Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

A Linear and Nonlinear QSAR Analysis of Benzimidazole Derivative XY123 in Prostate Cancer Treatment

Author(s): Bing Li and Xiaoqiang Liu*

Volume 21, Issue 16, 2024

Published on: 06 March, 2024

Page: [3577 - 3589] Pages: 13

DOI: 10.2174/0115701808291381240226094729

Price: $65

Abstract

Background: Metastatic Castration-resistant Prostate Cancer (mCRPC) represents a critical challenge in current prostate cancer treatment. Benzimidazole Derivative XY123 has emerged as a novel inhibitor for its treatment.

Objective: This study aims to establish a robust Quantitative Structure-Activity Relationship (QSAR) model for predicting the activity of Benzimidazole Derivative XY123 derivatives, aiding the development of novel anti-prostate cancer drugs.

Methods: Utilizing CODESSA software, descriptors were computed based on various moieties of Benzimidazole Derivative XY123 derivatives. Multiple linear regression models were constructed, and both linear and nonlinear QSAR models were developed using heuristics and gene expression programming.

Results: The linear model with two descriptors demonstrated the best predictive capacity for inhibitor activity, while the nonlinear model generated through Gene Expression Programming (GEP) exhibited correlation coefficients of 0.83 and 0.82 for the training and test sets, respectively. The average errors were 0.03 and 0.05, indicating the stability and the improved predictive ability of the nonlinear model.

Conclusion: The QSAR linear model has an advantage over the nonlinear model in optimizing Benzimidazole Derivative XY123, providing a direction for the development of effective drugs for mCRPC treatment.

Keywords: Metastatic castration-resistant prostate cancer, benzimidazole derivative XY123, quantitative structure-activity relationship, heuristics, gene expression programming, IC50.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Hettle, R.; Mihai, A.; Lang, S.H.; Tatman, S.; Swift, S.L. Real-world outcomes for first line next-generation hormonal agents in metastatic prostate cancer: A systematic review. Future Oncol., 2023, 19(36), 2425-2443.
[http://dx.doi.org/10.2217/fon-2023-0377] [PMID: 37681288]
[3]
Hendrix, L.N.; Hamilton, D.A., Jr; Kyprianou, N. Emerging therapeutics targeting castration-resistant prostate cancer: The ARmageddon of tumor epithelial–mesenchymal transition. Expert Rev. Endocrinol. Metab., 2013, 8(4), 403-416.
[http://dx.doi.org/10.1586/17446651.2013.811914] [PMID: 30736155]
[4]
Storås, A.H.; Tsuruda, K.; Fosså, S.D.; Andreassen, B.K. Time trends in systemic treatment for patients with metastatic prostate cancer: A national cohort study. Acta Oncol., 2023, 62(12), 1716-1722.
[http://dx.doi.org/10.1080/0284186X.2023.2257876] [PMID: 37725527]
[5]
Saleem, S.; Rashid, A.B.; Shehzadi, S.; Mumtaz, H.; Saqib, M.; Bseiso, A.; Villasenor, A.V.; Ahmed, A.; Sonia, S.N. Contemporaneous and upcoming trends in immunotherapy for prostate cancer review. Ann. Med. Surg., 2023, 85(8), 4005-4014.
[http://dx.doi.org/10.1097/MS9.0000000000001070] [PMID: 37554896]
[6]
Varaprasad, G.L.; Gupta, V.K.; Prasad, K.; Kim, E.; Tej, M.B.; Mohanty, P.; Verma, H.K.; Raju, G.S.R.; Bhaskar, L.V.K.S.; Huh, Y.S. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp. Hematol. Oncol., 2023, 12(1), 80.
[http://dx.doi.org/10.1186/s40164-023-00444-9] [PMID: 37740236]
[7]
Lin, C.; Chen, Y.; Shi, L.; Lin, H.; Xia, H.; Yin, W. Advances in bio-immunotherapy for castration-resistant prostate cancer. J. Cancer Res. Clin. Oncol., 2023, 149(14), 13451-13458.
[http://dx.doi.org/10.1007/s00432-023-05152-9] [PMID: 37460807]
[8]
Gebrael, G.; Fortuna, G.G.; Sayegh, N.; Swami, U.; Agarwal, N. Advances in the treatment of metastatic prostate cancer. Trends Cancer, 2023, 9(10), 840-854.
[http://dx.doi.org/10.1016/j.trecan.2023.06.009] [PMID: 37442702]
[9]
Maselli, F.M.; Giuliani, F.; Laface, C.; Perrone, M.; Melaccio, A.; De Santis, P.; Santoro, A.N.; Guarini, C.; Iaia, M.L.; Fedele, P. Immunotherapy in prostate cancer: State of art and new therapeutic perspectives. Curr. Oncol., 2023, 30(6), 5769-5794.
[http://dx.doi.org/10.3390/curroncol30060432] [PMID: 37366915]
[10]
Kotani, N.; Wilkins, J.J.; Wade, J.R.; Dang, S.; Sutaria, D.S.; Yoshida, K.; Sundrani, S.; Ding, H.; Garcia, J.; Hinton, H.; Sane, R.; Chanu, P. Characterization of exposure–response relationships of ipatasertib in patients with metastatic castration-resistant prostate cancer in the IPATential150 study. Cancer Chemother. Pharmacol., 2022, 90(6), 511-521.
[http://dx.doi.org/10.1007/s00280-022-04488-2] [PMID: 36305957]
[11]
Labadie, B.W.; Morris, D.S.; Bryce, A.H.; Given, R.; Zhang, J.; Abida, W.; Chowdhury, S.; Patnaik, A. Guidelines for management of treatment-emergent adverse events during rucaparib treatment of patients with metastatic castration-resistant prostate cancer. Cancer Manag. Res., 2022, 14, 673-686.
[http://dx.doi.org/10.2147/CMAR.S335962] [PMID: 35210863]
[12]
Fizazi, K.; Azad, A.A.; Matsubara, N.; Carles, J.; Fay, A.P.; De Giorgi, U.; Joung, J.Y.; Fong, P.C.C.; Voog, E.; Jones, R.J.; Shore, N.D.; Dunshee, C.; Zschäbitz, S.; Oldenburg, J.; Ye, D.; Lin, X.; Healy, C.G.; Di Santo, N.; Laird, A.D.; Zohren, F.; Agarwal, N. Publisher correction: First-line talazoparib with enzalutamide in HRR-deficient metastatic castration-resistant prostate cancer: The phase 3 TALAPRO-2 trial. Nat. Med., 2024.
[http://dx.doi.org/10.1038/s41591-024-02835-9] [PMID: 38297094]
[13]
Ha, S. O, J.H.; Park, C.; Boo, S.H.; Yoo, I.R.; Moon, H.W.; Chi, D.Y.; Lee, J.Y. Dosimetric analysis of a phase I study of PSMA-targeting radiopharmaceutical therapy with [177Lu]Ludotadipep in patients with metastatic castration-resistant prostate cancer. Korean J. Radiol., 2024, 25(2), 179-188.
[http://dx.doi.org/10.3348/kjr.2023.0656] [PMID: 38288897]
[14]
Sepe, P.; Procopio, G.; Pircher, C.C.; Basso, U.; Caffo, O.; Cappelletti, V.; Claps, M.; De Giorgi, U.; Fratino, L.; Guadalupi, V.; Miodini, P.; De Marco, C.; Perrucci, B.; Mennitto, A.; Santini, D.; Spina, F.; Stellato, M.; de Braud, F.; Verzoni, E. A phase II study evaluating the efficacy of enzalutamide and the role of liquid biopsy for evaluation of ARv7 in mCRPC patients with measurable metastases including visceral disease (Excalibur study). Ther. Adv. Med. Oncol., 2024, 16, 17588359231217958.
[http://dx.doi.org/10.1177/17588359231217958] [PMID: 38264520]
[15]
Rehman, O.U.; Nadeem, Z.A.; Fatima, E.; Akram, U.; Imran, H.; Husnain, A.; Nadeem, A.; Rasheed, W. The efficacy of ketoconazole containing regimens in castration-resistant prostate cancer: A systematic review and meta-analysis. Clin. Genitourin. Cancer, 2024, S1558-7673(24), 00005-3.
[http://dx.doi.org/10.1016/j.clgc.2024.01.003] [PMID: 38296679]
[16]
Sigorski, D.; Wilk, M.; Gawlik-Urban, A.; Sałek-Zań, A.; Kiszka, J.; Malik, M.; Czerko, K.; Kuć, K.; Szczylik, C.; Kubiatowski, T.; Cybulska-Stopa, B.; Filipczyk-Cisarż, E.; Bodnar, L.; Skoneczna, I. Real-life data of abiraterone acetate and enzalutamide treatment in post-chemotherapy metastatic castration-resistant prostate cancer in Poland. Front. Oncol., 2023, 13, 1108937.
[http://dx.doi.org/10.3389/fonc.2023.1108937] [PMID: 37077831]
[17]
Shah, Y.B.; Shaver, A.L.; Kelly, W.K.; Lu-Yao, G. A scoping review protocol to elucidate outcomes following abiraterone versus enzalutamide for prostate cancer. PLoS One, 2022, 17(8), e0273826.
[http://dx.doi.org/10.1371/journal.pone.0273826] [PMID: 36037225]
[18]
Yanagisawa, T.; Rajwa, P.; Kawada, T.; Mori, K.; Fukuokaya, W.; Petrov, P.; Quhal, F.; Laukhtina, E.; von Deimling, M.; Bianchi, A.; Majdoub, M.; Pradere, B.; Kramer, G.; Kimura, T.; Shariat, S.F. Efficacy of systemic treatment in prostate cancer patients with visceral metastasis: A systematic review, meta-analysis, and network meta-analysis. J. Urol., 2023, 210(3), 416-429.
[http://dx.doi.org/10.1097/JU.0000000000003594] [PMID: 37339479]
[19]
Demirci, A.; Bilir, C.; Gülbağcı, B.; Hacıbekiroğlu, İ.; Bayoğlu, İ.V.; Bilgetekin, İ.; Koca, S.; Çınkır, H.Y.; Akdeniz, N.; Gül, D.; Varım, C.; Demirci, U.; Öksüzoğlu, B. Comparison of real-life data of abiraterone acetate and enzalutamide in metastatic castration-resistant prostate cancer. Sci. Rep., 2021, 11(1), 14131.
[http://dx.doi.org/10.1038/s41598-021-93659-x] [PMID: 34239026]
[20]
Armstrong, A.J.; Azad, A.A.; Iguchi, T.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Alcaraz, A.; Alekseev, B.; Shore, N.D.; Gomez-Veiga, F.; Rosbrook, B.; Zohren, F.; Yamada, S.; Haas, G.P.; Stenzl, A. Improved survival with enzalutamide in patients with metastatic hormone-sensitive prostate cancer. J. Clin. Oncol., 2022, 40(15), 1616-1622.
[http://dx.doi.org/10.1200/JCO.22.00193] [PMID: 35420921]
[21]
Pane, R.; Laib, L.; Formoso, K.; Détrait, M.; Sainte-Marie, Y.; Bourgailh, F.; Ruffenach, N.; Faugeras, H.; Simon, I.; Lhuillier, E. Lezoualc’h, F.; Conte, C. Macromolecular complex including MLL3, carabin and calcineurin regulates cardiac remodeling. Circ. Res., 2024, 134(1), 100-113.
[http://dx.doi.org/10.1161/CIRCRESAHA.123.323458] [PMID: 38084599]
[22]
Cherkasova, M.V.; Clark, L.; Barton, J.J.S.; Stoessl, A.J.; Winstanley, C.A. Risk-promoting effects of reward-paired cues in human sign- and goal-trackers. Behav. Brain Res., 2024, 461, 114865.
[http://dx.doi.org/10.1016/j.bbr.2024.114865] [PMID: 38220058]
[23]
Alshammari, R.F.N.; Abd Rahman, A.H.; Arshad, H.; Albahri, O.S. Real-time robotic presentation skill scoring using multi-model analysis and fuzzy delphi–analytic hierarchy process. Sensors, 2023, 23(24), 9619.
[http://dx.doi.org/10.3390/s23249619] [PMID: 38139465]
[24]
Hyam, L.E.; Phillips, M.; Gracie, L.; Allen, K.; Schmidt, U. Clinical staging across eating disorders: A scoping review protocol. BMJ Open, 2023, 13(11), e077377.
[http://dx.doi.org/10.1136/bmjopen-2023-077377] [PMID: 37993158]
[25]
Vaidya, A.; Simkhada, P.; Lee, A.; Jones, S.; Mukumbang, F.C. Implementing a package of essential non-communicable diseases interventions in low- and middle-income countries: A realist review protocol. BMJ Open, 2023, 13(9), e074336.
[http://dx.doi.org/10.1136/bmjopen-2023-074336] [PMID: 37775288]
[26]
Solt, L.A.; Griffin, P.R.; Burris, T.P. Ligand regulation of retinoic acid receptor-related orphan receptors: Implications for development of novel therapeutics. Curr. Opin. Lipidol., 2010, 21(3), 204-211.
[http://dx.doi.org/10.1097/MOL.0b013e328338ca18] [PMID: 20463469]
[27]
Huh, J.R.; Littman, D.R. Small molecule inhibitors of ROR γt: Targeting T h17 cells and other applications. Eur. J. Immunol., 2012, 42(9), 2232-2237.
[http://dx.doi.org/10.1002/eji.201242740] [PMID: 22949321]
[28]
Holmquist, R. Molecular phylogenetic trees: On the validity of the Goodman-Moore augmentation algorithm. J. Mol. Evol., 1979, 13(2), 173-178.
[http://dx.doi.org/10.1007/BF01732871] [PMID: 480372]
[29]
Abdel-Rahman, S.A.; Brogi, S.; Gabr, M.T. Lithocholic acid derivatives as potent modulators of the nuclear receptor RORγt. RSC Advances, 2024, 14(5), 2918-2928.
[http://dx.doi.org/10.1039/D3RA08086B] [PMID: 38239446]
[30]
Choi, H.; Oh, D.; Kim, H.J.; Chambugong, M.; Kim, M.; Lee, M.O.; Park, H. An RORα agonist, ODH-08, inhibits fibrogenic activation of hepatic stellate cells via suppression of SMAD3. Life Sci., 2024, 340, 122443.
[http://dx.doi.org/10.1016/j.lfs.2024.122443] [PMID: 38242496]
[31]
Kim, H.J.; Lee, S.H.; Jeong, C.; Han, Y.H.; Lee, M.O. RORα– GABP–TFAM axis alleviates myosteatosis with fatty atrophy through reinforcement of mitochondrial capacity. J. Cachexia Sarcopenia Muscle, 2024, jcsm.13432..
[http://dx.doi.org/10.1002/jcsm.13432] [PMID: 38272857]
[32]
Zhang, J.; Chang, M.; Wang, X.; Zhou, X.; Bai, Q.; Lang, H.; Zhang, Q.; Yi, L.; Mi, M.; Chen, K. Pterostilbene targets the molecular oscillator RORγ to restore circadian rhythm oscillation and protect against sleep restriction induced metabolic disorders. Phytomedicine, 2024, 125, 155327.
[http://dx.doi.org/10.1016/j.phymed.2023.155327] [PMID: 38295659]
[33]
Agha-Hosseini, F.; Moosavi, M.S.; Bahrami, H. A systematic review of interleukin-17 in oral lichen planus: From etiopathogenesis to treatment. Clin. Med. Res., 2023, 21(4), 201-215.
[http://dx.doi.org/10.3121/cmr.2023.1822] [PMID: 38296640]
[34]
Behiry, M.; Wadie, M.; Mohamed, N.A.; Farid, R.; Ramadan, H. Assessment of interleukin 17 in egyptian systemic lupus erythematosus patients as a biomarker in disease activity. Curr. Rheumatol. Rev., 2024, 20.
[http://dx.doi.org/10.2174/0115733971282065240123075748] [PMID: 38299415]
[35]
Gan, T.; Xing, Q.; Li, N.; Deng, Z.; Pan, C.; Liu, X.; Zheng, L. Protective effect of vitexin against il‐17‐induced vascular endothelial inflammation through Keap1/Nrf2‐dependent signaling pathway. Mol. Nutr. Food Res., 2024, 2300331.
[http://dx.doi.org/10.1002/mnfr.202300331] [PMID: 38299432]
[36]
Li, Y.; Zhang, Q.; Wang, X.; Xu, F.; Niu, J.; Zhao, J.; Wang, Q. IL-17A deficiency alleviates cerebral ischemia-reperfusion injury via activating ERK/MAPK pathway in hippocampal CA1 region. Brain Res. Bull., 2024, 208, 110890.
[http://dx.doi.org/10.1016/j.brainresbull.2024.110890] [PMID: 38302069]
[37]
McCarthy, K.N.; Hone, S.; McLoughlin, R.M.; Mills, K.H.G. IL-17 and IFN-γ-producing respiratory tissue resident memory CD4 T cells persist for decades in adults immunized as children with whole cell pertussis vaccines. J. Infect. Dis., 2024, jiae034.
[http://dx.doi.org/10.1093/infdis/jiae034] [PMID: 38290045]
[38]
Zeisbrich, M.; Thiel, J.; Venhoff, N. The IL-17 pathway as a target in giant cell arteritis. Front. Immunol., 2024, 14, 1199059.
[http://dx.doi.org/10.3389/fimmu.2023.1199059] [PMID: 38299156]
[39]
Asen, N.D.; Udenigwe, C.C.; Aluko, R.E. Quantitative structure–activity relationship modeling of pea protein-derived acetylcholinesterase and butyrylcholinesterase inhibitory peptides. J. Agric. Food Chem., 2023, 71(43), 16323-16330.
[http://dx.doi.org/10.1021/acs.jafc.3c04880] [PMID: 37856319]
[40]
Ghosh, S.; Chatterjee, M.; Roy, K. Quantitative read-across structure-activity relationship (q-RASAR): A new approach methodology to model aquatic toxicity of organic pesticides against different fish species. Aquat. Toxicol., 2023, 265, 106776.
[http://dx.doi.org/10.1016/j.aquatox.2023.106776] [PMID: 38006764]
[41]
Khairullina, V.; Martynova, Y. Quantitative structure–activity relationship in the series of 5-ethyluridine, N2-guanine, and 6-oxopurine derivatives with pronounced anti-herpetic activity. Molecules, 2023, 28(23), 7715.
[http://dx.doi.org/10.3390/molecules28237715] [PMID: 38067446]
[42]
Liang, X.; Lei, Y.; Yang, X. Quantitative structure–activity relationships for the reaction kinetics of trace organic contaminants with one-electron oxidants. Environ. Sci. Process. Impacts, 2024, 26(1), 192-208.
[http://dx.doi.org/10.1039/D3EM00329A] [PMID: 38050900]
[43]
Moulishankar, A.; Thirugnanasambandam, S. Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents. J. Recept. Signal Transduct. Res., 2023, 43(3), 83-92.
[http://dx.doi.org/10.1080/10799893.2023.2281671] [PMID: 37990804]
[44]
Novič, M. Quantitative structure activity/toxicity relationship through neural networks for drug discovery or regulatory use. Curr. Top. Med. Chem., 2023, 23(29), 2792-2804.
[http://dx.doi.org/10.2174/0115680266251327231017053718] [PMID: 37867278]
[45]
Shukla, N.; Sharma, B. Quantitative structure-activity relationship (QSAR) modelling of indomethacin derivatives using regression analysis. Curr. Med. Chem., 2023, 31.
[http://dx.doi.org/10.2174/0109298673245890231004152136] [PMID: 37818563]
[46]
Si, H.; Wang, T.; Zhang, K.; Duan, Y.B.; Yuan, S.; Fu, A.; Hu, Z. Quantitative structure activity relationship model for predicting the depletion percentage of skin allergic chemical substances of glutathione. Anal. Chim. Acta, 2007, 591(2), 255-264.
[http://dx.doi.org/10.1016/j.aca.2007.03.070] [PMID: 17481417]
[47]
Tropsha, A.; Isayev, O.; Varnek, A.; Schneider, G.; Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov., 2024, 23(2), 141-155.
[PMID: 38066301]
[48]
Wu, X.; Shen, H.; Zhang, Y.; Wang, C.; Li, Q.; Zhang, C.; Zhuang, X.; Li, C.; Shi, Y.; Xing, Y.; Xiang, Q.; Xu, J.; Wu, D.; Liu, J.; Xu, Y. Discovery and characterization of benzimidazole derivative XY123 as a potent, selective, and orally available RORγ inverse agonist. J. Med. Chem., 2021, 64(12), 8775-8797.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00763] [PMID: 34121397]
[49]
Kadayat, T.M.; Park, S.; Shrestha, A.; Jo, H.; Hwang, S.Y.; Katila, P.; Shrestha, R.; Nepal, M.R.; Noh, K.; Kim, S.K.; Koh, W.S.; Kim, K.S.; Jeon, Y.H.; Jeong, T.C.; Kwon, Y.; Lee, E.S. Discovery and biological evaluations of halogenated 2,4-diphenyl indeno[1,2- b]pyridinol derivatives as potent topoisomerase IIα-targeted chemotherapeutic agents for breast cancer. J. Med. Chem., 2019, 62(17), 8194-8234.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00970] [PMID: 31398033]
[50]
Chen, K.A.; Nishiyama, N.C.; Kennedy Ng, M.M.; Shumway, A.; Joisa, C.U.; Schaner, M.R.; Lian, G.; Beasley, C.; Zhu, L.C.; Bantumilli, S.; Kapadia, M.R.; Gomez, S.M.; Furey, T.S.; Sheikh, S.Z. Linking gene expression to clinical outcomes in pediatric Crohn’s disease using machine learning. Sci. Rep., 2024, 14(1), 2667.
[http://dx.doi.org/10.1038/s41598-024-52678-0] [PMID: 38302662]
[51]
Mayeno, A.N.; Robinson, J.L.; Yang, R.S.H.; Reisfeld, B. Predicting activation enthalpies of cytochrome-P450-mediated hydrogen abstractions. 2. Comparison of semiempirical PM3, SAM1, and AM1 with a density functional theory method. J. Chem. Inf. Model., 2009, 49(7), 1692-1703.
[http://dx.doi.org/10.1021/ci8003946] [PMID: 19522482]
[52]
Ramraj, A.; Raju, R.K.; Wang, Q.; Hillier, I.H.; Bryce, R.A.; Vincent, M.A. An evaluation of the GLYCAM06 and MM3 force fields, and the PM3-D* molecular orbital method for modelling prototype carbohydrate–aromatic interactions. J. Mol. Graph. Model., 2010, 29(3), 321-325.
[http://dx.doi.org/10.1016/j.jmgm.2010.07.004] [PMID: 20801066]
[53]
Gieseking, R.L.M. A new release of MOPAC incorporating the INDO/S semiempirical model with CI excited states. J. Comput. Chem., 2021, 42(5), 365-378.
[http://dx.doi.org/10.1002/jcc.26455] [PMID: 33227163]
[54]
Maia, J.D.C.; dos Anjos Formiga Cabral, L.; Rocha, G.B. GPU algorithms for density matrix methods on MOPAC: Linear scaling electronic structure calculations for large molecular systems. J. Mol. Model., 2020, 26(11), 313.
[http://dx.doi.org/10.1007/s00894-020-04571-6] [PMID: 33090341]
[55]
Bainbridge, L. Transferring 24/7 sobriety from South Dakota to South London: The case of MOPAC’s alcohol abstinence monitoring requirement pilot. Addiction, 2019, 114(9), 1696-1705.
[http://dx.doi.org/10.1111/add.14609] [PMID: 30851219]
[56]
Katritzky, A.R.; Kulshyn, O.V.; Stoyanova-Slavova, I.; Dobchev, D.A.; Kuanar, M.; Fara, D.C.; Karelson, M. Antimalarial activity: A QSAR modeling using CODESSA PRO software. Bioorg. Med. Chem., 2006, 14(7), 2333-2357.
[http://dx.doi.org/10.1016/j.bmc.2005.11.015] [PMID: 16426851]
[57]
Saito, N.; Fuwa, A. Prediction for thermodynamic function of dioxins for gas phase using semi-empirical molecular orbital method with PM3 Hamiltonian. Chemosphere, 2000, 40(2), 131-145.
[http://dx.doi.org/10.1016/S0045-6535(99)00215-5] [PMID: 10665426]
[58]
Tai, Y.; Lian, Z.; Xia, H.; Zhai, H. QSAR study of novel 1, 8-naphthimide derivatives targeting nuclear DNA. Anticancer. Agents Med. Chem., 2023, 23(6), 726-733.
[http://dx.doi.org/10.2174/1871520622666220822010953] [PMID: 36017845]
[59]
Xia, Q.D.; Zhang, S.H.; Zeng, N.; Lu, Y.C.; Qin, B.L.; Wang, S.G. Novel androgen receptor inhibitors for metastatic hormone-sensitive prostate cancer: Current application and future perspectives. Biomed. Pharmacother., 2023, 168, 115806.
[http://dx.doi.org/10.1016/j.biopha.2023.115806] [PMID: 37925933]
[60]
Burkett, B.J.; Bartlett, D.J.; McGarrah, P.W.; Lewis, A.R.; Johnson, D.R.; Berberoğlu, K.; Pandey, M.K.; Packard, A.T.; Halfdanarson, T.R.; Hruska, C.B.; Johnson, G.B.; Kendi, A.T. A review of theranostics: Perspectives on emerging approaches and clinical advancements. Radiol. Imaging Cancer, 2023, 5(4), e220157.
[http://dx.doi.org/10.1148/rycan.220157] [PMID: 37477566]
[61]
Si, Y.; Xu, X.; Hu, Y.; Si, H.; Zhai, H. Novel quantitative structure–activity relationship model to predict activities of natural products against COVID‐19. Chem. Biol. Drug Des., 2021, 97(4), 978-983.
[http://dx.doi.org/10.1111/cbdd.13822] [PMID: 33386649]
[62]
Wang, M.; Wu, Z.; Wang, J.; Weng, G.; Kang, Y.; Pan, P.; Li, D.; Deng, Y.; Yao, X.; Bing, Z.; Hsieh, C.Y.; Hou, T. Genetic algorithm- based receptor ligand: A genetic algorithm-guided generative model to boost the novelty and drug-likeness of molecules in a sampling chemical space. J. Chem. Inf. Model., 2024, acs.jcim.3c01964..
[http://dx.doi.org/10.1021/acs.jcim.3c01964] [PMID: 38302422]
[63]
Ahlawat, S.; Vasu, M.; Choudhary, V.; Arora, R.; Sharma, R.; Mir, M.A.; Singh, M.K. Comprehensive evaluation and validation of optimal reference genes for normalization of qPCR data in different caprine tissues. Mol. Biol. Rep., 2024, 51(1), 268.
[http://dx.doi.org/10.1007/s11033-024-09268-0] [PMID: 38302649]
[64]
Chen, A.; Kurmis, A.P. Understanding immune-mediated cobalt/chromium allergy to orthopaedic implants: A meta-synthetic review. Arthroplasty, 2024, 6(1), 1.
[http://dx.doi.org/10.1186/s42836-023-00227-x] [PMID: 38303027]
[65]
Zhou, H.; Chen, G.; Lu, Y.; Cheng, X.; Xin, H. A permutation-combination heuristics for crane-based automated storage and retrieval systems considering order fulfillment time and energy consumption. Math. Biosci. Eng., 2023, 21(1), 116-143.
[http://dx.doi.org/10.3934/mbe.2024006] [PMID: 38303416]
[66]
Yoon, H.; Sabaté del Río, J.; Cho, S.W.; Park, T.E. Recent advances in micro-physiological systems for investigating tumor metastasis and organotropism. Lab Chip, 2024.
[http://dx.doi.org/10.1039/D3LC01033C] [PMID: 38303676]
[67]
Opperman, C.J.; Singh, S.; Goosen, W.; Cox, H.; Warren, R.; Esmail, A. Incorporating direct molecular diagnostics in management algorithms for nontuberculous mycobacteria: Is it high time? IJID Reg., 2024, 10, 140-145.
[http://dx.doi.org/10.1016/j.ijregi.2023.12.003] [PMID: 38304760]
[68]
Gan, Y.; Li, L.; Zhang, L.; Yan, S.; Gao, C.; Hu, S.; Qiao, Y.; Tang, S.; Wang, C.; Lu, Z. Association between shift work and risk of prostate cancer: A systematic review and meta-analysis of observational studies. Carcinogenesis, 2018, 39(2), 87-97.
[http://dx.doi.org/10.1093/carcin/bgx129] [PMID: 29126152]
[69]
Huang, X.; Chen, X.X.; Chen, X.; Chen, Q.Z.; Wang, L.; Li, C.; Tian, J.L. Feasibility of anterior lobe-preserving transurethral enucleation and resection of prostate on improving urinary incontinence in patients with benign prostatic hyperplasia: A retrospective cohort study. Medicine, 2023, 102(7), e32884.
[http://dx.doi.org/10.1097/MD.0000000000032884] [PMID: 36800610]
[70]
Gao, Y.; Liu, Y.; Liu, Y.; Peng, Y.; Yuan, B.; Fu, Y.; Qi, X.; Zhu, Q.; Cao, T.; Zhang, S.; Yin, L.; Li, X. UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications. Cancer Lett., 2021, 520, 172-183.
[http://dx.doi.org/10.1016/j.canlet.2021.07.012] [PMID: 34265399]
[71]
Dorff, T.; Horvath, L.G.; Autio, K.; Bernard-Tessier, A.; Rettig, M.B.; Machiels, J.P.; Bilen, M.A.; Lolkema, M.P.; Adra, N.; Rottey, S.; Greil, R.; Matsubara, N.; Tan, D.S.W.; Wong, A.; Uemura, H.; Lemech, C.; Meran, J.; Yu, Y.; Minocha, M.; McComb, M.; Penny, H.L.; Gupta, V.; Hu, X.; Jurida, G.; Kouros-Mehr, H.; Janát-Amsbury, M.M.; Eggert, T.; Tran, B. A phase 1 study of acapatamab, a half-life extended, PSMA-targeting bispecific T-cell engager for metastatic castration-resistant prostate cancer. Clin. Cancer Res., 2024.
[http://dx.doi.org/10.1158/1078-0432.CCR-23-2978] [PMID: 38300720]
[72]
Ou, Y.; Chu, G.C.Y.; Lyu, J.; Yin, L.; Lim, A.; Zhai, N.; Cui, X.; Lewis, M.S.; Edderkaoui, M.; Pandol, S.J.; Wang, R.; Zhang, Y. Over-coming resistance in prostate cancer therapy using a DZ-simvastatin conjugate. Mol. Pharm., 2024, 21(2), 873-882.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00993] [PMID: 38229228]
[73]
van der Zande, K.; Tutuhatunewa-Louhanepessy, R.D.; Hamberg, P.; Ras, S.; de Feijter, J.M.; Dezentjé, V.O.; Broeks, A.; Cornelissen, S.; Beeker, A.; van der Noort, V.; Zwart, W.; Bergman, A.M. Combined cabazitaxel and carboplatin treatment of metastatic castration resistant prostate cancer patients, with innate or acquired resistance to cabazitaxel monotherapy. Clin. Genitourin. Cancer, 2024, S1558-7673(23), 00282-3.
[http://dx.doi.org/10.1016/j.clgc.2023.12.016] [PMID: 38246830]
[74]
Li, J.M.; Li, X.; Chan, L.W.C.; Hu, R.; Zheng, T.; Li, H.; Yang, S. Lipotoxicity-polarised macrophage-derived exosomes regulate mitochondrial fitness through Miro1-mediated mitophagy inhibition and contribute to type 2 diabetes development in mice. Diabetologia, 2023, 66(12), 2368-2386.
[http://dx.doi.org/10.1007/s00125-023-05992-7] [PMID: 37615690]
[75]
Shakoor, A.; Alam, A.; Jan, F.; Khan, M.; Ali, M.; Ullah, S.; Khan, A.; AlAsmari, A.F.; Alasmari, F.; Al-Ghafri, A.; Al-Harrasi, A. Novel benzimidazole derivatives as effective inhibitors of prolyl oligopeptidase: synthesis, in vitro and in silico analysis. Future Med. Chem., 2024, 16(1), 43-58.
[http://dx.doi.org/10.4155/fmc-2023-0267] [PMID: 38054466]
[76]
Ayaz, M.; Alam, A. Zainab; Assad, M.; Javed, A.; Islam, M.S.; Rafiq, H.; Ali, M.; Ahmad, W.; Khan, A.; Latif, A.; Al-Harrasi, A.; Ahmad, M. Biooriented synthesis of ibuprofen-clubbed novel bis -schiff base derivatives as potential hits for malignant glioma: In vitro anti-cancer activity and in silico approach. ACS Omega, 2023, 8(51), 49228-49243.
[http://dx.doi.org/10.1021/acsomega.3c07216] [PMID: 38173864]
[77]
Zhou, Y.; Li, Q.; Pan, R.; Wang, Q.; Zhu, X.; Yuan, C.; Cai, F.; Gao, Y.; Cui, Y. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae. Allergy, 2022, 77(2), 469-482.
[http://dx.doi.org/10.1111/all.15111] [PMID: 34570913]
[78]
Zhou, Y.; Li, L.; Yu, Z.; Gu, X.; Pan, R.; Li, Q.; Yuan, C.; Cai, F.; Zhu, Y.; Cui, Y. Dermatophagoides pteronyssinus allergen Der p 22: Cloning, expression, IGE ‐binding in asthmatic children, and immunogenicity. Pediatr. Allergy Immunol., 2022, 33(8), e13835.
[http://dx.doi.org/10.1111/pai.13835] [PMID: 36003049]
[79]
Zhu, Y.; Huang, R.; Wu, Z.; Song, S.; Cheng, L.; Zhu, R. Deep learning-based predictive identification of neural stem cell differentiation. Nat. Commun., 2021, 12(1), 2614.
[http://dx.doi.org/10.1038/s41467-021-22758-0] [PMID: 33972525]
[80]
López-Fontana, G.; Guglielmi, J.M.; López-Fontana, R.; Hinojosa-Jury, M.L.; López-Fontana, C.; López-Laur, J.D. Salvage radical prostatectomy in nonmetastatic castration-resistant prostate cancer. Arch. Esp. Urol., 2022, 75(7), 638-641.
[http://dx.doi.org/10.56434/j.arch.esp.urol.20227507.92] [PMID: 36214146]
[81]
Ertürk, S.A.; Şalk, İ.; Yücel, B.; Ulaş Babacan, Ö.; Hasbek, Z. The relationship between the suvmax value obtained in Ga-68 PSMA PET/CT and lactate dehydrogenase and alkaline phosphatase in prostate cancer. Arch. Esp. Urol., 2022, 75(6), 552-558.
[http://dx.doi.org/10.37554/en-j.arch.esp.urol-20210903-3536-35] [PMID: 36138505]
[82]
Gao, T.H.; Liao, W.; Lin, L.T.; Zhu, Z.P.; Lu, M.G.; Fu, C.M.; Xie, T. Curcumae rhizoma and its major constituents against hepatobiliary disease: Pharmacotherapeutic properties and potential clinical applications. Phytomedicine, 2022, 102, 154090.
[http://dx.doi.org/10.1016/j.phymed.2022.154090] [PMID: 35580439]
[83]
Bai, R.; Zhu, J.; Bai, Z.; Mao, Q.; Zhang, Y.; Hui, Z.; Luo, X.; Ye, X.Y.; Xie, T. Second generation β-elemene nitric oxide derivatives with reasonable linkers: Potential hybrids against malignant brain glioma. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 379-385.
[http://dx.doi.org/10.1080/14756366.2021.2016734] [PMID: 35012394]

© 2024 Bentham Science Publishers | Privacy Policy