Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Tabersonine Induces the Apoptosis of Human Hepatocellular Carcinoma In vitro and In vivo

Author(s): Xuan Li, Xudan Li, Lianghua Chen, Yuan Deng, Zhizhong Zheng and Yanlin Ming*

Volume 24, Issue 10, 2024

Published on: 07 March, 2024

Page: [764 - 772] Pages: 9

DOI: 10.2174/0118715206286612240303172230

open access plus

Open Access Journals Promotions 2
Abstract

Background: Tabersonine, a natural indole alkaloid derived from Apocynaceae plants, exhibits antiinflammatory and acetylcholinesterase inhibitory activities, among other pharmacological effects. However, its anti-tumor properties and the underlying molecular mechanisms remain underexplored.

Objective: The present study aims to investigate the anti-tumor effects of tabersonine and its mechanisms in inducing apoptosis in hepatocellular carcinoma.

Methods: The inhibitory effects of tabersonine on the viability and proliferation of liver cancer cells were evaluated using MTT assay and colony formation assay. AO/EB, Hoechst, and Annexin V-FITC/ PI staining techniques were employed to observe cell damage and apoptosis. JC-1 staining was used to detect changes in mitochondrial membrane potential. Western blot analysis was conducted to study the anti-tumor mechanism of tabersonine on liver cancer cells. Additionally, a xenograft model using mice hepatoma HepG2 cells was established to assess the anti-tumor potency of tabersonine in vivo.

Results and Discussion: Our findings revealed that tabersonine significantly inhibited cell viability and proliferation, inducing apoptosis in liver cancer cells. Treatment with tabersonine inhibited Akt phosphorylation, reduced mitochondrial membrane potential, promoted cytochrome c release from mitochondria to the cytoplasm, and increased the ratio of Bax to Bcl-2. These findings suggested that tabersonine induces apoptosis in liver cancer cells through the mitochondrial pathway. Furthermore, tabersonine treatment activated the death receptor pathway of apoptosis. In vivo studies demonstrated that tabersonine significantly inhibited xenograft tumor growth.

Conclusion: Our study is the first to demonstrate that tabersonine induces apoptosis in HepG2 cells through both mitochondrial and death receptor apoptotic pathways, suggesting its potential as a therapeutic agent candidate for hepatic cancer.

Keywords: Tabesonine, anti-tumor, hepatocellular carcinoma, apoptosis, mitochondrial pathway, death receptor apoptotic pathway.

Graphical Abstract
[1]
El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med., 2011, 365(12), 1118-1127.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[2]
Miamen, A.G.; Dong, H.; Roberts, L.R. Immunotherapeutic approaches to hepatocellular carcinoma treatment. Liver Cancer, 2012, 1(3-4), 226-237.
[http://dx.doi.org/10.1159/000343837] [PMID: 24159587]
[3]
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
[http://dx.doi.org/10.1053/j.gastro.2007.04.061] [PMID: 17570226]
[4]
Zhong, C.; Li, Y.; Yang, J.; Jin, S.; Chen, G.; Li, D.; Fan, X.; Lin, H. Immunotherapy for hepatocellular carcinoma: Current limits and prospects. Front. Oncol., 2021, 11, 589680.
[http://dx.doi.org/10.3389/fonc.2021.589680] [PMID: 33854960]
[5]
Kumari, R.; Sharma, A.; Ajay, A.K.; Bhat, M.K. Mitomycin C induces bystander killing in homogeneous and heterogeneous hepatoma cellular models. Mol. Cancer, 2009, 8(1), 87-87.
[http://dx.doi.org/10.1186/1476-4598-8-87] [PMID: 19845939]
[6]
Tu, Y.; Zhu, S.; Wang, J.; Burstein, E.; Jia, D. Natural compounds in the chemoprevention of alcoholic liver disease. Phytother. Res., 2019, 33(9), 2192-2212.
[http://dx.doi.org/10.1002/ptr.6410] [PMID: 31264302]
[7]
Kai, T.; Zhang, L.; Wang, X.; Jing, A.; Zhao, B.; Yu, X.; Zheng, J.; Zhou, F. Tabersonine inhibits amyloid fibril formation and cytotoxicity of Aβ(1-42). ACS Chem. Neurosci., 2015, 6(6), 879-888.
[http://dx.doi.org/10.1021/acschemneuro.5b00015] [PMID: 25874995]
[8]
Morin, H.; Le Men, J.; Pourrat, H. Pharmacodynamic study of tabersonine, an alkaloid extracted from the seeds of Amsonia tabernaemontana Walt. (Apocyanaceae). Ann. Pharm. Fr., 1955, 13(2), 123-126.
[PMID: 14377161]
[9]
Qu, Y.; Safonova, O.; De Luca, V. Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus. Plant J., 2019, 97(2), 257-266.
[http://dx.doi.org/10.1111/tpj.14111] [PMID: 30256480]
[10]
Dai, C.; Luo, W.; Chen, Y.; Shen, S.; Wang, Z.; Chen, R.; Wang, J.; Chattipakorn, N.; Huang, W.; Liang, G. Tabersonine attenuates Angiotensin II-induced cardiac remodeling and dysfunction through targeting TAK1 and inhibiting TAK1-mediated cardiac inflammation. Phytomedicine, 2022, 103, 154238.
[http://dx.doi.org/10.1016/j.phymed.2022.154238] [PMID: 35696800]
[11]
Zhang, D.; Li, X.; Hu, Y.; Jiang, H.; Wu, Y.; Ding, Y.; Yu, K.; He, H.; Xu, J.; Sun, L.; Qian, F. Tabersonine attenuates lipopolysaccharide-induced acute lung injury via suppressing TRAF6 ubiquitination. Biochem. Pharmacol., 2018, 154, 183-192.
[http://dx.doi.org/10.1016/j.bcp.2018.05.004] [PMID: 29746822]
[12]
Zhao, Q.; Zhu, W.T.; Ding, X.; Huo, Z.Q.; Donkor, P.O.; Adelakun, T.A.; Hao, X.J.; Zhang, Y. Voacafrines A-N, aspidosperma-type monoterpenoid indole alkaloids from Voacanga africana with AChE inhibitory activity. Phytochemistry, 2021, 181, 112566.
[http://dx.doi.org/10.1016/j.phytochem.2020.112566] [PMID: 33197743]
[13]
Shi, S.; Song, L.; Liu, Y.; He, Y. Activation of CREB protein with tabersonine attenuates STAT3 during atherosclerosis in apolipoprotein E-deficient mice. Dose Response, 2020, 18(1), 1559325820912067.
[http://dx.doi.org/10.1177/1559325820912067] [PMID: 32231468]
[14]
Sun, X.; Gan, L.; Li, N.; Sun, S.; Li, N. Tabersonine ameliorates osteoblast apoptosis in rats with dexamethasone-induced osteoporosis by regulating the Nrf2/ROS/Bax signalling pathway. AMB Express, 2020, 10(1), 165.
[http://dx.doi.org/10.1186/s13568-020-01098-0] [PMID: 32915329]
[15]
Chuan, Y.; Wang, Y.; Jin, X.; Ming, S.; Bing, W.; Kai, W.; Xiang, C.; Kun, P. Activation of CREB-binding protein ameliorates spinal cord injury in tabersonine treatment by suppressing NLRP3/Notch signaling. Arch. Med. Sci., 2019, 19(3), 736-743.
[http://dx.doi.org/10.5114/aoms.2019.89203] [PMID: 37313210]
[16]
Qu, Y.; Easson, M.L.A.E.; Froese, J.; Simionescu, R.; Hudlicky, T.; De Luca, V. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc. Natl. Acad. Sci. USA, 2015, 112(19), 6224-6229.
[http://dx.doi.org/10.1073/pnas.1501821112] [PMID: 25918424]
[17]
Li, X.; Deng, Y.; Kang, L.; Chen, L.; Zheng, Z.; Huang, W.; Xu, C.; Kai, G.; Lin, D.; Tong, Q.; Lin, Y.; Ming, Y. Cytotoxic active ingredients from the seeds of Voacanga africana. S. Afr. J. Bot., 2021, 137, 311-319.
[http://dx.doi.org/10.1016/j.sajb.2020.10.028]
[18]
Ho, C.M.; Ho, S.L.; Shun, C.T.; Lee, P.H.; Chen, Y.H.; Chien, C.S.; Chen, H.L.; Hu, R.H. Histopathological evidence for the existence of primary liver progenitor cell cancer: Insight from cancer stem cell pathobiology. Discov. Med., 2017, 23(124), 41-50.
[PMID: 28245426]
[19]
Liu, C.Y.; Chen, K.F.; Chen, P.J. Treatment of liver cancer. Cold Spring Harb. Perspect. Med., 2015, 5(9), a021535.
[http://dx.doi.org/10.1101/cshperspect.a021535] [PMID: 26187874]
[20]
Rawat, D.; Shrivastava, S.; Naik, R.A.; Chhonker, S.K.; Mehrotra, A.; Koiri, R.K. An overview of natural plant products in the treatment of hepatocellular carcinoma. Anticancer. Agents Med. Chem., 2019, 18(13), 1838-1859.
[http://dx.doi.org/10.2174/1871520618666180604085612] [PMID: 29866017]
[21]
Liu, J.; He, Y.; Zhang, D.; Cai, Y.; Zhang, C.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol. Med. Rep., 2017, 16(3), 2595-2603.
[http://dx.doi.org/10.3892/mmr.2017.6879] [PMID: 28677760]
[22]
Warren, C.F.A.; Wong-Brown, M.W.; Bowden, N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis., 2019, 10(3), 177.
[http://dx.doi.org/10.1038/s41419-019-1407-6] [PMID: 30792387]
[23]
Ehrenschwender, M.; Wajant, H. The role of FasL and Fas in health and disease. Adv. Exp. Med. Biol., 2009, 647(647), 64-93.
[http://dx.doi.org/10.1007/978-0-387-89520-8_5] [PMID: 19760067]
[24]
Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res., 2000, 256(1), 42-49.
[http://dx.doi.org/10.1006/excr.2000.4838] [PMID: 10739650]
[25]
Hsieh, C.C.; Kuo, Y.H.; Kuo, C.C.; Chen, L.T.; Cheung, C.H.A.; Chao, T.Y.; Lin, C.H.; Pan, W.Y.; Chang, C.Y.; Chien, S.C.; Chen, T.W.; Lung, C.C.; Chang, J.Y.; Chamaecypanone, C. A novel skeleton microtubule inhibitor, with anticancer activity by trigger caspase 8-Fas/FasL dependent apoptotic pathway in human cancer cells. Biochem. Pharmacol., 2010, 79(9), 1261-1271.
[http://dx.doi.org/10.1016/j.bcp.2009.12.017] [PMID: 20034474]
[26]
Henning, R.J.; Bourgeois, M.; Harbison, R.D. Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: Mechanisms of action and role in cardiovascular disorders. Cardiovasc. Toxicol., 2018, 18(6), 493-506.
[http://dx.doi.org/10.1007/s12012-018-9462-2] [PMID: 29968072]
[27]
Chang, F.; Lee, J.T. Navolanic, PM Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia, 2003, 17(3), 590-603.
[28]
Osaki, M.; Kase, S.; Adachi, K.; Takeda, A.; Hashimoto, K.; Ito, H. Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-mediated apoptosis in human gastric carcinoma cell line, MKN-45. J. Cancer Res. Clin. Oncol., 2004, 130(1), 8-14.
[http://dx.doi.org/10.1007/s00432-003-0505-z] [PMID: 14605879]

© 2024 Bentham Science Publishers | Privacy Policy