Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Antiproliferative Evaluation, and Molecular Docking of Thieno[3,2-e]indazole Derivatives

Author(s): Rafat M. Mohareb*, Ibram Refat Mikhail, Marwa Soliman Gamaan and Ensaf S. Alwan

Volume 21, Issue 16, 2024

Published on: 13 March, 2024

Page: [3555 - 3576] Pages: 22

DOI: 10.2174/0115701808287763240302165049

Price: $65

Abstract

Background: Although indazole derivatives are rare and may not be available easily in nature, there are many reports demonstrating their pharmaceutical and other applications.

Objective: This study aimed to synthesize new indazole derivatives and evaluate their antiproliferative activity to produce new anti-cancer agents.

Methods: Compounds 3a-c were synthesized through the reaction. The 2-aryllidenecyclohexane-1,3- dione derivatives 3a-c were obtained through the reaction of cyclohexane-1,3-dione with aromatic aldehydes used for the synthesis of thieno-[3,2-e]indazole derivatives. These derivatives were characterized by extensive analytical and spectral studies and were further used as starting materials for some heterocyclic transformations to produce biologically active compounds. The antiproliferative activities of the newly synthesized compounds were evaluated against the six cancer cell lines, A549, HT-29, MKN-45, U87MG, SMMC-7721, and H460. Most of the tested compounds exhibited high cytotoxicity except a few compounds.

Results: In this study, new compounds were synthesized, characterized, and evaluated toward the selected six cancer cell lines. All tested compounds displayed potent c-Met enzymatic activity with IC50 values ranging from 0.25 to 10.30 nM and potent prostate PC-3 cell line inhibition with IC50 values ranging from 0.17 to 9.31 μM.

Conclusion: The results obtained in this work demonstrated that the variations in substituents within the aryl moiety, together with the attached heterocyclic ring, have a notable influence on the antiproliferative activity. The results obtained in this work encourage further work in the future.

Keywords: Cyclohexan-1, 3-dione, cytotoxicity, multi-component reactions, thieno-[3, 2-e]indazole, morphology, molecular docking.

Graphical Abstract
[1]
Schmidt, A.; Beutler, A.; Snovydovych, B. Recent advances in the chemistry of indazoles. Eur. J. Org. Chem., 2008, 2008(24), 4073-4095.
[http://dx.doi.org/10.1002/ejoc.200800227]
[2]
Atta-ur-Rahman, Malik, S.; Cun-heng, H.; Clardy, J. Isolation and structure determination of nigellicine, a novel alkaloid from the seeds of. Tetrahedron Lett., 1985, 26(23), 2759-2762.
[http://dx.doi.org/10.1016/S0040-4039(00)94904-9]
[3]
Liu, Y.M.; Yang, J.S.; Liu, Q.H. A new alkaloid and its artificial derivative with an indazole ring from Nigella glandulifera. Chem. Pharm. Bull., 2004, 52(4), 454-455.
[http://dx.doi.org/10.1248/cpb.52.454] [PMID: 15056964]
[4]
Rahman, A.; Malik, S.; Hasan, S.S.; Choudhary, M.I.; Ni, C.Z.; Clardy, J. Nigellidine — A new indazole alkaloid from the seeds of Nigella sativa. Tetrahedron Lett., 1995, 36(12), 1993-1996.
[http://dx.doi.org/10.1016/0040-4039(95)00210-4]
[5]
Elliott, E.L.; Bushell, S.M.; Cavero, M.; Tolan, B.; Kelly, T.R. Total synthesis of nigellicine and nigeglanine hydrobromide. Org. Lett., 2005, 7(12), 2449-2451.
[http://dx.doi.org/10.1021/ol050769m] [PMID: 15932220]
[6]
Sagitullina, G.P.; Garkushenko, A.K.; Poendaev, N.V.; Sagitullin, R.S. Simple and efficient synthesis of substituted 1H-indazoles. Mendeleev Commun., 2012, 22(3), 167-168.
[http://dx.doi.org/10.1016/j.mencom.2012.05.020]
[7]
Büchel, G.E.; Stepanenko, I.N.; Hejl, M.; Jakupec, M.A.; Keppler, B.K.; Heffeter, P.; Berger, W.; Arion, V.B. Osmium(IV) complexes with 1H- and 2H-indazoles: Tautomer identity versus spectroscopic properties and antiproliferative activity. J. Inorg. Biochem., 2012, 113, 47-54.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.04.001] [PMID: 22687494]
[8]
Cerecetto, H.; Gerpe, A.; González, M.; Arán, V.; de Ocáriz, C. Pharmacological properties of indazole derivatives: Recent developments. Mini Rev. Med. Chem., 2005, 5(10), 869-878.
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831]
[9]
Huang, S.; Li, R.; Connolly, P.J.; Emanuel, S.; Fuentes-Pesquera, A.; Adams, M.; Gruninger, R.H.; Seraj, J.; Middleton, S.A.; Davis, J.M.; Moffat, D.F.C. Synthesis and biological study of 2-amino-4-aryl-5-chloropyrimidine analogues as inhibitors of VEGFR-2 and cyclin dependent kinase 1 (CDK1). Bioorg. Med. Chem. Lett., 2007, 17(8), 2179-2183.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.086] [PMID: 17317182]
[10]
Bouissane, L.; El-Kazzoulli, S.; Léonce, S.; Pfeiffer, B.; Rakib, E.M.; Khouili, M.; Guillaumet, G. Synthesis and biological evaluation of N-(7-indazolyl)benzene-sulfonamide derivatives as potent cell cycle inhibitors. Bioorg. Med. Chem., 2006, 14, 1078-1088.
[http://dx.doi.org/10.1016/j.bmc.2005.09.037]
[11]
Hesketh, P.J.; Gandara, D.R. Serotonin antagonists: A new class of antiemetic agents. J. Natl. Cancer Inst., 1991, 83(9), 613-620.
[http://dx.doi.org/10.1093/jnci/83.9.613] [PMID: 1850806]
[12]
Pan, S.L.; Guh, J.H.; Peng, C.Y.; Wang, S.W.; Chang, Y.L.; Cheng, F.C.; Chang, J.H.; Kuo, S.C.; Lee, F.Y.; Teng, C.M. YC-1[3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo models. J. Pharmacol. Exp. Ther., 2005, 314(1), 35-42.
[http://dx.doi.org/10.1124/jpet.105.085126] [PMID: 15784655]
[13]
Daidone, G.; Raffa, D.; Maggio, B.; Valeria Raimondi, M.; Plescia, F.; Schillaci, D. Synthesis and antiproliferative activity of triazenoindazoles and triazenopyrazoles: A comparative study. Eur. J. Med. Chem., 2004, 39(3), 219-224.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.012] [PMID: 15051169]
[14]
Simoni, D.; Romagnoli, R.; Baruchello, R.; Rondanin, R.; Rizzi, M.; Pavani, M.G.; Alloatti, D.; Giannini, G.; Marcellini, M.; Riccioni, T.; Castorina, M.; Guglielmi, M.B.; Bucci, F.; Carminati, P.; Pisano, C. Novel combretastatin analogues endowed with antitumor activity. J. Med. Chem., 2006, 49(11), 3143-3152.
[http://dx.doi.org/10.1021/jm0510732] [PMID: 16722633]
[15]
Pinna, G.A.; Pirisi, M.A.; Mussinu, J.M.; Murineddu, G.; Loriga, G.; Pau, A.; Grella, G.E. Chromophore-modified bis-benzo[g]indole carboxamides: Synthesis and antiproliferative activity of bis-benzo[g]indazole-3-carboxamides and related dimers. Farmaco, 2003, 58(9), 749-763.
[http://dx.doi.org/10.1016/S0014-827X(03)00131-9] [PMID: 13679168]
[16]
Krapcho, A.P.; Haydar, S.N. Synthesis of regioisomeric 2,5‐bis‐substituted‐aza‐benzothiopyranoindazoles. J. Heterocycl. Chem., 2001, 38(5), 1153-1166.
[http://dx.doi.org/10.1002/jhet.5570380520]
[17]
Gaikwad, D.D.; Chapolikar, A.D.; Devkate, C.G.; Warad, K.D.; Tayade, A.P.; Pawar, R.P.; Domb, A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem., 2015, 90, 707-731.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[18]
Jones, P.; Altamura, S.; Boueres, J.; Ferrigno, F.; Fonsi, M.; Giomini, C.; Lamartina, S.; Monteagudo, E.; Ontoria, J.M.; Orsale, M.V.; Palumbi, M.C.; Pesci, S.; Roscilli, G.; Scarpelli, R.; Fademrecht, C.S.; Toniatti, C.; Rowley, M. Discovery of 2-{4-[(3S)-Piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): A novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem., 2009, 52, 7170-7185.
[http://dx.doi.org/10.1021/jm901188v] [PMID: 19873981]
[19]
Tiwari, A.; Tiwari, V.; Kumar, S.; Kumar, M.; Saharan, R.; Varma, N.; Sahoo, B.M.; Kaushik, D.; Sharma, R.K. Molecular docking and simulation analysis of cyclopeptides as anticancer agents. Curr. Drug Ther., 2023, 18(3), 247-261.
[http://dx.doi.org/10.2174/1574885518666230222113033]
[20]
Suresh Kumar, S.; Tiwari, A.; Tiwari, V.; Khokra, S.L.; Saharan, R.; Kumar, M.; Sharma, A.; Virmani, T.; Virmani, R.; Kumar, G.; Alhalmi, A. Synthesis, anticancer, and antimicrobial evaluation of integerrimide-A; BioMed. Res. Inter, 2023, p. 9289141.
[21]
Hummel, J.R.; Ellman, J.A. Cobalt(III)-catalyzed synthesis of indazoles and furans by C-H bond functionalization/addition/cyclization cascades. J. Am. Chem. Soc., 2015, 137(1), 490-498.
[http://dx.doi.org/10.1021/ja5116452] [PMID: 25494296]
[22]
Jeong, T.; Han, S.H.; Han, S.; Sharma, S.; Park, J.; Lee, J.S.; Kwak, J.H.; Jung, Y.H.; Kim, I.S. Access to 3-Acyl-(2 H)-indazoles via Rh(III)-Catalyzed C–H addition and cyclization of azobenzenes with α-keto aldehydes. Org. Lett., 2016, 18(2), 232-235.
[http://dx.doi.org/10.1021/acs.orglett.5b03368] [PMID: 26741169]
[23]
Rafique, R.; Saad, S.M. Arshia; Khan, K.M.; Perveen, S.; Taha, M. Facile CuCl2·2H2O catalyzed one-pot conversion of dimedone into highly functionalized indazole based N-arylhydrazinecarbothioamides. J. Saudi Chem. Soc., 2020, 24(1), 92-97.
[http://dx.doi.org/10.1016/j.jscs.2019.09.006]
[24]
Ohnmacht, S.A.; Culshaw, A.J.; Greaney, M.F. Direct arylations of 2H-indazoles on water. Org. Lett., 2010, 12(2), 224-226.
[http://dx.doi.org/10.1021/ol902537d] [PMID: 20014781]
[25]
Neogi, S.; Ghosh, A.K.; Majhi, K.; Samanta, S.; Kibriya, G.; Hajra, A. Organophotoredox-catalyzed direct C–H amination of 2 H -indazoles with amines. Org. Lett., 2020, 22(14), 5605-5609.
[http://dx.doi.org/10.1021/acs.orglett.0c01973] [PMID: 32578430]
[26]
Bogonda, G.; Kim, H.Y.; Oh, K. Direct acyl radical addition to 2H-indazoles using Ag-catalyzed decarboxylative cross-coupling of a-keto acids. Org. Lett., 2018, 20(9), 2711-2715.
[http://dx.doi.org/10.1021/acs.orglett.8b00920] [PMID: 29672060]
[27]
Singsardar, M.; Laru, S.; Mondal, S.; Hajra, A. Visible-light-induced regioselective cross-dehydrogenative coupling of 2 H -indazoles with ethers. J. Org. Chem., 2019, 84(7), 4543-4550.
[http://dx.doi.org/10.1021/acs.joc.9b00318] [PMID: 30875224]
[28]
Mahanty, K.; Maiti, D.; De Sarkar, S. Regioselective C–H sulfonylation of 2 H -indazoles by electrosynthesis. J. Org. Chem., 2020, 85(5), 3699-3708.
[http://dx.doi.org/10.1021/acs.joc.9b03330] [PMID: 32003566]
[29]
Murugan, A.; Gorantla, K.R.; Mallik, B.S.; Sharada, D.S. Iron promoted C3–H nitration of 2 H -indazole: direct access to 3-nitro-2 H -indazoles. Org. Biomol. Chem., 2018, 16(28), 5113-5118.
[http://dx.doi.org/10.1039/C8OB00931G] [PMID: 29978885]
[30]
Ghosh, P.; Mondal, S.; Hajra, A. Metal-free trifluoromethylation of indazoles. J. Org. Chem., 2018, 83(21), 13618-13623.
[http://dx.doi.org/10.1021/acs.joc.8b02312] [PMID: 30346165]
[31]
Dey, A.; Hajra, A. Potassium persulfate‐mediated thiocyanation of 2 H ‐indazole under iron‐catalysis. Adv. Synth. Catal., 2019, 361(4), 842-849.
[http://dx.doi.org/10.1002/adsc.201801232]
[32]
Mohareb, R.M.; Helal, M.E.; Mayhoub, A.E.; Abdallah, A.E. Multicomponent synthesis of pyrazolo[1,5-a]quinoline, thiazole and thiophene derivatives as cytotoxic agents. Bull. Chem. Soc. Ethiop., 2023, 37, 1251-1538.
[http://dx.doi.org/10.4314/bcse.v37i6.17]
[33]
Alwan, E.; Mohareb, R. Synthesis of biologically active chromene, coumarin, azole, azine and thiophene derivatives from 1,3-diketone. Organic Communications, 2021, 14(3), 163-227.
[http://dx.doi.org/10.25135/acg.oc.105.21.03.2027]
[34]
Istyastono, E.P. Synthesis of a potential angiogenesis inhibitor compound: 2-benzylidene cyclohexane-1,3-dione. Indonesian J. of Chem., 2009, 20, 18.
[35]
Mohareb, R.M.; Manhi, F.M.; Abdelwahab, A. Synthesis of heterocyclic compounds derived from dimedone and their anti-tumor and tyrosine kinase inhibitions. Acta Chim. Slov., 2020, 67(1), 83-95.
[http://dx.doi.org/10.17344/acsi.2019.5224] [PMID: 33558929]
[36]
Shaaban, M.A.; Kamel, M.M.; Milad, Y.R. Synthesis and cytotoxicity of heterocyclic compounds derived from cyclohexane-1,3-dione. OAlib, 2014, 1(9), 1-16.
[http://dx.doi.org/10.4236/oalib.1101115]
[37]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[38]
Rivera, D.G.; León, F.; Concepción, O.; Morales, F.E.; Wessjohann, L.A. A multiple multicomponent approach to chimeric peptide-peptoid podands. Chemistry, 2013, 19(20), 6417-6428.
[http://dx.doi.org/10.1002/chem.201201591] [PMID: 23512744]
[39]
Ugi, I.; Werner, B.; Dömling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules, 2003, 8(1), 53-66.
[http://dx.doi.org/10.3390/80100053]
[40]
Van Berkel, S.S.; Bögels, B.G.; Wijdeven, M.A.; Westermann, B.; Rutjes, F.P. Recent advances in asymmetric isocyanide-based multicomponent reactions. J. Org. Chem., 2012, 2012, 3543-3559.
[41]
Bonsignore, L.; Loy, G.; Secci, D.; Calignano, A. Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. Eur. J. Med. Chem., 1993, 28(6), 517-520.
[http://dx.doi.org/10.1016/0223-5234(93)90020-F]
[42]
Adbel Aziz Hafez, E.; Abdel Aziz Hafez, E.; Hilmy Elnagdi, M.; Ghani Ali Elagamey, A.; Mohamed Abdel Aziz El-Taweel, F. Nitriles in heterocyclic synthesis: Novel synthesis of benzo[c]coumarin and of Benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycles, 1987, 26(4), 903-907.
[http://dx.doi.org/10.3987/R-1987-04-0903]
[43]
Darbarwar, M.; Sundaramurthy, V. Synthesis of coumarins with 3:4-fused ringsystems and their physiological activity. Synthesis, 1982, 1982(5), 337-388.
[http://dx.doi.org/10.1055/s-1982-29806]
[44]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Wang, Y.; Zhao, J.; Jia, S.; Herich, J.; Labreque, D.; Storer, R.; Meerovitch, K.; Bouffard, D.; Rej, R.; Denis, R.; Blais, C.; Lamothe, S.; Attardo, G.; Gourdeau, H.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure-activity relationships of the 4-aryl group. J. Med. Chem., 2004, 47(25), 6299-6310.
[http://dx.doi.org/10.1021/jm049640t] [PMID: 15566300]
[45]
Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.; Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-met inhibitor: 1-(2-Hydroxy-2-methylpropyl)- N -(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1 H -pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51(13), 3688-3691.
[http://dx.doi.org/10.1021/jm800401t] [PMID: 18553959]
[46]
Peach, M.L.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R., Jr; Nicklaus, M.C.; Bottaro, D.P.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52(4), 943-951.
[http://dx.doi.org/10.1021/jm800791f] [PMID: 19199650]
[47]
De Bacco, F.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103(8), 645-661.
[http://dx.doi.org/10.1093/jnci/djr093] [PMID: 21464397]
[48]
El-Sharkawy, K.A.; Mohamed, A.A.; Al Farouk, F.O.; Mohareb, R.M. New approaches for the synthesis N-alkylated Benzo[b]thiophene derivatives together with their antiproliferative and molecular docking studies. Anticancer. Agents Med. Chem., 2023, 23(12), 1429-1446.
[http://dx.doi.org/10.2174/1871520623666230316103419] [PMID: 36927433]
[49]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[50]
Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67(3), 967-975.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3552] [PMID: 17283128]
[51]
Rubin, J.S.; Bottaro, D.P.; Aaronson, S.A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim. Biophys. Acta, 1993, 1155(3), 357-371.
[PMID: 8268192]
[52]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl)(Suppl), S7-S19.
[http://dx.doi.org/ 10.1177/1758834011422556] [PMID: 22128289]
[53]
Jeffers, M.; Rong, S.; Vande Woude, G.F.; Woude, V. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med., 1996, 74(9), 505-513.
[http://dx.doi.org/10.1007/BF00204976] [PMID: 8892055]
[54]
Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Vande Woude, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60(6), 1113-1117.
[http://dx.doi.org/10.1016/S0090-4295(02)01954-4] [PMID: 12475693]
[55]
Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol., 1995, 147(2), 386-396.
[PMID: 7639332]
[56]
Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855.
[http://dx.doi.org/10.1016/j.bmc.2013.04.013] [PMID: 23628470]
[57]
Garofalo, S.; Rosa, R.; Bianco, R.; Tortora, G. EGFR-targeting agents in oncology. Expert Opin. Ther. Pat., 2008, 18(8), 889-901.
[http://dx.doi.org/10.1517/13543776.18.8.889]
[58]
Al-Suwaidan, I.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; El-Sayed, M.A.A.; Alanazi, A.M.; El-Ashmawy, M.B.; Abdel-Aziz, A.A.M. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 679-687.
[http://dx.doi.org/10.3109/14756366.2014.960863] [PMID: 25472776]
[59]
Rathke, C.; Barckmann, B.; Burkhard, S.; Jayaramaiah-Raja, S.; Roote, J.; Renkawitz-Pohl, R. Distinct functions of Mst77F and protamines in nuclear shaping and chromatin condensation during Drosophila spermiogenesis. Eur. J. Cell Biol., 2010, 89(4), 326-338.
[http://dx.doi.org/10.1016/j.ejcb.2009.09.001] [PMID: 20138392]

© 2024 Bentham Science Publishers | Privacy Policy