Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Taraxerol: A Promising Natural Product in the Management of Inflammation

Author(s): Uma Jyoti, Neeraj Mittal, Thakur Gurjeet Singh, Randhir Singh and Sushma Devi*

Volume 15, Issue 1, 2025

Published on: 29 February, 2024

Article ID: e290224227560 Pages: 13

DOI: 10.2174/0122103155277711231204060922

Price: $65

Open Access Journals Promotions 2
Abstract

Inflammation is a complex biological process that plays an important role in many clinical disorders. The natural plant and its secondary metabolites play an important role in the prevention and treatment of inflammation. Taraxerol is a pentacyclic triterpenoid found in medicinal plants, fruits, and vegetables, and is a potent anti-inflammatory agent. This review explains the molecular mechanism of the anti-inflammatory effects of taraxerol and its interactions with many molecular targets, including NF-κB, MAPKs, and COX. Furthermore, the effects of taraxerol on oxidative stress, cell function, and inflammatory cell signaling have been comprehensively described. This review addresses the limitations and obstacles in taraxerol research, as well as provides insights for future investigations. The findings highlight the need for additional research to completely understand the therapeutic potential and clinical applications of taraxerol in the treatment of inflammatory diseases.

Keywords: Taraxerol, inflammation, proinflammatory mediator, MAPK, JAK/STAT, PI3K/AKT, Nrf2/ARE, COX, LOX pathway.

Graphical Abstract
[1]
Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[2]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[3]
Nathan, C.; Ding, A. Nonresolving Inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[4]
Foudah, A.I.; Devi, S.; Alqarni, M.H.; Alam, A.; Salkini, M.A.; Kumar, M.; Almalki, H.S. Quercetin Attenuates Nitroglycerin-Induced Migraine Headaches by Inhibiting Oxidative Stress and Inflammatory Mediators. Nutrients, 2022, 14(22), 4871.
[http://dx.doi.org/10.3390/nu14224871] [PMID: 36432556]
[5]
Alharthy, K.; Balaha, M.; Devi, S.; Altharawi, A.; Yusufoglu, H.; Aldossari, R.; Alam, A.; di Giacomo, V. Ameliorative Effects of Isoeugenol and Eugenol against Impaired Nerve Function and Inflammatory and Oxidative Mediators in Diabetic Neuropathic Rats. Biomedicines, 2023, 11(4), 1203.
[http://dx.doi.org/10.3390/biomedicines11041203] [PMID: 37189822]
[6]
Monda, E.; Palmiero, G.; Rubino, M.; Verrillo, F.; Amodio, F.; Di Fraia, F.; Pacileo, R.; Fimiani, F.; Esposito, A.; Cirillo, A.; Fusco, A.; Moscarella, E.; Frisso, G.; Russo, M.G.; Pacileo, G.; Calabrò, P.; Scudiero, O.; Caiazza, M.; Limongelli, G. Molecular basis of inflammation in the pathogenesis of cardiomyopathies. Int. J. Mol. Sci., 2020, 21(18), 6462.
[http://dx.doi.org/10.3390/ijms21186462] [PMID: 32899712]
[7]
Bungau, S.G.; Behl, T.; Singh, A.; Sehgal, A.; Singh, S.; Chigurupati, S.; Vijayabalan, S.; Das, S.; Palanimuthu, V.R. Targeting probiotics in rheumatoid arthritis. Nutrients, 2021, 13(10), 3376.
[http://dx.doi.org/10.3390/nu13103376] [PMID: 34684377]
[8]
Sprague, A.H.; Khalil, R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol., 2009, 78(6), 539-552.
[http://dx.doi.org/10.1016/j.bcp.2009.04.029] [PMID: 19413999]
[9]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[10]
Hamilton, A.C. Medicinal plants, conservation and livelihoods. Biodivers. Conserv., 2004, 13(8), 1477-1517.
[http://dx.doi.org/10.1023/B:BIOC.0000021333.23413.42]
[11]
Patwardhan, B. Traditional medicine: A novel approach for available, accessible and affordable health care; World Health Organization, 2005.
[12]
Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med., 2016, 11(1), 37.
[http://dx.doi.org/10.1186/s13020-016-0108-7] [PMID: 27478496]
[13]
Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J., 2018, 17, 420-451.
[PMID: 29805348]
[14]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl 1)(Suppl. 1), 69-75.
[http://dx.doi.org/10.1289/ehp.01109s169] [PMID: 11250806]
[15]
Iwalewa, E.O.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. Inflammation: The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. Afr. J. Biotechnol., 2007, 6(25)
[16]
Zafar, R.; Sharma, K. Occurrence of taraxerol and taraxasterol in medicinal plants. Pharmacogn. Rev., 2015, 9(17), 19-23.
[http://dx.doi.org/10.4103/0973-7847.156317] [PMID: 26009688]
[17]
Di Napoli, A.; Zucchetti, P. A comprehensive review of the benefits of Taraxacum officinale on human health. Bull. Natl. Res. Cent., 2021, 45(1), 110.
[http://dx.doi.org/10.1186/s42269-021-00567-1]
[18]
Aodah, A.H.; Devi, S.; Alkholifi, F.K.; Yusufoglu, H.S.; Foudah, A.I.; Alam, A. Effects of Taraxerol on Oxidative and Inflammatory Mediators in Isoproterenol-Induced Cardiotoxicity in an Animal Model. Molecules, 2023, 28(10), 4089.
[http://dx.doi.org/10.3390/molecules28104089] [PMID: 37241830]
[19]
Yao, X.; Li, G.; Bai, Q.; Xu, H.; Lü, C. Taraxerol inhibits LPS-induced inflammatory responses through suppression of TAK1 and Akt activation. Int. Immunopharmacol., 2013, 15(2), 316-324.
[http://dx.doi.org/10.1016/j.intimp.2012.12.032] [PMID: 23333629]
[20]
Swain, S.S.; Rout, K.K.; Chand, P.K. Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.). Appl. Biochem. Biotechnol., 2012, 168(3), 487-503.
[http://dx.doi.org/10.1007/s12010-012-9791-8] [PMID: 22843061]
[21]
Ranjith, D; Viswanath, S In silico antidiabetic activity of bioactive compounds in Ipomoea mauritiana Jacq. The Pharma Innov J., 2019, 8(10), 05-11.
[22]
Singh, B.; Sahu, P.M.; Sharma, M.K. Anti-inflammatory and antimicrobial activities of triterpenoids from Strobilanthes callosus Nees. Phytomedicine, 2002, 9(4), 355-359.
[http://dx.doi.org/10.1078/0944-7113-00143] [PMID: 12120818]
[23]
Chunhakant, S.; Chaicharoenpong, C. Antityrosinase, antioxidant, and cytotoxic activities of phytochemical constituents from Manilkara zapota L. Molecules, 2019, 24(15), 2798.
[http://dx.doi.org/10.3390/molecules24152798] [PMID: 31370334]
[24]
Sharma, K.; Zafar, R. Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures. Plant Physiol. Biochem., 2016, 103, 24-30.
[http://dx.doi.org/10.1016/j.plaphy.2016.02.029] [PMID: 26950922]
[25]
Beaton, J.M.; Spring, F.S.; Stevenson, R.; Stewart, J.L. Triterpenoids. Part XXXVII. The constitution of taraxerol. J.Chem. Soc.(Resumed), 1955, 1955, 2131-2137.
[26]
Kaennakam, S; Sichaem, J; Khumkratok, S; Siripong, P; Tip-pyang, S. A new taraxerol derivative from the roots of Microcos tomentosa. Nat Prod Commun, , 2013, 8(10), 1934578X1300801007.
[http://dx.doi.org/10.1177/1934578X1300801007]
[27]
Sangeetha, K.N.; Shilpa, K.; Jyothi Kumari, P.; Lakshmi, B.S. Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica. Phytomedicine, 2013, 20(3-4), 213-220.
[http://dx.doi.org/10.1016/j.phymed.2012.10.011] [PMID: 23219340]
[28]
Ahmed, D.; Tariq, S.A. In vitro study of antimicrobial and antioxidant activities of methanolic extracts of leaves, fruits and bark of Ficus glomerata. Int. J. Med. Aromat. Plants, 2012, 2, 30-33.
[29]
Yasukawa, K.; Matsubara, H.; Sano, Y. Inhibitory effect of the flowers of artichoke (Cynara cardunculus) on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin. J. Nat. Med., 2010, 64(3), 388-391.
[http://dx.doi.org/10.1007/s11418-010-0403-z] [PMID: 20225077]
[30]
Li, P.; Xu, G.; Li, S.P.; Wang, Y.T.; Fan, T.P.; Zhao, Q.S.; Zhang, Q.W. Optimizing ultraperformance liquid chromatographic analysis of 10 diterpenoid compounds in Salvia miltiorrhiza using central composite design. J. Agric. Food Chem., 2008, 56(4), 1164-1171.
[http://dx.doi.org/10.1021/jf073020u] [PMID: 18198831]
[31]
Li, P.; Yin, Z.Q.; Li, S.L.; Huang, X.J.; Ye, W.C.; Zhang, Q.W. Simultaneous determination of eight flavonoids and pogostone in Pogostemoncablin by high performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol., 2014, 37(12), 1771-1784.
[http://dx.doi.org/10.1080/10826076.2013.809545]
[32]
Zhou, Y.Q.; Zhang, Q.W.; Li, S.L.; Yin, Z.Q.; Zhang, X.Q.; Ye, W.C. Quality evaluation of semen oroxyli through simultaneous quantification of 13 components by high performance liquid chromatography. Curr. Pharm. Anal., 2012, 8(2), 206-213.
[http://dx.doi.org/10.2174/1573412911208020206]
[33]
Lin, J.Y.; Tang, C.Y. Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylactic effects on LPS-induced inflammation using murine peritoneal macrophages. Food Chem., 2008, 107(4), 1587-1596.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.025]
[34]
Kim, K.; Kwon, Y.G.; Chung, H.T.; Yun, Y.G.; Pae, H.O.; Han, J.A.; Ha, K.S.; Kim, T.W.; Kim, Y.M. Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-κB activation. Toxicol. Appl. Pharmacol., 2003, 190(1), 1-8.
[http://dx.doi.org/10.1016/S0041-008X(03)00152-2] [PMID: 12831777]
[35]
Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem., 2010, 122(4), 987-996.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.041]
[36]
Klein, M.A.; Möller, J.C.; Jones, L.L.; Bluethmann, H.; Kreutzberg, G.W.; Raivich, G. Impaired neuroglial activation in interleukin-6 deficient mice. Glia, 1997, 19(3), 227-233.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199703)19:3<227::AID-GLIA5>3.0.CO;2-W] [PMID: 9063729]
[37]
El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent., 2019, 43(1), 187.
[http://dx.doi.org/10.1186/s42269-019-0227-2]
[38]
Kawai, T.; Akira, S. TLR signaling. Cell Death Differ., 2006, 13(5), 816-825.
[http://dx.doi.org/10.1038/sj.cdd.4401850] [PMID: 16410796]
[39]
Ospelt, C.; Gay, S. TLRs and chronic inflammation. Int. J. Biochem. Cell Biol., 2010, 42(4), 495-505.
[http://dx.doi.org/10.1016/j.biocel.2009.10.010] [PMID: 19840864]
[40]
Katsargyris, A.; Klonaris, C.; Alexandrou, A.; Giakoustidis, A.E.; Vasileiou, I.; Theocharis, S. Toll like receptors in liver ischemia reperfusion injury: A novel target for therapeutic modulation? Expert Opin. Ther. Targets, 2009, 13(4), 427-442.
[http://dx.doi.org/10.1517/14728220902794939] [PMID: 19335065]
[41]
Rider, P.; Carmi, Y.; Voronov, E.; Apte, RN. Interleukin-1α. Seminars. Immunol., 2013, 25(6), 430-438.
[42]
Khanra, R.; Dewanjee, S.; Dua, T.K.; Bhattacharjee, N. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling. Biomed. Pharmacother., 2017, 88, 918-923.
[http://dx.doi.org/10.1016/j.biopha.2017.01.132] [PMID: 28178622]
[43]
Hong, J.F.; Song, YF.; Liu, Z.; Zheng, ZC.; Chen, HJ.; Wang, SS. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration retraction. Mol. Med. Rep., 2016, 13(6), 4541-4548.
[http://dx.doi.org/10.3892/mmr.2016.5105]
[44]
Liu, Z.; Deng, P.; Liu, S.; Bian, Y.; Xu, Y.; Zhang, Q.; Wang, H.; Pi, J. Is Nuclear Factor Erythroid 2-Related Factor 2 a Target for the Intervention of Cytokine Storms? Antioxidants, 2023, 12(1), 172.
[http://dx.doi.org/10.3390/antiox12010172] [PMID: 36671034]
[45]
Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(2), 585-597.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.005] [PMID: 27825853]
[46]
Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 2020, 25(22), 5474.
[http://dx.doi.org/10.3390/molecules25225474] [PMID: 33238435]
[47]
Park, C.M.; Cho, C.W.; Song, Y.S. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFκB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells. Food Chem. Toxicol., 2014, 66, 56-64.
[http://dx.doi.org/10.1016/j.fct.2014.01.019] [PMID: 24447978]
[48]
Dillon, M.; Lopez, A.; Lin, E.; Sales, D.; Perets, R.; Jain, P. Progress on Ras/MAPK signaling research and targeting in blood and solid cancers. Cancers (Basel), 2021, 13(20), 5059.
[http://dx.doi.org/10.3390/cancers13205059] [PMID: 34680208]
[49]
Kyriakis, J.M.; Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev., 2001, 81(2), 807-869.
[http://dx.doi.org/10.1152/physrev.2001.81.2.807] [PMID: 11274345]
[50]
Rao, K.M.K. MAP kinase activation in macrophages. J. Leukoc. Biol., 2001, 69(1), 3-10.
[http://dx.doi.org/10.1189/jlb.69.1.3] [PMID: 11200064]
[51]
Rincón, M.; Davis, R.J. Regulation of the immune response by stress‐activated protein kinases. Immunol. Rev., 2009, 228(1), 212-224.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00744.x] [PMID: 19290930]
[52]
Zhang, H.J.; Liao, H.Y.; Bai, D.Y.; Wang, Z.Q.; Xie, X.W. MAPK/ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration. Biomed. Pharmacother., 2021, 143, 112170.
[http://dx.doi.org/10.1016/j.biopha.2021.112170] [PMID: 34536759]
[53]
Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med., 2020, 19(3), 1997-2007.
[PMID: 32104259]
[54]
Fu, D.; Hu, Z.; Xu, X.; Dai, X.; Liu, Z. Key signal transduction pathways and crosstalk in cancer: Biological and therapeutic opportunities. Transl. Oncol., 2022, 26, 101510.
[http://dx.doi.org/10.1016/j.tranon.2022.101510] [PMID: 36122506]
[55]
Wang, X. The Role of SHP2 in Regulating Fibroblast Senescence and HER2-positive Breast Cancer; University of Toronto: Canada, 2018.
[56]
Wiegert, J.S.; Bading, H. Activity-dependent calcium signaling and ERK-MAP kinases in neurons: A link to structural plasticity of the nucleus and gene transcription regulation. Cell Calcium, 2011, 49(5), 296-305.
[http://dx.doi.org/10.1016/j.ceca.2010.11.009] [PMID: 21163523]
[57]
Roy, P.K.; Rashid, F.; Bragg, J.; Ibdah, J.A.; Hepatology, D.G.; Medicine, U.M.S. Columbia; Missouri; States, U. Role of the JNK signal transduction pathway in inflammatory bowel disease. World J. Gastroenterol., 2008, 14(2), 200-202.
[http://dx.doi.org/10.3748/wjg.14.200] [PMID: 18186555]
[58]
Barr, R.K.; Bogoyevitch, M.A. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int. J. Biochem. Cell Biol., 2001, 33(11), 1047-1063.
[http://dx.doi.org/10.1016/S1357-2725(01)00093-0] [PMID: 11551821]
[59]
Son, Y.; Cheong, YK.; Kim, NH.; Chung, HT.; Kang, DG.; Pae, HO. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways. J. Signal Transduct., 2011, 2011, 792639.
[60]
Yamasaki, T.; Kawasaki, H.; Nishina, H. Diverse Roles of JNK and MKK Pathways in the Brain. J. Signal Transduct., 2012, 2012, 459265.
[http://dx.doi.org/10.1155/2012/459265]
[61]
Li, W.; Yang, G.L.; Zhu, Q.; Zhong, X.H.; Nie, Y.C.; Li, X.H.; Wang, Y. TLR4 promotes liver inflammation by activating the JNK pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(17), 7655-7662.
[PMID: 31539158]
[62]
Guan, Z.; Buckman, S.Y.; Pentland, A.P.; Templeton, D.J.; Morrison, A.R. Induction of cyclooxygenase-2 by the activated MEKK1 --> SEK1/MKK4 --> p38 mitogen-activated protein kinase pathway. J. Biol. Chem., 1998, 273(21), 12901-12908.
[http://dx.doi.org/10.1074/jbc.273.21.12901] [PMID: 9582321]
[63]
Badger, A.M.; Cook, M.N.; Lark, M.W.; Newman-Tarr, T.M.; Swift, B.A.; Nelson, A.H.; Barone, F.C.; Kumar, S. SB 203580 inhibits p38 mitogen-activated protein kinase, nitric oxide production, and inducible nitric oxide synthase in bovine cartilage-derived chondrocytes. J. Immunol., 1998, 161(1), 467-473.
[http://dx.doi.org/10.4049/jimmunol.161.1.467] [PMID: 9647257]
[64]
Wagner, E.F.; Nebreda, Á.R. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat. Rev. Cancer, 2009, 9(8), 537-549.
[http://dx.doi.org/10.1038/nrc2694] [PMID: 19629069]
[65]
Cuenda, A.; Rousseau, S. p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta Mol. Cell Res., 2007, 1773(8), 1358-1375.
[http://dx.doi.org/10.1016/j.bbamcr.2007.03.010] [PMID: 17481747]
[66]
Saklatvala, J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol., 2004, 4(4), 372-377.
[http://dx.doi.org/10.1016/j.coph.2004.03.009] [PMID: 15251131]
[67]
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet., 2006, 7(8), 606-619.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[68]
Tang, F.; Wang, Y.; Hemmings, BA.; Rüegg, C.; Xue, G. PKB/Akt-dependent regulation of inflammation in cancer. Seminars. Cancer Biol., 2018, 48, 62-69.
[69]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[70]
Guo, H.; German, P.; Bai, S.; Barnes, S.; Guo, W.; Qi, X.; Lou, H.; Liang, J.; Jonasch, E.; Mills, G.B.; Ding, Z. The PI3K/AKT pathway and renal cell carcinoma. J. Genet. Genomics, 2015, 42(7), 343-353.
[http://dx.doi.org/10.1016/j.jgg.2015.03.003] [PMID: 26233890]
[71]
Cravero, J.D.; Carlson, C.S.; Im, H.J.; Yammani, R.R.; Long, D.; Loeser, R.F. Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin‐like growth factor 1–mediated cell survival and proteoglycan synthesis. Arthritis Rheum., 2009, 60(2), 492-500.
[http://dx.doi.org/10.1002/art.24225] [PMID: 19180501]
[72]
Ojaniemi, M.; Glumoff, V.; Harju, K.; Liljeroos, M.; Vuori, K.; Hallman, M. Phosphatidylinositol 3‐kinase is involved in Toll‐like receptor 4‐mediated cytokine expression in mouse macrophages. Eur. J. Immunol., 2003, 33(3), 597-605.
[http://dx.doi.org/10.1002/eji.200323376] [PMID: 12616480]
[73]
Choi, M.C.; Jo, J.; Park, J.; Kang, H.K.; Park, Y. NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells, 2019, 8(7), 734.
[http://dx.doi.org/10.3390/cells8070734] [PMID: 31319599]
[74]
Hu, Z.C.; Gong, L.F.; Li, X.B.; Fu, X.; Xuan, J.W.; Feng, Z.H.; Ni, W.F. Inhibition of PI3K/Akt/NF‐κB signaling with leonurine for ameliorating the progression of osteoarthritis: In vitro and in vivo studies. J. Cell. Physiol., 2019, 234(5), 6940-6950.
[http://dx.doi.org/10.1002/jcp.27437] [PMID: 30417459]
[75]
Xue, J.F.; Shi, Z.M.; Zou, J.; Li, X.L. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed. Pharmacother., 2017, 89, 1252-1261.
[http://dx.doi.org/10.1016/j.biopha.2017.01.130] [PMID: 28320092]
[76]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[77]
Darnell, J.E., Jr; Kerr, M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994, 264(5164), 1415-1421.
[http://dx.doi.org/10.1126/science.8197455] [PMID: 8197455]
[78]
Darnell, J.E. Jr STATs and gene regulation. Science, 1997, 277(5332), 1630-1635.
[http://dx.doi.org/10.1126/science.277.5332.1630] [PMID: 9287210]
[79]
Levy, D.E.; Darnell, J.E. Jr STATs: Transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 651-662.
[http://dx.doi.org/10.1038/nrm909] [PMID: 12209125]
[80]
Stark, G.R.; Kerr, I.M.; Williams, B.R.G.; Silverman, R.H.; Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem., 1998, 67(1), 227-264.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.227] [PMID: 9759489]
[81]
Shuai, K.; Horvath, C.M.; Huang, L.H.T.; Qureshi, S.A.; Cowburn, D.; Darnell, J.E. Jr Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell, 1994, 76(5), 821-828.
[http://dx.doi.org/10.1016/0092-8674(94)90357-3] [PMID: 7510216]
[82]
Igaz, P.; Tóth, S.; Falus, A. Biological and clinical significance of the JAK-STAT pathway; lessons from knockout mice. Inflamm. Res., 2001, 50(9), 435-441.
[http://dx.doi.org/10.1007/PL00000267] [PMID: 11603847]
[83]
Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol., 2018, 15(4), 234-248.
[http://dx.doi.org/10.1038/nrclinonc.2018.8] [PMID: 29405201]
[84]
O’Shea, JJ.; Schwartz, DM.; Villarino, AV.; Gadina, M.; McInnes, IB.; Laurence, A.; Schwartz, DM.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med., 2015, 66(1), 311-328.
[http://dx.doi.org/10.1146/annurev-med-051113-024537]
[85]
Malemud, C.; Pearlman, E. Targeting JAK/STAT signaling pathway in inflammatory diseases. Curr. Signal Transduct. Ther., 2009, 4(3), 201-221.
[http://dx.doi.org/10.2174/157436209789057467]
[86]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[87]
Sun, S.C. Non-canonical NF-κB signaling pathway. Cell Res., 2011, 21(1), 71-85.
[http://dx.doi.org/10.1038/cr.2010.177] [PMID: 21173796]
[88]
Ulrich, C.M.; Bigler, J.; Potter, J.D. Non-steroidal anti-inflammatory drugs for cancer prevention: Promise, perils and pharmacogenetics. Nat. Rev. Cancer, 2006, 6(2), 130-140.
[http://dx.doi.org/10.1038/nrc1801] [PMID: 16491072]
[89]
Rehman, U.U.; Shah, J.; Khan, M.A.; Shah, M.R. Ishtiaq; Khan, I. Molecular docking of taraxerol acetate as a new COX inhibitor. Bangladesh J. Pharmacol., 2013, 8(2), 194-197.
[http://dx.doi.org/10.3329/bjp.v8i2.14167]
[90]
Zhang, X.; Zhou, W.; Niu, Y.; Zhu, S.; Zhang, Y.; Li, X.; Yu, C. Lysyl oxidase promotes renal fibrosis via accelerating collagen cross‐link driving by β‐arrestin/ERK/STAT3 pathway. FASEB J., 2022, 36(8), e22427.
[http://dx.doi.org/10.1096/fj.202200573R] [PMID: 35792886]
[91]
Huang, L.; Zhao, A.; Wong, F.; Ayala, J.M.; Struthers, M.; Ujjainwalla, F.; Wright, S.D.; Springer, M.S.; Evans, J.; Cui, J. Leukotriene B4 strongly increases monocyte chemoattractant protein-1 in human monocytes. Arterioscler. Thromb. Vasc. Biol., 2004, 24(10), 1783-1788.
[http://dx.doi.org/10.1161/01.ATV.0000140063.06341.09] [PMID: 15271789]
[92]
Mawa, S.; Husain, K.; Jantan, I. Triterpenes with 5-Lipoxigenase (5-LOX) and Xanthine Oxidase (XOD) inhibitory activity from the stem of Ficus Aurantiaca Griff. Open Conf. Proc. J., 2013, 4(1), 73.
[93]
Prachi, S.; Pradeep, T. 13α-methyl-27-norolean-14-en-3β-ol, a Triterpene oid isolated from the Stem of Euphorbia Hirta (Linn) Possess an Anti-asthmatic Properties. Res J Chem Sci., 2014, 2231, 606.
[94]
Bharti, A.C.; Donato, N.; Singh, S.; Aggarwal, B.B. Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor–κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood, 2003, 101(3), 1053-1062.
[http://dx.doi.org/10.1182/blood-2002-05-1320] [PMID: 12393461]
[95]
Khan, S.; Shehzad, O.; Jin, H.G.; Woo, E.R.; Kang, S.S.; Baek, S.W.; Kim, J.; Kim, Y.S. Anti-inflammatory mechanism of 15,16-epoxy-3α-hydroxylabda-8,13(16),14-trien-7-one via inhibition of LPS-induced multicellular signaling pathways. J. Nat. Prod., 2012, 75(1), 67-71.
[http://dx.doi.org/10.1021/np200666t] [PMID: 22233348]
[96]
Li, Y.; Feng, L.; Li, G.; An, J.; Zhang, S.; Li, J.; Liu, J.; Ren, J.; Yang, L.; Qi, Z. Resveratrol prevents ISO-induced myocardial remodeling associated with regulating polarization of macrophages through VEGF-B/AMPK/NF-kB pathway. Int. Immunopharmacol., 2020, 84, 106508.
[http://dx.doi.org/10.1016/j.intimp.2020.106508] [PMID: 32339921]
[97]
Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients, 2010, 2(3), 355-374.
[http://dx.doi.org/10.3390/nu2030355] [PMID: 22254027]
[98]
Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iranian journal of pharmaceutical research. Iran. J. Pharm. Res., 2011, 10(4), 655-683.
[PMID: 24250402]
[99]
Mus, A.A.; Goh, L.P.W.; Marbawi, H.; Gansau, J.A. The Biosynthesis and Medicinal Properties of Taraxerol. Biomedicines, 2022, 10(4), 807.
[http://dx.doi.org/10.3390/biomedicines10040807] [PMID: 35453556]
[100]
Liu, Z.; Kumar, M.; Devi, S.; Kabra, A. Corrigendum: The Mechanisms of Cucurbitacin E as a Neuroprotective and Memory-Enhancing Agent in a Cerebral Hypoperfusion Rat Model: Attenuation of Oxidative Stress, Inflammation, and Excitotoxicity. Front. Pharmacol., 2022, 12, 844464.
[http://dx.doi.org/10.3389/fphar.2021.844464] [PMID: 35126156]
[101]
Chopra, H.; Dey, P.S.; Das, D.; Bhattacharya, T.; Shah, M.; Mubin, S.; Maishu, S.P.; Akter, R.; Rahman, M.H.; Karthika, C.; Murad, W.; Qusty, N.; Qusti, S.; Alshammari, E.M.; Batiha, G.E.S.; Altalbawy, F.M.A.; Albooq, M.I.M.; Alamri, B.M. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules, 2021, 26(16), 4998.
[http://dx.doi.org/10.3390/molecules26164998] [PMID: 34443593]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy