
Park HJ, Kim SH, Shin YS, et al. Intralymphatic immunotherapy with tyrosine-adsorbed allergens: A double-blind, placebo-controlled trial. Respir Res 2021; 22(1): 170.
[http://dx.doi.org/10.1186/s12931-021-01766-0] [PMID: 34088322]
[104]
Aini NR, Mohd NN, Md Daud MK, Wise SK, Abdullah B. Efficacy and safety of intralymphatic immunotherapy in allergic rhinitis: A systematic review and meta-analysis. Clin Transl Allergy 2021; 11(6): e12055.
[http://dx.doi.org/10.1002/clt2.12055] [PMID: 34429875]
[105]
Rondon C, Sánchez-Borges M, Risquez CE, Fabiano F, Capriles HA. Aqueous intradermal low-dose house dust mite immunotherapy in tropical settings: A valid cost-effective approach for developing nations? Allergol Immunopathol 2021; 49(2): 31-9.
[http://dx.doi.org/10.15586/aei.v49i2.52] [PMID: 33641291]
[106]
Ellis AK, Frankish CW, Armstrong K, et al. Persistence of the clinical effect of grass allergen peptide immunotherapy after the second and third grass pollen seasons. J Allergy Clin Immunol 2020; 145(2): 610-618.e9.
[http://dx.doi.org/10.1016/j.jaci.2019.09.010] [PMID: 31568796]
[107]
Fleischer DM, Greenhawt M, Sussman G, et al. Effect of epicutaneous immunotherapy vs. placebo on reaction to peanut protein ingestion among children with peanut allergy: The PEPITES randomized clinical trial. JAMA 2019; 321(10): 946-55.
[http://dx.doi.org/10.1001/jama.2019.1113] [PMID: 30794314]
[108]
Xiong L, Lin J, Luo Y, Chen W, Dai J. The efficacy and safety of epicutaneous immunotherapy for allergic diseases: A systematic review and meta-analysis. Int Arch Allergy Immunol 2020; 181(3): 170-82.
[http://dx.doi.org/10.1159/000504366] [PMID: 31801149]
[109]
Eschenbacher W, Straesser M, Knoeddler A, Li R, Borish L. Biologics for the treatment of allergic rhinitis, chronic rhinosinusitis, and nasal polyposis. Immunol Allergy Clin North Am 2020; 40(4): 539-47.
[http://dx.doi.org/10.1016/j.iac.2020.06.001] [PMID: 33012318]
[110]
Dantzer JA, Wood RA. Update on omalizumab in allergen immunotherapy. Curr Opin Allergy Clin Immunol 2021; 21(6): 559-68.
[http://dx.doi.org/10.1097/ACI.0000000000000781] [PMID: 34419967]
[111]
Tsabouri S, Ntritsos G, Koskeridis F, Evangelou E, Olsson P, Kostikas K. Omalizumab for the treatment of allergic rhinitis: A systematic review and meta-analysis. Rhinology 2021; 0(0): 0.
[http://dx.doi.org/10.4193/Rhin21.159] [PMID: 34714895]
[112]
Zhang Y, Xi L, Gao Y, et al. Omalizumab is effective in the preseasonal treatment of seasonal allergic rhinitis. Clin Transl Allergy 2022; 12(1): e12094.
[http://dx.doi.org/10.1002/clt2.12094] [PMID: 35024137]
[113]
Busse WW, Maspero JF, Lu Y, et al. Efficacy of dupilumab on clinical outcomes in patients with asthma and perennial allergic rhinitis. Ann Allergy Asthma Immunol 2020; 125(5): 565-576.e1.
[http://dx.doi.org/10.1016/j.anai.2020.05.026] [PMID: 32474156]
[114]
Corren J, Saini SS, Gagnon R, et al. Short-term subcutaneous allergy immunotherapy and dupilumab are well tolerated in allergic rhinitis: A randomized trial. J Asthma Allergy 2021; 14: 1045-63.
[http://dx.doi.org/10.2147/JAA.S318892] [PMID: 34429614]
[115]
Kamal MA, Franchetti Y, Lai CH, et al. Pharmacokinetics and concentration-response of dupilumab in patients with seasonal allergic rhinitis. J Clin Pharmacol 2022; 62(5): 689-95.
[http://dx.doi.org/10.1002/jcph.2004] [PMID: 34791679]
[116]
Casale T, Busse W, Kline J, et al. Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J Allergy Clin Immunol 2006; 117(1): 134-40.
[http://dx.doi.org/10.1016/j.jaci.2005.09.036] [PMID: 16387596]
[117]
Zhang K, Li AR, Miglani A, Nguyen SA, Schlosser RJ. Effect of medical therapy in allergic rhinitis: A systematic review and metaanalysis. Am J Rhinol Allergy 2022; 36(2): 269-80.
[http://dx.doi.org/10.1177/19458924211041438] [PMID: 34546814]
[118]
Zhang Y, Wei P, Chen B, et al. Intranasal fluticasone furoate in pediatric allergic rhinitis: Randomized controlled study. Pediatr Res 2021; 89(7): 1832-9.
[http://dx.doi.org/10.1038/s41390-020-01180-0] [PMID: 33007780]
[119]
Baxter MS, Tibble H, Bush A, Sheikh A, Schwarze J. Effectiveness of mobile health interventions to improve nasal corticosteroid adherence in allergic rhinitis: A systematic review. Clin Transl Allergy 2021; 11(9): e12075.
[http://dx.doi.org/10.1002/clt2.12075] [PMID: 34841729]
[120]
Krishnamoorthy M, Mohd Noor N, Mat Lazim N, Abdullah B. Efficacy of montelukast in allergic rhinitis treatment: A systematic review and meta-analysis. Drugs 2020; 80(17): 1831-51.
[http://dx.doi.org/10.1007/s40265-020-01406-9] [PMID: 32915441]
[121]
Andrews CP, Mohar D, Salhi Y, Tantry SK. Efficacy and safety of twice-daily and once-daily olopatadine-mometasone combination nasal spray for seasonal allergic rhinitis. Ann Allergy Asthma Immunol 2020; 124(2): 171-178.e2.
[http://dx.doi.org/10.1016/j.anai.2019.11.007] [PMID: 31734334]
[122]
Seresirikachorn K, Mullol J, Limitlaohaphan K, Asvapoositkul V, Snidvongs K. Leukotriene receptor antagonist addition to intranasal steroid: Systematic review and meta-analysis. Rhinology 2021; 59(1): 2-9.
[http://dx.doi.org/10.4193/Rhin20.126] [PMID: 32692787]
[123]
Du K, Qing H, Zheng M, Wang X, Zhang L. Intranasal antihistamine is superior to oral H1 antihistamine as an add-on therapy to intranasal corticosteroid for treating allergic rhinitis. Ann Allergy Asthma Immunol 2020; 125(5): 589-596.e3.
[http://dx.doi.org/10.1016/j.anai.2020.06.038] [PMID: 32650045]
[124]
Pfaar O, Bousquet J, Durham SR, et al. One hundred and ten years of allergen immunotherapy: A journey from empiric observation to evidence. Allergy 2022; 77(2): 454-68.
[http://dx.doi.org/10.1111/all.15023] [PMID: 34315190]
[125]
Gevaert P, De Craemer J, De Ruyck N, et al. Novel antibody cocktail targeting Bet v 1 rapidly and sustainably treats birch allergy symptoms in a phase 1 study. J Allergy Clin Immunol 2022; 149(1): 189-99.
[http://dx.doi.org/10.1016/j.jaci.2021.05.039] [PMID: 34126156]
[126]
Shamji MH, Singh I, Layhadi JA, et al. Passive prophylactic administration with a single dose of anti-Fel d 1 monoclonal antibodies REGN1908-1909 in cat allergen-induced allergic rhinitis: A randomized, double-blind, placebo-controlled clinical trial. Am J Respir Crit Care Med 2021; 204(1): 23-33.
[http://dx.doi.org/10.1164/rccm.202011-4107OC] [PMID: 33651675]
[127]
Swain SK, Behera IC, Mohanty S, Sahu MC. Rhinogenic contact point headache – Frequently missed clinical entity. Apollo Medicine 2016; 13(3): 169-73.
[http://dx.doi.org/10.1016/j.apme.2016.08.001]
[128]
Swain S, Sahu M, Baisakh M. Nasal myiasis in clinical practice. Apollo Med 2018; 15(3): 128-31.
[http://dx.doi.org/10.4103/am.am_53_17]
[129]
Small P, Frenkiel S, Becker A, et al. Rhinitis: A practical and comprehensive approach to assessment and therapy. J Otolaryngol 2007; 36(S1): S5.
[http://dx.doi.org/10.2310/7070.2006.X002]
[130]
Philip G, Williams-Herman D, Patel P, et al. Efficacy of montelukast for treating perennial allergic rhinitis. Allergy Asthma Proc 2007; 28(3): 296-304.
[http://dx.doi.org/10.2500/aap.2007.28.3000] [PMID: 17619558]
[131]
Benninger MS, Ahmad N, Marple BF. The safety of intranasal steroids. Otolaryngol Head Neck Surg 2003; 129(6): 739-50.
[http://dx.doi.org/10.1016/j.otohns.2003.10.001] [PMID: 14663444]
[132]
Swain SK, Behera IC, Agrawala R, Shajahan N. Role of topical intranasal steroids in pediatric hearing loss due to otitis media with effusion: The experiences. Int J Otorhinolaryngol Head Neck Surg 2019; 6(1): 89-93.
[http://dx.doi.org/10.18203/issn.2454-5929.ijohns20195695]
[133]
Wallace D, Dykewicz M, Bernstein D, et al. The diagnosis and management of rhinitis: An updated practice parameter. J Allergy Clin Immunol 2008; 122(2) (Suppl.): S1-S84.
[http://dx.doi.org/10.1016/j.jaci.2008.06.003] [PMID: 18662584]
[134]
Scadding GK, Durham SR, Mirakian R, et al. BSACI guidelines for the management of allergic and non-allergic rhinitis. Clin Exp Allergy 2008; 38(1): 19-42.
[http://dx.doi.org/10.1111/j.1365-2222.2007.02888.x] [PMID: 18081563]
[135]
Meltzer EO. Intranasal steroids: Managing allergic rhinitis and tailoring treatment to patient preference. Allergy Asthma Proc 2005; 26(6): 445-51.
[PMID: 16541967]
[136]
Brożek JL, Bousquet J, Agache I, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol 2017; 140(4): 950-8.
[http://dx.doi.org/10.1016/j.jaci.2017.03.050] [PMID: 28602936]
[137]
Holm A, Dijkstra M, Kleinjan A, et al. Fluticasone propionate aqueous nasal spray reduces inflammatory cells in unchallenged allergic nasal mucosa: Effects of single allergen challenge. J Allergy Clin Immunol 2001; 107(4): 627-33.
[http://dx.doi.org/10.1067/mai.2001.113520] [PMID: 11295650]
[138]
Alvarado-Valdés CA, Blomgren J, Weiler D, et al. The effect of fluticasone propionate aqueous nasal spray on eosinophils and cytokines in nasal secretions of patients with ragweed allergic rhinitis. Clin Ther 1997; 19(2): 273-81.
[http://dx.doi.org/10.1016/S0149-2918(97)80115-4] [PMID: 9152566]
[139]
Weido AJ, Cook CK, Sim TC, Reece LM, Alam R. Intranasal fluticasone propionate inhibits recovery of chemokines and other cytokines in nasal secretions in allergen-induced rhinitis. Ann Allergy Asthma Immunol 1996; 77(5): 407-15.
[http://dx.doi.org/10.1016/S1081-1206(10)63340-6] [PMID: 8933780]
[140]
Cockcroft DW, MacCormack DW, Newhouse MT, Hargreave FE. Beclomethasone dipropionate aerosol in allergic rhinitis. Can Med Assoc J 1976; 115(6): 523-6.
[PMID: 782679]
[141]
Weiner JM. Intranasal corticosteroids vs. oral H1 receptor antagonists in allergic rhinitis: Systematic review of randomized control trials. BMJ 1998; 317(7173): 1624-9.
[142]
Bousquet J, Khaltaev N, Cruz AA, et al. Allergic rhinitis and its impact on asthma (ARIA). Allergy 2008; 63(s86) (Suppl. 86): 8-160.
[http://dx.doi.org/10.1111/j.1398-9995.2007.01620.x] [PMID: 18331513]
[143]
Bjermer L, Westman M, Holmstrom M, Wickman MC. The complex pathophysiology of allergic rhinitis: Scientifc rationale for the development of an alternative treatment option. Allerg Asthma Clin Immunol 2019; 15: 24.
[144]
Bousquet J, van Cauwenberge P, Khaltaev N. Allergic rhinitis and its impact on asthma. J Allergy Clin Immunol 2001; 108(5) (Suppl.): S147-334.
[http://dx.doi.org/10.1067/mai.2001.118891] [PMID: 11707753]
[145]
Platt M. Pharmacotherapy for allergic rhinitis. Int Forum Allergy Rhinol 2014; 4(2) (Suppl. 2): S35-40.
[PMID: 25182353]
[146]
Interdisziplinäre Arbeitsgruppe "Allergische Rhinitis" der Sektion HNO. Allergische Rhinokonjunktivitis - Leitlinie der Deutschen Gesellschaft für Allergologie und klinische Immunologie (DGAI). Allergo J 2003; 12: 182-94.
[147]
Brożek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 2010; 126(3): 466-76.
[http://dx.doi.org/10.1016/j.jaci.2010.06.047] [PMID: 20816182]
[148]
Takhar P, Corrigan CJ, Smurthwaite L, et al. Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol 2007; 119(1): 213-8.
[http://dx.doi.org/10.1016/j.jaci.2006.09.045] [PMID: 17208604]
[149]
Nayak A, Langdon RB. Montelukast in the treatment of allergic rhinitis: An evidence-based review. Drugs 2007; 67(6): 887-901.
[http://dx.doi.org/10.2165/00003495-200767060-00005] [PMID: 17428106]
[150]
Grainger J, Drake-Lee A. Montelukast in allergic rhinitis: A systematic review and meta-analysis. Clin Otolaryngol 2006; 31(5): 360-7.
[http://dx.doi.org/10.1111/j.1749-4486.2006.01276.x] [PMID: 17014443]
[151]
Samuelsson B. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science 1983; 220(4597): 568-75.
[http://dx.doi.org/10.1126/science.6301011] [PMID: 6301011]
[152]
Rodrigo GJ, Yañez A. The role of antileukotriene therapy in seasonal allergic rhinitis: A systematic review of randomized trials. Ann Allergy Asthma Immunol 2006; 96(6): 779-86.
[http://dx.doi.org/10.1016/S1081-1206(10)61339-7] [PMID: 16802764]
[153]
Ratner PH, Ehrlich PM, Fineman SM, Meltzer EO, Skoner DP. Use of intranasal cromolyn sodium for allergic rhinitis. Mayo Clin Proc 2002; 77(4): 350-4.
[http://dx.doi.org/10.4065/77.4.350] [PMID: 11936930]
[154]
Ratner PH, Hampel F, Van Bavel J, et al. Combination therapy with azelastine hydrochloride nasal spray and fluticasone propionate nasal spray in the treatment of patients with seasonal allergic rhinitis. Ann Allergy Asthma Immunol 2008; 100(1): 74-81.
[http://dx.doi.org/10.1016/S1081-1206(10)60408-5] [PMID: 18254486]
[155]
D’Addio A, Ruiz N, Mayer M, Murray R, Bachert C. Deposition characteristics of a new allergic rhinitis nasal spray (MP29-02*) in an anatomical model of the human nasal cavity. Clin Transl Allergy 2015; 5(S4): P40.
[http://dx.doi.org/10.1186/2045-7022-5-S4-P40]
[156]
D’Addio A, Ruiz N, Mayer M, Berger WE, Meltzer EO. Quantifcation of the distribution of azelastine HCl/futicasone propionate nasal spray in an anatomical model of the human nasal cavity. J Allergy Clin Immunol 2015; 135(2): AB218.
[http://dx.doi.org/10.1016/j.jaci.2014.12.1648]
[157]
Okano M. Mechanisms and clinical implications of glucocorticosteroids in the treatment of allergic rhinitis. Clin Exp Immunol 2009; 158(2): 164-73.
[http://dx.doi.org/10.1111/j.1365-2249.2009.04010.x] [PMID: 19737138]
[158]
Klimek L, Högger P, Pfaar O. Wirkmechanismen nasaler Glukokortikosteroide in der Therapie der allergischen Rhinitis. Teil 1: Pathophysiologie, molekulare Grundlagen. HNO 2012; 60(7): 611-7.
[http://dx.doi.org/10.1007/s00106-012-2483-4] [PMID: 22532281]
[159]
Li H, Sha Q, Zuo K, et al. Nasal saline irrigation facilitates control of allergic rhinitis by topical steroid in children. ORL J Otorhinolaryngol Relat Spec 2009; 71(1): 50-5.
[http://dx.doi.org/10.1159/000178165] [PMID: 19047814]
[160]
Kumar Swain S, Sahu A. Steam inhalation as an adjuvant treatment in COVID-19 positive health care professionals: Our experiences at tertiary care teaching hospital. Int J Curr Res Rev 2021; 13(5): 121-5.
[http://dx.doi.org/10.31782/IJCRR.2021.13525]
[161]
Swain SK, Debta P, Samal S, Mohanty JN, Debta FM, Dani A. Endoscopic treatment of sinonasal ossifying fibroma: A case report. Indian J Public Health Res Dev 2019; 10(9): 1697-700.
[http://dx.doi.org/10.5958/0976-5506.2019.02701.3]
[162]
Swain SK. Middle turbinate Concha bullosa and its relationship with chronic sinusitis: A review. Int J Otorhinolaryngol Head Neck Surg 2021; 7(6): 1062-7.
[http://dx.doi.org/10.18203/issn.2454-5929.ijohns20212136]
[163]
Swain SK, Baliarsingh P. Rhinogenic contact point headache in pediatric age group: A review. Int J Contemp Pediatrics 2021; 9(1): 135-9.
[http://dx.doi.org/10.18203/2349-3291.ijcp20214954]
[164]
Swain SK, Pattnaik T. Otorhinolaryngological manifestations in pregnant women. Med J Dr. DY Patil Univ 2021; 14(4): 374-9.
[165]
Swain S, Pattnaik T, Mohanty J. Otological and rhinological manifestations in pregnancy: Our experiences at a tertiary care teaching hospital of East India. Int J Health Allied Sci 2020; 9(2): 159-63.
[http://dx.doi.org/10.4103/ijhas.IJHAS_87_19]
[166]
Noble SL, Forbes RC, Woodbridge HB. Allergic rhinitis. Am Fam Physician 1995; 51(4): 837-46.
[PMID: 7887360]
[167]
Swain S. Medical treatment of rhinitis in pregnant woman. Matrix Sci Pharma 2022; 6(3): 58-61.
[http://dx.doi.org/10.4103/mtsp.mtsp_10_22]
[168]
Swain SK, Behera IC. Managing pediatric otorhinolaryngology patients in coronavirus disease-19 pandemic - A real challenge to the clinicians. Indian J Child Health 2020; 7(9): 357-62.
[http://dx.doi.org/10.32677/IJCH.2020.v07.i09.001]
[169]
Bulu N, Loknath S, Sampada M, Munjal S, Sahu MC. Pediatric dysphonia-A review. Indian J Child Health 2019; 6(1): 1-5.
[http://dx.doi.org/10.32677/IJCH.2019.v06.i01.001]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy