Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Terpenoid Components from Branches and Leaves of Aglaia lawii and their Biological Properties

Author(s): Zhi-Xuan Li, Dan-Yu Huang, Yang Li, Yan-Ying Xian, Hao Zheng, Yun-Cai Tian, Yong Tian, Wen-Huan Zhang, Li-Gen Lin* and Li-She Gan*

Volume 14, Issue 9, 2024

Published on: 06 March, 2024

Article ID: e060324227744 Pages: 9

DOI: 10.2174/0122103155287599240226061517

Price: $65

Abstract

Introduction: Phytochemical investigation on the twigs and leaves of Aglaia lawii (Wight) C. J. Saldanha led to the isolation and characterization of sixteen compounds, including five sesquiterpenoids (1-5), one terpenoidal macrolide (6), seven phenolic compounds (7-13), two triterpenoids (14-15), and one steroid (16).

Method: Their structures were identified by spectroscopic analyses and comparison with the literature data. Eight out of the sixteen compounds were discovered from the genus Aglaia for the first time.

Result: The sesquiterpenoids (1-5) may serve as important chemotaxonomic markers. In vitro, bioassays on the anti-inflammatory and anti-diabetic activities of compounds 1‒6 were accomplished.

Conclusion: Ozoroalide (6) could significantly inhibit LPS-stimulated NO production in RAW264.7 macrophages at 40 μM and caryolane-1,9β-diol (5) could largely increase the glucose uptake capacity of C2C12 cells under insulin stimulation.

Keywords: Aglaia lawii, terpenoids, chemotaxonomic markers, anti-inflammatory, anti-diabetic, insulin.

Graphical Abstract
[1]
Hua, P.; Pannell, C.M. Flora of China., 2008, 11, 121-124.
[2]
Zhang, L.; Zhang, J.H.; Yang, S.M.; Tan, C.H.; Luo, H.F.; Zhu, D.Y. Chemical constituents from the leaves of Aglaia perviridis. J. Asian Nat. Prod. Res., 2010, 12(3), 215-219.
[http://dx.doi.org/10.1080/10286020903565226] [PMID: 20390768]
[3]
Dumontet, V.; Thoison, O.; Omobuwajo, R.; Martin, M.T.; Perromat, G.; Chiaroni, A.; Riche, C.; Pais, M.; Sevenet, T. New nitrogenous and aromatic derivatives from Aglaia argentea and A. forbessi. Tetrahedron, 1996, 52(20), 6931-6942.
[http://dx.doi.org/10.1016/0040-4020(96)00322-5]
[4]
Wu, T.S.; Liou, M.J.; Kuoh, C.S.; Teng, C.M.; Nagao, T.; Lee, K.H. Cytotoxic and antiplatelet aggregation principles from Aglaia elliptifolia. J. Nat. Prod., 1997, 60(6), 606-608.
[http://dx.doi.org/10.1021/np970163+] [PMID: 9214732]
[5]
Kim, S.; Chin, Y.W.; Su, B.N.; Riswan, S.; Kardono, L.B.S.; Afriastini, J.J.; Chai, H.; Farnsworth, N.R.; Cordell, G.A.; Swanson, S.M.; Kinghorn, A.D. Cytotoxic flavaglines and bisamides from Aglaia edulis. J. Nat. Prod., 2006, 69(12), 1769-1775. [a].
[http://dx.doi.org/10.1021/np060428x] [PMID: 17190457]
[6]
Harneti, D.; Supratman, U. Phytochemistry and biological activities of Aglaia species. Phytochemistry, 2021, 181, 112540.
[http://dx.doi.org/10.1016/j.phytochem.2020.112540] [PMID: 33130371]
[7]
Huang, P.Q.; Deng, J.W.; Li, Y.; Liao, Z-B.; Zhao, E.; Tian, Y-C.; Tu, Y-D.; Li, D-L.; Jin, J-W.; Zhou, C-X.; Wu, R-H.; Gan, L-S. Terpenoids from the twigs and leaves of Aglaia elaeagnoidea and their chemotaxonomic significance. Biochem. Syst. Ecol., 2022, 103, 104427.
[http://dx.doi.org/10.1016/j.bse.2022.104427]
[8]
Xia, M.J.; Zhang, M.; Li, S.W.; Cai, Z.F.; Zhao, T.S.; Liu, A.H.; Luo, J.; Zhang, H.Y.; Li, J.; Guo, Y.W.; Wang, B.; Mao, S.C. Anti-inflammatory and PTP1B inhibitory sesquiterpenoids from the twigs and leaves of Aglaia lawii. Fitoterapia, 2022, 162, 105260.
[http://dx.doi.org/10.1016/j.fitote.2022.105260] [PMID: 35931289]
[9]
Yodsaoue, O.; Sonprasit, J.; Karalai, C.; Ponglimanont, C.; Tewtrakul, S.; Chantrapromma, S. Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata. Phytochemistry, 2012, 76, 83-91.
[http://dx.doi.org/10.1016/j.phytochem.2012.01.015] [PMID: 22321385]
[10]
Pointinger, S.; Promdang, S.; Vajrodaya, S.; Pannell, C.M.; Hofer, O.; Mereiter, K.; Greger, H. Silvaglins and related 2,3-secodammarane derivatives – unusual types of triterpenes from Aglaia silvestris. Phytochemistry, 2008, 69(15), 2696-2703.
[http://dx.doi.org/10.1016/j.phytochem.2008.08.025] [PMID: 18930298]
[11]
Ma, Y.Y.; Zhao, D.G.; Li, Y.; Chen, J.J.; Zeng, J.; Zhao, Q.Q.; Gao, K. Cytotoxic triterpenes with diverse skeletons from Amoora tsangii. Phytochem. Lett., 2016, 15, 251-255.
[http://dx.doi.org/10.1016/j.phytol.2016.02.003]
[12]
Mohamad, K.; Sévenet, T.; Dumontet, V.; Pais, M.; Vantri, M.; Hadi, H.; Awang, K.; Martin, M. Dammarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa. Phytochemistry, 1999, 51(8), 1031-1037.
[http://dx.doi.org/10.1016/S0031-9422(99)00053-9]
[13]
Zhang, F.; Zhu, Y.; Li, Q.; Cen, J. Four new pregnane steroids from Aglaia abbreviata and their cytotoxic activities. Helv. Chim. Acta, 2016, 99(1), 73-77.
[http://dx.doi.org/10.1002/hlca.201500228]
[14]
Li, J.F.; Ji, K.L.; Sun, P.; Cai, Q.; Zheng, X.L.; Xiao, Y.D.; Cao, D.H.; Xiao, C.F.; Zhang, Z.Y.; Li, X.N.; Hu, H.B.; Yu, Z.Y.; Xu, Y.K. Structurally diverse steroids with nitric oxide inhibitory activities from Aglaia lawii leaves. Phytochemistry, 2021, 183, 112651.
[http://dx.doi.org/10.1016/j.phytochem.2020.112651] [PMID: 33418167]
[15]
Inada, A.; Shono, K.; Murata, H.; Inatomi, Y.; Darnaedi, D.; Nakanishi, T. Three putrescine bisamides from the leaves of Aglaia grandis. Phytochemistry, 2000, 53(8), 1091-1095.
[http://dx.doi.org/10.1016/S0031-9422(99)00519-1] [PMID: 10820837]
[16]
Cen, J.; Zheng, B.; Bai, R.; Zhang, L.; Zhang, F.; Zhang, X. Triterpenoids from Aglaia abbreviata exert cytotoxicity and multidrug resistant reversal effect in MCF-7/ADM cells via reactive oxygen species induction and P-glycoprotein inhibition. Oncotarget, 2017, 8(41), 69465-69476.
[http://dx.doi.org/10.18632/oncotarget.17287] [PMID: 29050217]
[17]
Ngo, N.T.N.; Lai, N.T.D.D.T.; Le, H.C.; Nguyen, L.T.T.; Trinh, B.T.D.; Nguyen, H.D.; Pham, P.D.; Dang, S.V.; Nguyen, L.H.D. Chemical constituents of Aglaia elaeagnoidea and Aglaia odorata and their cytotoxicity. Nat. Prod. Res., 2022, 36(6), 1494-1502.
[http://dx.doi.org/10.1080/14786419.2021.1893723] [PMID: 33703953]
[18]
Priya, R.; Sowmiya, P.; Muthuraman, M.S. An overview on the biological perspectives of Aglaia species. Asian J. Pharm. Clin. Res., 2018, 11, 1-4.
[19]
Proksch, P.; Edrada, R.; Ebel, R.; Bohnenstengel, F.; Nugroho, B. Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae). Curr. Org. Chem., 2001, 5(9), 923-938.
[http://dx.doi.org/10.2174/1385272013375049]
[20]
Chen, S.K.; Li, H.; Chen, B.Y. Flora of China. Science Press., 1997, 43, 69-74.
[21]
Chen, H.D.; Yang, S.P.; Liao, S.G.; Zhang, B.; Wu, Y.; Yue, J.M. Limonoids and sesquiterpenoids from Amoora tsangii. J. Nat. Prod., 2008, 71(1), 93-97.
[http://dx.doi.org/10.1021/np070476x] [PMID: 18078326]
[22]
Yang, S.M.; Wu, D.G.; Liu, X.K. Anticancer activity of diterpenoids from Amoora ouangliensis and Amoora stellato-squamosa. Z. Naturforsch. C J. Biosci., 2010, 65(1-2), 39-42.
[http://dx.doi.org/10.1515/znc-2010-1-207] [PMID: 20355319]
[23]
Qiu, S.X.; van Hung, N.; Xuan, L.T.; Gu, J.Q.; Lobkovsky, E.; Khanh, T.C.; Soejarto, D.D.; Clardy, J.; Pezzuto, J.M.; Dong, Y.; Tri, M.V.; Huong, L.M.; Fong, H.H.S. A pregnane steroid from Aglaia lawii and structure confirmation of cabraleadiol monoacetate by X-ray crystallography. Phytochemistry, 2001, 56(7), 775-780.
[http://dx.doi.org/10.1016/S0031-9422(00)00463-5] [PMID: 11314967]
[24]
Luo, X.D.; Wu, S.H.; Ma, Y.B.; Wu, D.G. Dammarane triterpenoids from Amoora yunnanensis. Heterocycles, 2000, 53(12), 2795-2795.
[http://dx.doi.org/10.3987/COM-00-9045]
[25]
Luo, X.D.; Wu, S.H.; Ma, Y.B.; Wu, D.G. The chemical constituents of Amoora yunnanensis. J. Integr. Plant Biol., 2001, 43, 426-430.
[26]
Mi, C.N.; Mei, W.L.; Zuo, W.J.; Cai, C.H.; Wang, H.; Li, S.P.; Dai, H.F. Chemical constituents from Amoora tetrapetala. Nat. Prod. Res. Dev., 2015, 27, 562-566.
[27]
Zhu, G.Y.; Chen, G.; Liu, L.; Bai, L.P.; Jiang, Z.H. C-17 lactam-bearing limonoids from the twigs and leaves of Amoora tsangii. J. Nat. Prod., 2014, 77(4), 983-989.
[http://dx.doi.org/10.1021/np401089h] [PMID: 24621263]
[28]
Feng, Z.L.; Zhang, L.L.; Zheng, Y.D.; Liu, Q.Y.; Liu, J.X.; Feng, L.; Huang, L.; Zhang, Q.W.; Lu, J.J.; Lin, L.G. Norditerpenoids and dinorditerpenoids from the seeds of Podocarpus nagi as cytotoxic agents and autophagy inducers. J. Nat. Prod., 2017, 80(7), 2110-2117.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00347] [PMID: 28719204]
[29]
Xu, F.; Zhang, L.; Zhou, C.; Mo, J.; Shen, S.; Zhang, T.; Li, J.; Lin, L.; Wu, R.; Gan, L. Alkyl-benzofuran dimers from Eupatorium Chinense with insulin-sensitizing and anti-inflammatory activities. Bioorg. Chem., 2021, 113, 105030.
[http://dx.doi.org/10.1016/j.bioorg.2021.105030] [PMID: 34089946]
[30]
Shen, S.; Liao, Q.; Feng, Y.; Liu, J.; Pan, R.; Lee, S.M.Y.; Lin, L. Myricanol mitigates lipid accumulation in 3T3-L1 adipocytes and high fat diet-fed zebrafish via activating AMP-activated protein kinase. Food Chem., 2019, 270, 305-314.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.117] [PMID: 30174051]
[31]
Klochkov, S.G.; Afanaséva, S.V.; Pushin, A.N. Acidic isomerization of alantolactone derivatives. Chem. Nat. Compd., 2006, 42(4), 400-406.
[http://dx.doi.org/10.1007/s10600-006-0166-7]
[32]
Chacón-Morales, P.A.; Dugarte, C.S.; Amaro-Luis, J.M. Helenin from Stevia lucida. The first report of this natural eudesmanolide mixture in Eupatorieae tribe. Nat. Prod. Res., 2021, 35(21), 4139-4142.
[http://dx.doi.org/10.1080/14786419.2020.1739677] [PMID: 32189507]
[33]
Brown, G.D.; Liang, G.Y.; Sy, L.K. Terpenoids from the seeds of Artemisia annua. Phytochemistry, 2003, 64(1), 303-323.
[http://dx.doi.org/10.1016/S0031-9422(03)00294-2] [PMID: 12946429]
[34]
Li, X.S.; Zhou, X.J.; Zhang, X.J.; Su, J.; Li, X.J.; Yan, Y.M.; Zheng, Y.T.; Li, Y.; Yang, L.M.; Cheng, Y.X. Sesquiterpene and norsesquiterpene derivatives from Sanicula lamelligera and their biological evaluation. J. Nat. Prod., 2011, 74(6), 1521-1525.
[http://dx.doi.org/10.1021/np200146x] [PMID: 21561060]
[35]
Fukuyama, Y.; Otoshi, Y.; Miyoshi, K.; Nakamura, K.; Kodama, M.; Nagasawa, M.; Hasegawa, T.; Okazaki, H.; Sugawara, M. Neurotrophic sesquiterpene-neolignans from Magnolia obovata: Structure and neurotrophic activity. Tetrahedron, 1992, 48(3), 377-392.
[http://dx.doi.org/10.1016/S0040-4020(01)89002-5]
[36]
Abreu, P.J.M.; Liu, Y. Ozoroalide, a new macrolide from Ozoroa insignis. Fitoterapia, 2007, 78(5), 388-389.
[http://dx.doi.org/10.1016/j.fitote.2007.04.001] [PMID: 17553631]
[37]
Kicel, A.; Wolbis, M. Coumarins from the flowers of Trifolium repens. Chem. Nat. Compd., 2012, 48(1), 130-132.
[http://dx.doi.org/10.1007/s10600-012-0179-3]
[38]
Rahman, M.M.; Sarker, S.D.; Byres, M.; Gray, A.I. New salicylic acid and isoflavone derivatives from Flemingia paniculata. J. Nat. Prod., 2004, 67(3), 402-406.
[http://dx.doi.org/10.1021/np0206108] [PMID: 15043418]
[39]
Dong, M.; Liu, D.; Li, H.; Yan, S.; Li, R.; Chen, X. Chemical compounds from Swertia bimaculata. Chem. Nat. Compd., 2018, 54(5), 964-969.
[http://dx.doi.org/10.1007/s10600-018-2523-8]
[40]
Balha, M.; Pan, S.C. Organocatalytic asymmetric synthesis of bridged acetals with spirooxindole skeleton. J. Org. Chem., 2018, 83(23), 14703-14712.
[http://dx.doi.org/10.1021/acs.joc.8b02156] [PMID: 30372074]
[41]
Morikawa, T.; Tao, J.; Ueda, K.; Matsuda, H.; Yoshikawa, M. Medicinal foodstuffs. XXXI. Structures of new aromatic constituents and inhibitors of degranulation in RBL-2H3 cells from a Japanese folk medicine, the stem bark of Acer nikoense. Chem. Pharm. Bull., 2003, 51(1), 62-67.
[http://dx.doi.org/10.1248/cpb.51.62] [PMID: 12520130]
[42]
Hamid, A.A.; Aiyelaagbe, O.O.; Negi, A.S.; Luqman, S.; Kaneez, F. Bioguided isolation and antiproliferative activity of constituents from Smilax korthalsii A.D.C. leaves. J. Chin. Chem. Soc., 2016, 63(7), 562-571.
[http://dx.doi.org/10.1002/jccs.201500395]
[43]
Singh, Y.; Aalbersberg, W. Dammarane triterpenoids from dysoxylum richii. Phytochemistry, 1992, 31(11), 4033-4035.
[http://dx.doi.org/10.1016/S0031-9422(00)97581-2]
[44]
Li, T.; Wang, Y.; Sun, X.; Huang, Z.; Wang, X.; Pan, C. Chemical constituents of the fruits of alpinia oxyphylla. Chem. Nat. Compd., 2021, 57(5), 949-953.
[http://dx.doi.org/10.1007/s10600-021-03520-w]
[45]
Kurniasih, N.; Milawati, H.; Fajar, M.; Hidayat, A.T.; Abdulah, R.; Harneti, D.; Supratman, U.; Azmi, M.N. Sesquiterpenoid compounds from the stembark of Aglaia minahassae(meliaceae). Molekul, 2018, 13(1), 56-62.
[http://dx.doi.org/10.20884/1.jm.2018.13.1.410]
[46]
Harneti, D.; Permatasari, A.A.; Anisshabira, A.; Naini, A.A. Sesquiterpenoids from the stem bark of Aglaia grandis. Nat. Prod. Sci., 2022, 28, 6-12.
[47]
Milawati, H.; Harneti, D.; Maharani, R.; Nurlelasari, N.; Hidayat, A.T.; Azmi, M.N.; Shiono, Y.; Supratman, U. Caryophyllene-type sesquiterpenoids from the stembark of Aglalia harmsiana and their cytotoxic activity against MCF-7 breast cancer cells. Molekul, 2019, 14(2), 126.
[http://dx.doi.org/10.20884/1.jm.2019.14.2.543]
[48]
Izdihar, G.; Naini, A.A.; Harneti, D.; Maharani, R.; Nurlelasari, N.; Mayanti, T.; Safari, A.; Farabi, K.; Supratman, U.; Azmi, M.N.; Shiono, Y. Sesquiterpenoids from the stem bark of Aglaia simplicifolia and their cytotoxic activity against B16-F10 melanoma skin cancer cell. Indian J. Chem., 2021, 21(6), 1560-1567.
[http://dx.doi.org/10.22146/ijc.68383]
[49]
Yang, S.H.; Zeng, S.Y.; Zheng, L.S. Insecticidal active constituents from twig of Aglaia odoratar. Chin. Tradit. Herbal Drugs, 2004, 35, 1207-1211.
[50]
Yang, X.; Yu, Y.; Wu, P.; Liu, J.; Li, Y.; Tao, L.; Tan, R.; Hao, X.; Yuan, C.; Yi, P. Phenolic and bisamide derivatives from Aglaia odorata and their biological activities. Nat. Prod. Res., 2022, 1-12.
[http://dx.doi.org/10.1080/14786419.2022.2135001] [PMID: 36580570]
[51]
Joycharat, N.; Thammavong, S.; Voravuthikunchai, S.P.; Plodpai, P.; Mitsuwan, W.; Limsuwan, S.; Subhadhirasakul, S. Chemical constituents and antimicrobial properties of the essential oil and ethanol extract from the stem of Aglaia odorata Lour. Nat. Prod. Res., 2014, 28(23), 2169-2172.
[http://dx.doi.org/10.1080/14786419.2014.924934] [PMID: 24934340]
[52]
Phongmaykin, J.; Kumamoto, T.; Ishikawa, T.; Saifah, E.; Suttisri, R. Biologically active constituents of Aglaia erythrosperma. Nat. Prod. Res., 2011, 25(17), 1621-1628.
[http://dx.doi.org/10.1080/14786419.2010.508038] [PMID: 22011221]
[53]
Weber, S.; Puripattanavong, J.; Brecht, V.; Frahm, A.W. Phytochemical investigation of Aglaia rubiginosa. J. Nat. Prod., 2000, 63(5), 636-642.
[http://dx.doi.org/10.1021/np9905923] [PMID: 10843575]
[54]
Hwang, B.Y.; Su, B.N.; Chai, H.; Mi, Q.; Kardono, L.B.S.; Afriastini, J.J.; Riswan, S.; Santarsiero, B.D.; Mesecar, A.D.; Wild, R.; Fairchild, C.R.; Vite, G.D.; Rose, W.C.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Swanson, S.M.; Kinghorn, A.D. Silvestrol and episilvestrol, potential anticancer rocaglate derivatives from Aglaia silvestris. J. Org. Chem., 2004, 69(10), 3350-3358.
[http://dx.doi.org/10.1021/jo040120f] [PMID: 15132542]
[55]
Ohse, T.; Ohba, S.; Yamamoto, T.; Koyano, T.; Umezawa, K. Cyclopentabenzofuran lignan protein synthesis inhibitors from Aglaia odorata. J. Nat. Prod., 1996, 59(7), 650-652.
[http://dx.doi.org/10.1021/np960346g] [PMID: 8759160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy