Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design and Synthesis of Novel Anti-proliferative Formononetin Derivatives

Author(s): Zeping Luo*, Liwei Pan, XiuJu Yin and Hailin Chen

Volume 21, Issue 16, 2024

Published on: 04 March, 2024

Page: [3408 - 3424] Pages: 17

DOI: 10.2174/0115701808278216231228045423

Price: $65

Abstract

Background: This study aimed to design and synthesize a series of novel C8- Formononetin derivatives and evaluate their in vitro anti-tumor activity. The experimental results showed that these derivatives exhibited varying degrees of anti-tumor effects on HeLa, A549, and HepG2 cells, and compound 8, in particular, showed excellent inhibitory activity against HepG2 cell growth, which surpassed that of 5-FU.

Methods: Importantly, the cytotoxicity of FMN was significantly enhanced after conjugation with amino acid ethyl ester. To further investigate the mechanisms underlying the anti-tumor effects of these derivatives, various experimental approaches were employed. They include colony formation assay, EdU cell proliferation assay, Transwell migration assay, cell apoptosis assay, cell cycle distribution assay, and ELISA.

Results: The results revealed that compound 8 effectively induced cell apoptosis by downregulating the expression of anti-apoptotic proteins P53, Bcl-2, and Mcl-1 while upregulating the expression of pro-apoptotic proteins Bax, Fas, Caspase-3, Caspase-9, and Fas, which leads to apoptosis of tumor cells. Furthermore, compound 8 disrupted the mitochondrial membrane potential, perturbed cellular energy metabolism, and reduced intracellular ATP levels, thereby inhibiting tumor cell growth.

Conclusion: The newly synthesized FMN derivatives in this study hold great potential in the field of anti-tumor research. Compound 8 inhibits tumor cell growth through multiple pathways, which provides new hope for cancer treatment.

Keywords: Formononetin, derivatives, anti-proliferative, cancer, anti-H. pylori, clinical applications.

Graphical Abstract
[1]
Ndongwe, T.; Witika, B.A.; Mncwangi, N.P.; Poka, M.S.; Skosana, P.P.; Demana, P.H.; Summers, B.; Siwe-Noundou, X. Iridoid derivatives as anticancer agents: An updated review from 1970-2022. Cancers, 2023, 15(3), 770.
[http://dx.doi.org/10.3390/cancers15030770] [PMID: 36765728]
[2]
Han, Y.; Kim, H.I.; Park, J. The role of natural products in the improvement of cancer-associated cachexia. Int. J. Mol. Sci., 2023, 24(10), 8772.
[http://dx.doi.org/10.3390/ijms24108772] [PMID: 37240117]
[3]
Cao, J.; Chen, C.; Wang, Y.; Chen, X.; Chen, Z.; Luo, X. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro. Oncol. Lett., 2016, 12(3), 2033-2037.
[http://dx.doi.org/10.3892/ol.2016.4839] [PMID: 27602134]
[4]
Bao, M.H.; Li, J.M.; Zhou, Q.L.; Li, G.Y.; Zeng, J.; Zhao, J.; Zhang, Y.W. Effects of miR-590 on oxLDL-induced endothelial cell apoptosis: Roles of p53 and NF-κB. Mol. Med. Rep., 2016, 13(1), 867-873.
[http://dx.doi.org/10.3892/mmr.2015.4606] [PMID: 26648441]
[5]
Li, L.; Wang, S.; Zhou, W. Balance cell apoptosis and pyroptosis of caspase-3-activating chemotherapy for better antitumor therapy. Cancers, 2022, 15(1), 26.
[http://dx.doi.org/10.3390/cancers15010026] [PMID: 36612023]
[6]
Ahmed, H.; Abdelraheem, A.; Salem, M.; Sabry, M.; Fekry, N.; Mohamed, F.; Saber, A.; Piatti, D.; Sabry, M.; Sabry, O.; Caprioli, G. Suppression of breast cancer: Modulation of estrogen receptor and downregulation of gene expression using natural products. Nat. Prod. Res., 2023, 10, 1-10.
[http://dx.doi.org/10.1080/14786419.2023.2232926] [PMID: 37427947]
[7]
Li, Y.; Zhao, R.; Xiu, Z.; Yang, X.; Zhu, Y.; Han, J.; Li, S.; Li, Y.; Sun, L.; Li, X.; Jin, N.; Li, Y. Neobavaisoflavone induces pyroptosis of liver cancer cells via Tom20 sensing the activated ROS signal. Phytomedicine, 2023, 116, 154869.
[http://dx.doi.org/10.1016/j.phymed.2023.154869] [PMID: 37196512]
[8]
Yu, X.; Yan, J.; Li, Y.; Cheng, J.; Zheng, L.; Fu, T.; Zhu, Y. Inhibition of castration-resistant prostate cancer growth by genistein through suppression of AKR1C3. Food Nutr. Res., 2023, 67, 67.
[http://dx.doi.org/10.29219/fnr.v67.9024] [PMID: 36794010]
[9]
Agarwal, A.; Wahajuddin, M.; Chaturvedi, S.; Singh, S.K.; Rashid, M.; Garg, R.; Chauhan, D.; Sultana, N.R.; Gayen, J. Formulation and characterization of phytosomes as drug delivery system of formononetin: an effective anti-osteoporotic agent. Curr. Drug Deliv., 2023, 24.
[PMID: 36734892]
[10]
Zhou, Z.W.; Zhu, X.Y.; Li, S.Y.; Lin, S.E.; Zhu, Y.H.; Ji, K.; Chen, J.J. Formononetin inhibits mast cell degranulation to ameliorate compound 48/80-induced pseudoallergic reactions. Molecules, 2023, 28(13), 5271.
[http://dx.doi.org/10.3390/molecules28135271] [PMID: 37446928]
[11]
Han, N.R.; Park, H.J.; Ko, S.G.; Moon, P.D. The mixture of natural products SH003 exerts anti-melanoma effects through the modulation of PD-L1 in B16F10 Cells. Nutrients, 2023, 15(12), 2790.
[http://dx.doi.org/10.3390/nu15122790] [PMID: 37375695]
[12]
Yang, J.; Sha, X.; Wu, D.; Wu, B.; Pan, X.; Pan, L.L.; Gu, Y.; Dong, X. Formononetin alleviates acute pancreatitis by reducing oxidative stress and modulating intestinal barrier. Chin. Med., 2023, 18(1), 78.
[http://dx.doi.org/10.1186/s13020-023-00773-1] [PMID: 37370098]
[13]
Al-Shami, A.S.; Essawy, A.E.; Elkader, H.T.A.E.A. Molecular mechanisms underlying the potential neuroprotective effects of Trifolium pratense and its phytoestrogen‐isoflavones in neurodegenerative disorders. Phytother. Res., 2023, 37(6), 2693-2737.
[http://dx.doi.org/10.1002/ptr.7870] [PMID: 37195042]
[14]
Aliya, S.; Alhammadi, M.; Park, U.; Tiwari, J.N.; Lee, J.H.; Han, Y.K.; Huh, Y.S. The potential role of formononetin in cancer treatment: An updated review. Biomed. Pharmacother., 2023, 168, 115811.
[http://dx.doi.org/10.1016/j.biopha.2023.115811] [PMID: 37922652]
[15]
Bhardwaj, V.K.; Purohit, R. A comparative study on inclusion complex formation between formononetin and β-cyclodextrin derivatives through multiscale classical and umbrella sampling simulations. Carbohydr. Polym., 2023, 310, 120729.
[http://dx.doi.org/10.1016/j.carbpol.2023.120729] [PMID: 36925262]
[16]
Jia, W.D.; Bai, X.; Ma, Q.Q.; Bian, M.; Bai, C.M.; Li, D.; Li, L.F.; Wei, C.; Yu, L.J. Synthesis, molecular docking studies of formononetin derivatives as potent Bax agonists for anticancer activity. Nat. Prod. Res., 2023, 3, 1-15.
[http://dx.doi.org/10.1080/14786419.2023.2269592] [PMID: 37921074]
[17]
Zhao, L.; Han, J.; Liu, J.; Fan, K.; Yuan, T.; Han, J.; Chen, L.; Zhang, S.; Zhao, M.; Duan, J. A novel formononetin derivative promotes anti-ischemic effects on acute ischemic injury in mice. Front. Microbiol., 2021, 12, 786464.
[http://dx.doi.org/10.3389/fmicb.2021.786464] [PMID: 34970243]
[18]
Lin, H.Y.; Sun, W.X.; Zheng, C.S.; Han, H.W.; Wang, X.; Zhang, Y.H.; Qiu, H.Y.; Tang, C.Y.; Qi, J.L.; Lu, G.H.; Yang, R.W.; Wang, X-M.; Yang, Y.H. Synthesis, characterization and biological evaluation of formononetin derivatives as novel EGFR inhibitors via inhibiting growth, migration and inducing apoptosis in breast cancer cell line. RSC Advances, 2017, 7(76), 48404-48419.
[http://dx.doi.org/10.1039/C7RA09825A]
[19]
Fu, D.J.; Zhang, L.; Song, J.; Mao, R.W.; Zhao, R.H.; Liu, Y.C.; Hou, Y.H.; Li, J.H.; Yang, J.J.; Jin, C.Y.; Li, P.; Zi, X.L.; Liu, H.M.; Zhang, S.Y.; Zhang, Y.B. Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3 cells via MAPK/Wnt signaling pathways. Eur. J. Med. Chem., 2017, 127, 87-99.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.027] [PMID: 28038329]
[20]
Zhu, H.; Zou, L.; Tian, J.; Lin, F.; He, J.; Hou, J. Protective effects of sulphonated formononetin in a rat model of cerebral ischemia and reperfusion injury. Planta Med., 2014, 80(4), 262-268.
[http://dx.doi.org/10.1055/s-0033-1360340] [PMID: 24549929]
[21]
Ren, J.; Xu, H.J.; Cheng, H.; Xin, W.Q.; Chen, X.; Hu, K. Synthesis and antitumor activity of formononetin nitrogen mustard derivatives. Eur. J. Med. Chem., 2012, 54, 175-187.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.039] [PMID: 22633834]
[22]
Maleki, F.; Farahani, A.M.; Rezazedeh, F.; Sadeghzadeh, N. Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg. Chem., 2020, 99, 103802.
[http://dx.doi.org/10.1016/j.bioorg.2020.103802] [PMID: 32330735]
[23]
Xu, Q.; Deng, H.; Li, X.; Quan, Z.S. Application of amino acids in the structural modification of natural products: A review. Front Chem., 2021, 9, 650569.
[http://dx.doi.org/10.3389/fchem.2021.650569] [PMID: 33996749]
[24]
Chen, Y.; Tan, S.; Liu, M.; Li, J. LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scand. Cardiovasc. J., 2018, 52(6), 335-339.
[http://dx.doi.org/10.1080/14017431.2018.1546896] [PMID: 30453794]
[25]
Yang, K.; Jin, M.J.; Quan, Z.S.; Piao, H.R. Design and synthesis of novel anti-proliferative emodin derivatives and studies on their cell cycle arrest, apoptosis pathway and migration. Molecules, 2019, 24(5), 884.
[http://dx.doi.org/10.3390/molecules24050884] [PMID: 30832378]
[26]
Wang, X.; Zhong, L.; Dan, W.; Chu, X.; Luo, X.; Liu, C.; Wan, P.; Lu, Y.; Liu, Z.; Zhang, Z.; Liu, B. MiR-454-3p promotes apoptosis and autophagy of AML cells by targeting ZEB2 and regulating AKT/mTOR pathway. Hematology, 2023, 28(1), 2223874.
[http://dx.doi.org/10.1080/16078454.2023.2223874] [PMID: 37313984]
[27]
Chen, K.; Ning, X.; Yan, X.; Song, L. Circ_0104700 contributes to acute myeloid leukemia progression by enhancing MCM2 expression through targeting miR-665. Hematology, 2023, 28(1), 2227489.
[http://dx.doi.org/10.1080/16078454.2023.2227489] [PMID: 37358551]
[28]
Wang, X.; Zhang, C.; Bao, N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front. Oncol., 2023, 13, 1224125.
[http://dx.doi.org/10.3389/fonc.2023.1224125] [PMID: 37637038]
[29]
Xu, T.; Zhu, Y.; Ge, S.; Liu, S.B. The roles of TPL in hematological malignancies. Hematology, 2023, 28(1), 2231765.
[http://dx.doi.org/10.1080/16078454.2023.2231765] [PMID: 37403451]
[30]
Buck, S.A.J.; Van Hemelryk, A.; de Ridder, C.; Stuurman, D.; Erkens-Schulze, S.; Van ’t Geloof, S.; Teubel, W.J.; Koolen, S.L.W.; Martens-Uzunova, E.S.; van Royen, M.E.; de Wit, R.; Mathijssen, R.H.J.; van Weerden, W.M. Darolutamide added to docetaxel augments anti-tumor effect in models of prostate cancer through cell cycle arrest at the G1-S transition. Mol. Cancer Ther., 2023, 30, 1-10.
[http://dx.doi.org/10.1158/1535-7163.MCT-23-0420] [PMID: 38030379]
[31]
Zhang, B.; Ye, H.; Yang, A. Mathematical modelling of interacting mechanisms for hypoxia mediated cell cycle commitment for mesen-chymal stromal cells. BMC Syst. Biol., 2018, 12(1), 35.
[http://dx.doi.org/10.1186/s12918-018-0560-3] [PMID: 29606139]
[32]
Huang, J.; Zhu, Y.; Xiao, H.; Liu, J.; Li, S.; Zheng, Q.; Tang, J.; Meng, X. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: A promising treatment. Chin. Med., 2023, 18(1), 66.
[http://dx.doi.org/10.1186/s13020-023-00764-2] [PMID: 37280646]
[33]
Yang, C.; Li, D.; Ko, C.N.; Wang, K.; Wang, H. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy. Front. Immunol., 2023, 14, 1133050.
[http://dx.doi.org/10.3389/fimmu.2023.1133050] [PMID: 36969211]
[34]
Zheng, H.; Wang, G.; Liu, M.; Cheng, H. Traditional Chinese medicine inhibits PD-1/PD-L1 axis to sensitize cancer immunotherapy: A literature review. Front. Oncol., 2023, 13, 1168226.
[http://dx.doi.org/10.3389/fonc.2023.1168226] [PMID: 37397393]
[35]
Banerjee, A.; Sriramulu, S.; Catanzaro, R.; He, F.; Chabria, Y.; Balakrishnan, B.; Hari, S.; Ayala, A.; Muñoz, M.; Pathak, S.; Marotta, F. Natural compounds as integrative therapy for liver protection against inflammatory and carcinogenic mechanisms: from induction to molecular biology advancement. Curr. Mol. Med., 2023, 23(3), 216-231.
[http://dx.doi.org/10.2174/1566524022666220316102310] [PMID: 35297348]
[36]
Chen, J.; Zheng, X.; Xu, G.; Wang, B.; Hu, L.; Mao, J.; Lu, X.; Cai, Y.; Chai, K.; Chen, W. Sini decoction inhibits tumor progression and enhances the anti-tumor immune response in a murine model of colon cancer. Comb. Chem. High Throughput Screen., 2023, 26(14), 2517-2526.
[http://dx.doi.org/10.2174/1386207326666230320103437] [PMID: 36959128]
[37]
Zhao, N.; Wang, W.; Jiang, H.; Qiao, Z.; Sun, S.; Wei, Y.; Xie, X.; Li, H.; Bi, X.; Yang, Z. Natural products and gastric cancer: Cellular mechanisms and effects to change cancer progression. Anticancer. Agents Med. Chem., 2023, 23(13), 1506-1518.
[http://dx.doi.org/10.2174/1871520623666230407082955] [PMID: 37026490]
[38]
Chan, W.J.J.; Adiwidjaja, J.; McLachlan, A.J.; Boddy, A.V.; Harnett, J.E. Interactions between natural products and cancer treatments: Underlying mechanisms and clinical importance. Cancer Chemother. Pharmacol., 2023, 91(2), 103-119.
[http://dx.doi.org/10.1007/s00280-023-04504-z] [PMID: 36707434]
[39]
Li, T.; Han, L.; Ma, S.; Lin, W.; Ba, X.; Yan, J.; Huang, Y.; Tu, S.; Qin, K. Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Front. Mol. Biosci., 2023, 10, 1140325.
[http://dx.doi.org/10.3389/fmolb.2023.1140325] [PMID: 36950522]
[40]
Li, J.; Jia, J.; Zhu, W.; Chen, J.; Zheng, Q.; Li, D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front. Pharmacol., 2023, 14, 1095786.
[http://dx.doi.org/10.3389/fphar.2023.1095786] [PMID: 36895945]
[41]
Li, J.; Li, F.; Jin, D. Ginsenosides are promising medicine for tumor and inflammation: A Review. Am. J. Chin. Med., 2023, 51(4), 883-908.
[http://dx.doi.org/10.1142/S0192415X23500416] [PMID: 37060192]
[42]
Zheng, Z.; Yan, G.; Xi, N.; Xu, X.; Zeng, Q.; Wu, Y.; Zheng, Y.; Zhang, G.; Wang, X. Triptolide induces apoptosis and autophagy in cutaneous squamous cell carcinoma via Akt/mTOR pathway. Anticancer. Agents Med. Chem., 2023, 23(13), 1596-1604.
[http://dx.doi.org/10.2174/1871520623666230413130417] [PMID: 37056067]
[43]
Zhou, H.; Wang, P.; Qin, X.; Zhang, X.; Lai, K.P.; Chen, J. Comparative transcriptomic analysis and mechanistic characterization revealed the use of formononetin for bladder cancer treatment. Food Funct., 2023, 14(12), 5787-5804.
[http://dx.doi.org/10.1039/D2FO03962A] [PMID: 37288590]
[44]
Hu, Y.; Zhai, W.; Tan, D.; Chen, H.; Zhang, G.; Tan, X.; Zheng, Y.; Gao, W.; Wei, Y.; Wu, J.; Yang, X. Uncovering the effects and molecular mechanism of Astragalus membranaceus (Fisch.) Bunge and its bioactive ingredients formononetin and calycosin against colon cancer: An integrated approach based on network pharmacology analysis coupled with experimental validation and molecular docking. Front. Pharmacol., 2023, 14, 1111912.
[http://dx.doi.org/10.3389/fphar.2023.1111912] [PMID: 36755950]
[45]
Chen, L.; Xing, D.; Guo, L.; Jin, J.; Li, S. Formononetin, an active component of astragalus membranaceus, inhibits the pathogenesis and progression of esophageal cancer through the COX-2/Cyclin D1 Axis. Clin. Lab., 2023, 69(03/2023), 69.
[http://dx.doi.org/10.7754/Clin.Lab.2022.220403] [PMID: 36912303]
[46]
Han, N.R.; Park, H.J.; Ko, S.G.; Moon, P.D. The mixture of natural products SH003 exerts anti-melanoma effects through the modulation of PD-L1 in B16F10 Cells. Nutrients, 2023, 15, 2790.
[47]
Cao, X.; Li, Q.; Li, X.; Liu, Q.; Liu, K.; Deng, T.; Weng, X.; Yu, Q.; Deng, W.; Yu, J.; Wang, Q.; Xiao, G.; Xu, X. Enhancing anticancer efficacy of formononetin microspheres via microfluidic fabrication. AAPS PharmSciTech, 2023, 24(8), 241.
[http://dx.doi.org/10.1208/s12249-023-02691-9] [PMID: 38017231]
[48]
Yang, B.; Wu, X.; Zeng, J.; Song, J.; Qi, T.; Yang, Y.; Liu, D.; Mo, Y.; He, M.; Feng, L.; Jia, X. A multi-component nano-co-delivery system utilizing astragalus polysaccharides as carriers for improving biopharmaceutical properties of astragalus flavonoids. Int. J. Nanomedicine, 2023, 18, 6705-6724.
[http://dx.doi.org/10.2147/IJN.S434196] [PMID: 38026532]
[49]
Guo, B.; Xu, D.; Liu, X.; Liao, C.; Li, S.; Huang, Z.; Li, X.; Yi, J. Characterization and cytotoxicity of PLGA nanoparticles loaded with formononetin cyclodextrin complex. J. Drug Deliv. Sci. Technol., 2017, 41, 375-383.
[http://dx.doi.org/10.1016/j.jddst.2017.08.010]
[50]
Zheng, L.; Xu, H.; Zhang, H.; Shi, C.; Zhou, W.; Zhang, X. Nanostructured lipid carrier as a strategy for encapsulation of formononetin and perilla seed oil: In vitro characterization and stability studies. Food Biosci., 2023, 53, 102707.
[http://dx.doi.org/10.1016/j.fbio.2023.102707]
[51]
Al-Saeedi, F.J. Asiaticoside increases caspase-9 activity in MCF-7 cells and inhibits TNF-α and IL-6 Expression in nude mouse xeno-grafts via the NF-κB pathway. Molecules, 2023, 28(5), 2101.
[http://dx.doi.org/10.3390/molecules28052101] [PMID: 36903346]
[52]
Bazsefidpar, P.; Eftekhar, E.; Jahromi, M.Z.; Nikpoor, A.R.; Moghadam, M.E.; Zolghadri, S. In-vitro cytotoxicity and in-vivo antitumor activity of two platinum complexes with 1,3-dimethyl pentyl glycine ligand against breast cancer. J. Inorg. Biochem., 2023, 241, 112144.
[http://dx.doi.org/10.1016/j.jinorgbio.2023.112144] [PMID: 36706492]
[53]
Zhou, Q.; Xiao, S.; Lin, R.; Li, C.; Chen, Z.; Chen, Y.; Luo, C.; Mo, Z.; Lin, Y. Polysaccharide of alocasia cucullata exerts antitumor effect by regulating Bcl-2, caspase-3 and ERK1/2 expressions during long-time administration. Chin. J. Integr. Med., 2023, 30(1), 52-61.
[http://dx.doi.org/10.1007/s11655-023-3700-6] [PMID: 37340203]
[54]
Xu, H.; Shen, X.; Li, X.; Yang, X.; Chen, C.; Luo, D. The natural product dehydrocurvularin induces apoptosis of gastric cancer cells by activating PARP-1 and caspase-3. Apoptosis, 2023, 28(3-4), 525-538.
[http://dx.doi.org/10.1007/s10495-023-01811-x] [PMID: 36652130]
[55]
Yang, Y.; Zhang, M.; Zhang, Y.; Liu, K.; Lu, C. 5-Fluorouracil suppresses colon tumor through activating the p53-Fas pathway to sensitize myeloid-derived suppressor cells to FasL+ cytotoxic T lymphocyte cytotoxicity. Cancers, 2023, 15(5), 1563.
[http://dx.doi.org/10.3390/cancers15051563] [PMID: 36900354]
[56]
Vieira, B.M.; de São José, V.S.; Niemeyer Filho, P.S.; Moura-Neto, V. Eosinophils induces glioblastoma cell suppression and apoptosis – Roles of GM-CSF and cysteinyl-leukotrienes. Int. Immunopharmacol., 2023, 123, 110729.
[http://dx.doi.org/10.1016/j.intimp.2023.110729] [PMID: 37536182]
[57]
Hatami, Z.; Hashemi, Z.S.; Eftekhary, M.; Amiri, A.; Karpisheh, V.; Nasrollahi, K.; Jafari, R. Natural killer cell-derived exosomes for cancer immunotherapy: Innovative therapeutics art. Cancer Cell Int., 2023, 23(1), 157.
[http://dx.doi.org/10.1186/s12935-023-02996-6] [PMID: 37543612]
[58]
Zhao, L.; Rao, X.; Zheng, R.; Huang, C.; Kong, R.; Yu, X.; Cheng, H.; Li, S. Targeting glutamine metabolism with photodynamic immuno-therapy for metastatic tumor eradication. J. Control. Release, 2023, 357, 460-471.
[http://dx.doi.org/10.1016/j.jconrel.2023.04.027] [PMID: 37068523]
[59]
Chen, Y.; Yang, P.; Wang, J.; Gao, S.; Xiao, S.; Zhang, W.; Zhu, M.; Wang, Y.; Ke, X.; Jing, H. p53 directly downregulates the expression of CDC20 to exert anti-tumor activity in mantle cell lymphoma. Exp. Hematol. Oncol., 2023, 12(1), 28.
[http://dx.doi.org/10.1186/s40164-023-00381-7] [PMID: 36882855]
[60]
Guan, L.; Yang, Y.; Lu, Y.; Chen, Y.; Luo, X.; Xin, D.; Meng, X.; Shan, Z.; Jiang, G.; Wang, F. Reactivation of mutant p53 in esophageal squamous cell carcinoma by isothiocyanate inhibits tumor growth. Front. Pharmacol., 2023, 14, 1141420.
[http://dx.doi.org/10.3389/fphar.2023.1141420] [PMID: 37168998]
[61]
Wei, C.; Du, J.; Shen, Y.; Wang, Z.; Lin, Q.; Chen, J.; Zhang, F.; Lin, W.; Wang, Z.; Yang, Z.; Ma, W. Anticancer effect of involucrasin A on colorectal cancer cells by modulating the Akt/MDM2/p53 pathway. Oncol. Lett., 2023, 25(6), 218.
[http://dx.doi.org/10.3892/ol.2023.13804] [PMID: 37153032]
[62]
Peng, B.Y.; Singh, A.K.; Chan, C.H.; Deng, Y.H.; Li, P.Y.; Su, C.W.; Wu, C.Y.; Deng, W.P. AGA induces sub-G1 cell cycle arrest and apoptosis in human colon cancer cells through p53-independent/p53-dependent pathway. BMC Cancer, 2023, 23(1), 1.
[http://dx.doi.org/10.1186/s12885-022-10466-x] [PMID: 36597025]
[63]
Gonzalo, Ó.; Benedi, A.; Vela, L.; Anel, A.; Naval, J.; Marzo, I. Study of the Bcl-2 interactome by BiFC reveals differences in the activation mechanism of Bax and Bak. Cells, 2023, 12(5), 800.
[http://dx.doi.org/10.3390/cells12050800] [PMID: 36899936]
[64]
Valko, Z.; Megyesfalvi, Z.; Schwendenwein, A.; Lang, C.; Paku, S.; Barany, N.; Ferencz, B.; Horvath-Rozsas, A.; Kovacs, I.; Schlegl, E.; Pozonec, V.; Boettiger, K.; Rezeli, M.; Marko-Varga, G.; Renyi-Vamos, F.; Hoda, M.A.; Klikovits, T.; Hoetzenecker, K.; Grusch, M.; Laszlo, V.; Dome, B.; Schelch, K. Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer. Br. J. Cancer, 2023, 128(10), 1850-1861.
[http://dx.doi.org/10.1038/s41416-023-02219-9] [PMID: 36918717]
[65]
Lei, L.; Qiao, X.; Siqi, Y.; Ke, Y. Effects of propofol combined with sufentanil target-controlled intravenous anesthesia on expression of Bax, Bcl-2, and caspase-3 genes in spontaneous hypertensive rats with cerebral hemorrhage: A prospective case-controlled study. Appl. Biochem. Biotechnol., 2023, 195(10), 6068-6080.
[http://dx.doi.org/10.1007/s12010-023-04378-0] [PMID: 36807871]
[66]
Escobar, E.; Gómez-Valenzuela, F.; Peñafiel, C.; Hormazábal-Hevia, A.; Herrera-Fuentes, C.; Mori-Aliaga, D. Immunohistochemical expression of COX-2, Ki-67, Bcl-2, Bax, VEGF and CD105 according to histological grading in oral squamous cell carcinoma. Rev. Esp. Patol., 2023, 56(3), 147-157.
[http://dx.doi.org/10.1016/j.patol.2023.02.005] [PMID: 37419553]
[67]
Czabotar, P.E.; Garcia-Saez, A.J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol., 2023, 24(10), 732-748.
[http://dx.doi.org/10.1038/s41580-023-00629-4] [PMID: 37438560]
[68]
Cai, E.W.; Zhao, C.; Wang, W.J.; Xu, Z.P.; Lin, F. Investigating the role of Zibai ointment on apoptosis‐related factors Bcl‐2 and Bax in wound healing after anal fistula surgery. Immun. Inflamm. Dis., 2023, 11(6), e912.
[http://dx.doi.org/10.1002/iid3.912] [PMID: 37382254]
[69]
Yang, L.; Wang, X.; Zhao, Y.; Xue, K.; Liang, J.; Wang, X.; Deng, J.; Qi, Z. An AIE luminogen targeting the endoplasmic reticulum inhibits cancer cell growth via multicellular organelle oxidative stress. Bioorg. Chem., 2023, 132, 106361.
[http://dx.doi.org/10.1016/j.bioorg.2023.106361] [PMID: 36720178]
[70]
Kang, M.S.; Kim, S.; Kim, D.S.; Yu, H.S.; Lee, J.E. The amoebicidal effect of Torreya nucifera extract on Acanthamoeba lugdunensis. PLoS One, 2023, 18(2), e0281141.
[http://dx.doi.org/10.1371/journal.pone.0281141] [PMID: 36745609]
[71]
Jannuzzi, A.T.; Korkmaz, N.S.; Gunaydin Akyildiz, A.; Arslan Eseryel, S.; Karademir Yilmaz, B.; Alpertunga, B. Molecular cardiotoxic effects of proteasome inhibitors carfilzomib and ixazomib and their combination with dexamethasone involve mitochondrial dysregulation. Cardiovasc. Toxicol., 2023, 23(3-4), 121-131.
[http://dx.doi.org/10.1007/s12012-023-09785-7] [PMID: 36809482]
[72]
Yang, X.; Zhang, S.; He, J.; Zhao, L.; Chen, L.; Yang, Y.; Wang, J.; Yan, L.; Zhang, T. Brazilin inhibits bladder cancer by promoting cell necroptosis. Clin. Exp. Pharmacol. Physiol., 2023, 50(9), 738-748.
[http://dx.doi.org/10.1111/1440-1681.13800] [PMID: 37321597]

© 2024 Bentham Science Publishers | Privacy Policy