Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Improving Type 2 Diabetes Care with Extended-Release Metformin: Real-Life Insights from a Physician Educational Program

Author(s): Laura Molteni*, Giuseppe Marelli, Giona Castagna, Luciano Brambilla, Maurizio Acerbis, Fabio Alberghina, Antonio Carpani, Erika Chiavenna, Maria Grazia Ferlini, Carmen Impellizzeri, Roberto Paredi, Alberto Rigamonti, Giuseppe Rivolta and Olga Eugenia Disoteo

Volume 24, Issue 12, 2024

Published on: 28 February, 2024

Page: [1422 - 1430] Pages: 9

DOI: 10.2174/0118715303294909240221102552

open access plus

Open Access Journals Promotions 2
Abstract

Background: Compared to Immediate-Release (IR) metformin, Extended-Release (ER) metformin reduces side effects and pill burden while improving adherence; however, there is little real-life data on patient satisfaction with this innovative formulation to guide physicians toward a more holistic approach.

Objective: Our goal is to train general practitioners on holistic patient management, with the aim of increasing patient satisfaction and treatment adherence, reducing side effects, and improving quality of life in patients with poor tolerance to metformin-IR.

Materials and Methods: We designed an educational program for physicians called SlowDiab, aimed at establishing a holistic patient approach. In this context, adult patients with T2DM who experienced gastrointestinal discomfort with metformin-IR were enrolled and switched to metformin- ER. Data on glycemic control were collected at baseline and 2 months after switching. A survey was carried out on patients to assess their level of satisfaction.

Results: In 69 enrolled patients (mean (min-max) age, 68.2 (41-90)), side effects decreased after switching from 61.8% to 16.2% (p < 0.01), and the mean perceived burden of adverse events on a scale of 1 to 10 also decreased (6.17 vs. 3.82; p < 0.05). Among patients previously intolerant to metformin-IR, 74.3% reported no longer experiencing any side effects after the switch. The mean number of tablets taken daily (2.28 vs. 1.66; p < 0.01) and mean plasma glycated hemoglobin (HbA1c) values (7.0% vs. 6.7%; p < 0.05) decreased, while 93.8% of patients were satisfied with the treatment change. Moreover, 84.2% reported an improvement in glycemic control after the switch.

Conclusion: In a real-life setting, an educational program for general practitioners confirmed that metformin ER reduces side effects and improves pill burden, therapeutic adherence, and patient satisfaction compared to metformin IR.

Keywords: Type 2 diabetes mellitus, extended-release metformin, satisfaction, adherence, tolerability, glycated hemoglobin, side effects.

Graphical Abstract
[1]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
International Diabetes Federation Diabetes around the world in 2021., 2021. Available from: https://diabetesatlas.org
[3]
World Health Organization. Health topics: Diabetes. Available from: https://www.who.int/health-topics/diabetes
[4]
American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes—2021. Diabetes Care, 2021, 44(S1), S111-S124.
[http://dx.doi.org/10.2337/dc21-S009] [PMID: 33298420]
[5]
Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; Huikuri, H.V.; Johansson, I.; Jüni, P.; Lettino, M.; Marx, N.; Mellbin, L.G.; Östgren, C.J.; Rocca, B.; Roffi, M.; Sattar, N.; Seferović, P.M.; Sousa-Uva, M.; Valensi, P.; Wheeler, D.C.; Piepoli, M.F.; Birkeland, K.I.; Adamopoulos, S.; Ajjan, R.; Avogaro, A.; Baigent, C.; Brodmann, M.; Bueno, H.; Ceconi, C.; Chioncel, O.; Coats, A.; Collet, J-P.; Collins, P.; Cosyns, B.; Di Mario, C.; Fisher, M.; Fitzsimons, D.; Halvorsen, S.; Hansen, D.; Hoes, A.; Holt, R.I.G.; Home, P.; Katus, H.A.; Khunti, K.; Komajda, M.; Lambrinou, E.; Landmesser, U.; Lewis, B.S.; Linde, C.; Lorusso, R.; Mach, F.; Mueller, C.; Neumann, F-J.; Persson, F.; Petersen, S.E.; Petronio, A.S.; Richter, D.J.; Rosano, G.M.C.; Rossing, P.; Rydén, L.; Shlyakhto, E.; Simpson, I.A.; Touyz, R.M.; Wijns, W.; Wilhelm, M.; Williams, B.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; Huikuri, H.V.; Johansson, I.; Jüni, P.; Lettino, M.; Marx, N.; Mellbin, L.G.; Östgren, C.J.; Rocca, B.; Roffi, M.; Sattar, N.; Seferović, P.M.; Sousa-Uva, M.; Valensi, P.; Wheeler, D.C.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J-P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.E.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.E.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Zelveian, P.H.; Scherr, D.; Jahangirov, T.; Lazareva, I.; Shivalkar, B.; Naser, N.; Gruev, I.; Milicic, D.; Petrou, P.M.; Linhart, A.; Hildebrandt, P.; Hasan-Ali, H.; Marandi, T.; Lehto, S.; Mansourati, J.; Kurashvili, R.; Siasos, G.; Lengyel, C.; Thrainsdottir, I.S.; Aronson, D.; Di Lenarda, A.; Raissova, A.; Ibrahimi, P.; Abilova, S.; Trusinskis, K.; Saade, G.; Benlamin, H.; Petrulioniene, Z.; Banu, C.; Magri, C.J.; David, L.; Boskovic, A.; Alami, M.; Liem, A.H.; Bosevski, M.; Svingen, G.F.T.; Janion, M.; Gavina, C.; Vinereanu, D.; Nedogoda, S.; Mancini, T.; Ilic, M.D.; Fabryova, L.; Fras, Z.; Jiménez-Navarro, M.F.; Norhammar, A.; Lehmann, R.; Mourali, M.S.; Ural, D.; Nesukay, E.; Chowdhury, T.A. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J., 2020, 41(2), 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[6]
Mannucci, E.; Candido, R.; Monache, L.; Gallo, M.; Giaccari, A.; Masini, M.L.; Mazzone, A.; Medea, G.; Pintaudi, B.; Targher, G.; Trento, M.; Turchetti, G.; Lorenzoni, V.; Monami, M. Italian guidelines for the treatment of type 2 diabetes. Acta Diabetol., 2022, 59(5), 579-622.
[http://dx.doi.org/10.1007/s00592-022-01857-4] [PMID: 35288805]
[7]
World Health Organization model list of essential medicines. 2019. Available from: https://iris.who.int/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf?sequence=1
[8]
LaMoia, T.E.; Shulman, G.I. Cellular and molecular mechanisms of metformin action. Endocr. Rev., 2021, 42(1), 77-96.
[http://dx.doi.org/10.1210/endrev/bnaa023] [PMID: 32897388]
[9]
Tarry-Adkins, J.L.; Grant, I.D.; Ozanne, S.E.; Reynolds, R.M.; Aiken, C.E. Efficacy and side effect profile of different formulations of metformin: A systematic review and meta-analysis. Diabetes Ther., 2021, 12(7), 1901-1914.
[http://dx.doi.org/10.1007/s13300-021-01058-2] [PMID: 34075573]
[10]
Giorda, C.B. Slow release metformin (SR): A new formulation to improve the tolerability and adherence problems of traditional metformin. AMD J., 2014, 17, 78-83.
[11]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[12]
McCreight, L.J.; Bailey, C.J.; Pearson, E.R. Metformin and the gastrointestinal tract. Diabetologia, 2016, 59(3), 426-435.
[http://dx.doi.org/10.1007/s00125-015-3844-9] [PMID: 26780750]
[13]
Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab., 2014, 20(6), 953-966.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[14]
Zhang, C.; Ma, S.; Wu, J.; Luo, L.; Qiao, S.; Li, R.; Xu, W.; Wang, N.; Zhao, B.; Wang, X.; Zhang, Y.; Wang, X. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacol. Res., 2020, 159, 104985.
[http://dx.doi.org/10.1016/j.phrs.2020.104985] [PMID: 32504839]
[15]
Baur, J.A.; Birnbaum, M.J. Control of gluconeogenesis by metformin: does redox trump energy charge? Cell Metab., 2014, 20(2), 197-199.
[http://dx.doi.org/10.1016/j.cmet.2014.07.013] [PMID: 25100057]
[16]
Cao, J.; Meng, S.; Chang, E.; Fickas, B.K.; Xiong, L.; Cole, R.N.; Radovick, S.; Wondisford, F.E.; He, L. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J. Biol. Chem., 2014, 289(30), 20435-20446.
[http://dx.doi.org/10.1074/jbc.M114.567271] [PMID: 24928508]
[17]
El-Mir, M.Y.; Nogueira, V.; Fontaine, E.; Avéret, N.; Rigoulet, M.; Leverve, X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem., 2000, 275(1), 223-228.
[http://dx.doi.org/10.1074/jbc.275.1.223] [PMID: 10617608]
[18]
Foretz, M.; Hébrard, S.; Leclerc, J.; Zarrinpashneh, E.; Soty, M.; Mithieux, G.; Sakamoto, K.; Andreelli, F.; Viollet, B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest., 2010, 120(7), 2355-2369.
[http://dx.doi.org/10.1172/JCI40671] [PMID: 20577053]
[19]
Fullerton, M.D.; Galic, S.; Marcinko, K.; Sikkema, S.; Pulinilkunnil, T.; Chen, Z.P.; O’Neill, H.M.; Ford, R.J.; Palanivel, R.; O’Brien, M.; Hardie, D.G.; Macaulay, S.L.; Schertzer, J.D.; Dyck, J.R.B.; van Denderen, B.J.; Kemp, B.E.; Steinberg, G.R. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med., 2013, 19(12), 1649-1654.
[http://dx.doi.org/10.1038/nm.3372] [PMID: 24185692]
[20]
Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways. Pharmacogenet. Genomics, 2012, 22(11), 820-827.
[http://dx.doi.org/10.1097/FPC.0b013e3283559b22] [PMID: 22722338]
[21]
Hawley, S.A.; Ross, F.A.; Chevtzoff, C.; Green, K.A.; Evans, A.; Fogarty, S.; Towler, M.C.; Brown, L.J.; Ogunbayo, O.A.; Evans, A.M.; Hardie, D.G. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab., 2010, 11(6), 554-565.
[http://dx.doi.org/10.1016/j.cmet.2010.04.001] [PMID: 20519126]
[22]
He, L.; Sabet, A.; Djedjos, S.; Miller, R.; Sun, X.; Hussain, M.A.; Radovick, S.; Wondisford, F.E. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell, 2009, 137(4), 635-646.
[http://dx.doi.org/10.1016/j.cell.2009.03.016] [PMID: 19450513]
[23]
He, L.; Meng, S.; Germain-Lee, E.L.; Radovick, S.; Wondisford, F.E. Potential biomarker of metformin action. J. Endocrinol., 2014, 221(3), 363-369.
[http://dx.doi.org/10.1530/JOE-14-0084] [PMID: 24639469]
[24]
Madiraju, A.K.; Erion, D.M.; Rahimi, Y.; Zhang, X.M.; Braddock, D.T.; Albright, R.A.; Prigaro, B.J.; Wood, J.L.; Bhanot, S.; MacDonald, M.J.; Jurczak, M.J.; Camporez, J.P.; Lee, H.Y.; Cline, G.W.; Samuel, V.T.; Kibbey, R.G.; Shulman, G.I. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature, 2014, 510(7506), 542-546.
[http://dx.doi.org/10.1038/nature13270] [PMID: 24847880]
[25]
Zhang, Q.; Hu, N. Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes., 2020, 13, 5003-5014.
[http://dx.doi.org/10.2147/DMSO.S286430] [PMID: 33364804]
[26]
Morgan, X.C.; Tickle, T.L.; Sokol, H.; Gevers, D.; Devaney, K.L.; Ward, D.V.; Reyes, J.A.; Shah, S.A.; LeLeiko, N.; Snapper, S.B.; Bousvaros, A.; Korzenik, J.; Sands, B.E.; Xavier, R.J.; Huttenhower, C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol., 2012, 13(9), R79.
[http://dx.doi.org/10.1186/gb-2012-13-9-r79] [PMID: 23013615]
[27]
Zhang, W.; Xu, J.H.; Yu, T.; Chen, Q.K. Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed. Pharmacother., 2019, 118, 109131.
[http://dx.doi.org/10.1016/j.biopha.2019.109131] [PMID: 31545226]
[28]
Bujang, M.A.; Adnan, T.H.; Hatta, M.N.K.B.; Ismail, M.; Lim, C.J. A revised version of diabetes quality of life instrument maintaining domains for satisfaction, impact, and worry. J. Diabetes Res., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/5804687] [PMID: 30327784]
[29]
Abrilla, A.A.; Pajes, A.N.N.I.; Jimeno, C.A. Metformin extended-release versus metformin immediate-release for adults with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract., 2021, 178, 108824.
[http://dx.doi.org/10.1016/j.diabres.2021.108824] [PMID: 33887354]
[30]
Jabbour, S.; Ziring, B. Advantages of extended-release metformin in patients with type 2 diabetes mellitus. Postgrad. Med., 2011, 123(1), 15-23.
[http://dx.doi.org/10.3810/pgm.2011.01.2241] [PMID: 21293080]
[31]
Bonnet, F.; Scheen, A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes. Metab., 2017, 19(4), 473-481.
[http://dx.doi.org/10.1111/dom.12854] [PMID: 27987248]
[32]
Fujita, Y.; Inagaki, N. Metformin: New preparations and nonglycemic benefits. Curr. Diab. Rep., 2017, 17(1), 5.
[http://dx.doi.org/10.1007/s11892-017-0829-8] [PMID: 28116648]
[33]
Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the study of Diabetes (EASD). Diabetes Care, 2012, 35(6), 1364-1379.
[http://dx.doi.org/10.2337/dc12-0413] [PMID: 22517736]
[34]
Hirst, J.A.; Farmer, A.J.; Ali, R.; Roberts, N.W.; Stevens, R.J. Quantifying the effect of metformin treatment and dose on glycemic control. Diabetes Care, 2012, 35(2), 446-454.
[http://dx.doi.org/10.2337/dc11-1465] [PMID: 22275444]
[35]
Dujic, T.; Zhou, K.; Donnelly, L.A.; Tavendale, R.; Palmer, C.N.A.; Pearson, E.R. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: A GoDARTS study. Diabetes, 2015, 64(5), 1786-1793.
[http://dx.doi.org/10.2337/db14-1388] [PMID: 25510240]
[36]
Bailey, C.J.; Wilcock, C.; Scarpello, J.H.B. Metformin and the intestine. Diabetologia, 2008, 51(8), 1552-1553.
[http://dx.doi.org/10.1007/s00125-008-1053-5] [PMID: 18528677]
[37]
Christofides, E.A. Practical insights into improving adherence to metformin therapy in patients with type 2 diabetes. Clin. Diabetes, 2019, 37(3), 234-241.
[http://dx.doi.org/10.2337/cd18-0063] [PMID: 31371854]
[38]
Feher, M.D.; Al-Mrayat, M.; Brake, J.; Leong, K.S. Tolerability of prolonged-release metformin (Glucophage® SR) in individuals intolerant to standard metformin - results from four UK centres. Br. J. Diabetes Vasc. Dis., 2007, 7(5), 225-228.
[http://dx.doi.org/10.1177/14746514070070050501]
[39]
Blonde, L.; Dailey, G.E.; Jabbour, S.A.; Reasner, C.A.; Mills, D.J. Gastrointestinal tolerability of extended-release metformin tablets compared to immediate-release metformin tablets: Results of a retrospective cohort study. Curr. Med. Res. Opin., 2004, 20(4), 565-572.
[http://dx.doi.org/10.1185/030079904125003278] [PMID: 15119994]
[40]
Timmins, P.; Donahue, S.; Meeker, J.; Marathe, P. Steady-state pharmacokinetics of a novel extended-release metformin formulation. Clin. Pharmacokinet., 2005, 44(7), 721-729.
[http://dx.doi.org/10.2165/00003088-200544070-00004] [PMID: 15966755]
[41]
Tan, J.; Wang, Y.; Liu, S.; Shi, Q.; Zhou, X.; Zhou, Y.; Yang, X.; Chen, P.; Li, S. Long-acting metformin vs. metformin immediate release in patients with type 2 diabetes: A systematic review. Front. Pharmacol., 2021, 12, 669814.
[http://dx.doi.org/10.3389/fphar.2021.669814] [PMID: 34079464]
[42]
Perdigones, D.C.M.; Garach, M.A.; Bermúdez, A.M.D.; Indias, M.I.; Tinahones, F.J. Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomed. Pharmacother., 2022, 145, 112448.
[http://dx.doi.org/10.1016/j.biopha.2021.112448] [PMID: 34844104]
[43]
Prattichizzo, F.; Giuliani, A.; Mensà, E.; Sabbatinelli, J.; De Nigris, V.; Rippo, M.R.; La Sala, L.; Procopio, A.D.; Olivieri, F.; Ceriello, A. Pleiotropic effects of metformin: Shaping the microbiome to manage type 2 diabetes and postpone ageing. Ageing Res. Rev., 2018, 48, 87-98.
[http://dx.doi.org/10.1016/j.arr.2018.10.003] [PMID: 30336272]
[44]
Syafhan, N.F.; Donnelly, R.; Harper, R.; Harding, J.; Mulligan, C.; Hogg, A.; Scott, M.; Fleming, G.; Scullin, C.; Hawwa, A.F.; Chen, G.; Parsons, C.; McElnay, J.C. Adherence to metformin in adults with type 2 diabetes: A combined method approach. J. Pharm. Policy Pract., 2022, 15(1), 61.
[http://dx.doi.org/10.1186/s40545-022-00457-5] [PMID: 36224634]
[45]
Manicardi, V.; Adinolfi, V.; Alessi, E.; Aglialoro, A. Indicators of clinical inertia in DM2. The monographs of the AMD annals 2020, association of italian diabetologists. 2020. Available from: https://aemmedi.it/wp-content/uploads/2021/01/Monografia_25_1_2021-prot.pdf
[46]
Scheen, A.J. Will delayed release metformin provide better management of diabetes type 2? Expert Opin. Pharmacother., 2016, 17(5), 627-630.
[http://dx.doi.org/10.1517/14656566.2016.1149166] [PMID: 26830975]
[47]
Rodriguez, P.; Martin, S.V.T.; Pantalone, K.M. Therapeutic inertia in the management of type 2 diabetes: A narrative review. Diabetes Ther., 2024, 2024, 1-7.
[http://dx.doi.org/10.1007/s13300-024-01530-9]
[48]
Farmer, A.J.; Rodgers, L.R.; Lonergan, M.; Shields, B.; Weedon, M.N.; Donnelly, L.; Holman, R.R.; Pearson, E.R.; Hattersley, A. Adherence to oral glucose-lowering therapies and associations with 1-year HbA1c: A retrospective cohort analysis in a large primary care database. Diabetes Care, 2016, 39(2), 258-263.
[http://dx.doi.org/10.2337/dc15-1194]
[49]
Curtis, S.E.; Boye, K.S.; Lage, M.J.; Perez, G.L.E. Medication adherence and improved outcomes among patients with type 2 diabetes. Am. J. Manag. Care, 2017, 23(7), e208-e214.
[PMID: 28850793]
[50]
Khunti, K.; Seidu, S.; Kunutsor, S.; Davies, M. Association between adherence to pharmacotherapy and outcomes in type 2 diabetes: A meta-analysis. Diabetes Care, 2017, 40(11), 1588-1596.
[http://dx.doi.org/10.2337/dc16-1925] [PMID: 28801474]
[51]
Ho, P.M.; Rumsfeld, J.S.; Masoudi, F.A.; McClure, D.L.; Plomondon, M.E.; Steiner, J.F.; Magid, D.J. Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. Arch. Intern. Med., 2006, 166(17), 1836-1841.
[http://dx.doi.org/10.1001/archinte.166.17.1836] [PMID: 17000939]
[52]
Peh, K.Q.E.; Kwan, Y.H.; Goh, H.; Ramchandani, H.; Phang, J.K.; Lim, Z.Y.; Loh, D.H.F.; Østbye, T.; Blalock, D.V.; Yoon, S.; Bosworth, H.B.; Low, L.L.; Thumboo, J. An adaptable framework for factors contributing to medication adherence: Results from a systematic review of 102 conceptual frameworks. J. Gen. Intern. Med., 2021, 36(9), 2784-2795.
[http://dx.doi.org/10.1007/s11606-021-06648-1] [PMID: 33660211]
[53]
Dolgin, K. The SPUR model: A framework for considering patient behavior. Patient Prefer. Adherence, 2020, 14, 97-105.
[http://dx.doi.org/10.2147/PPA.S237778] [PMID: 32021121]
[54]
Reach, G. A novel conceptual framework for understanding the mechanism of adherence to long term therapies. Patient Prefer. Adherence, 2008, 2, 7-19.
[PMID: 19920939]
[55]
Reach, G. The mental mechanisms of patient adherence to long term therapies. In: Philosophy and Medicine; Springer International Publishing: Switzerland, 2015.
[http://dx.doi.org/10.1007/978-3-319-12265-6]
[56]
Chacra, A.R. Evolving metformin treatment strategies in type-2 diabetes: From immediate-release metformin monotherapy to extended-release combination therapy. Am. J. Ther., 2014, 21(3), 198-210.
[http://dx.doi.org/10.1097/MJT.0b013e318235f1bb] [PMID: 22314210]
[57]
Kartoun, U.; Iglay, K.; Shankar, R.R.; Beam, A.; Radican, L.; Chatterjee, A.; Pai, J.K.; Shaw, S. Factors associated with clinical inertia in type 2 diabetes mellitus patients treated with metformin monotherapy. Curr. Med. Res. Opin., 2019, 35(12), 2063-2070.
[http://dx.doi.org/10.1080/03007995.2019.1648116] [PMID: 31337263]
[58]
Mahabaleshwarkar, R.; Gohs, F.; Mulder, H.; Wilkins, N.; DeSantis, A.; Anderson, W.E.; Ejzykowicz, F.; Rajpathak, S.; Norton, H.J. Patient and provider factors affecting clinical inertia in patients with type 2 diabetes on metformin monotherapy. Clin. Ther., 2017, 39(8), 1658-1670.e6.
[http://dx.doi.org/10.1016/j.clinthera.2017.06.011] [PMID: 28689692]
[59]
King, P.; Peacock, I.; Donnelly, R. The UK Prospective Diabetes Study (UKPDS): Clinical and therapeutic implications for type 2 diabetes. Br. J. Clin. Pharmacol., 1999, 48(5), 643-648.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00092.x] [PMID: 10594464]
[60]
Khunti, K.; Seidu, S. Therapeutic inertia and the legacy of dysglycemia on the microvascular and macrovascular complications of diabetes. Diabetes Care, 2019, 42(3), 349-351.
[http://dx.doi.org/10.2337/dci18-0030] [PMID: 30787057]
[61]
Kaewbut, P.; Kosachunhanun, N.; Phrommintikul, A.; Chinwong, D.; Hall, J.J.; Chinwong, S. Effect of clinical inertia on diabetes complications among individuals with type 2 diabetes: A retrospective cohort study. Medicina, 2021, 58(1), 63.
[http://dx.doi.org/10.3390/medicina58010063] [PMID: 35056371]
[62]
Khunti, S.; Khunti, K.; Seidu, S. Therapeutic inertia in type 2 diabetes: Prevalence, causes, consequences and methods to overcome inertia. Ther. Adv. Endocrinol. Metab., 2019, 10, 2042018819844694.
[http://dx.doi.org/10.1177/2042018819844694] [PMID: 31105931]
[63]
Okemah, J.; Peng, J.; Quiñones, M. Addressing clinical inertia in type 2 diabetes mellitus: A review. Adv. Ther., 2018, 35(11), 1735-1745.
[http://dx.doi.org/10.1007/s12325-018-0819-5] [PMID: 30374807]
[64]
Reach, G.; Pechtner, V.; Gentilella, R.; Corcos, A.; Ceriello, A. Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus. Diabetes Metab., 2017, 43(6), 501-511.
[http://dx.doi.org/10.1016/j.diabet.2017.06.003] [PMID: 28754263]
[65]
Schroeder, E.B. Management of type 2 diabetes: Selecting amongst available pharmacological agents. In: Endotext;; Feingold, K. R.; Anawalt, B.; Blackman, M. R.; Boyce, A.; Chrousos, G.; Corpas, E.; de Herder, W. W.; Dhatariya, K.; Dungan, K.; Hofland, J.; Kalra, S.; Kaltsas, G.; Kapoor, N.; Koch, C.; Kopp, P.; Korbonits, M.; Kovacs, C.S.; Kuohung, W.; Laferrère, B.; Levy, M.; McGee, E.A.; McLachlan, R.; New, M.; Purnell, J.; Sahay, R.; Shah, A.S.; Singer, F.; Sperling, M.A.; Stratakis, C.A.; Trence, D.L.; Wilson, D.P., Eds.; MDText.com, Inc.: South Dartmouth (MA), 2000.
[66]
Handelsman, Y.; Butler, J.; Bakris, G.L.; DeFronzo, R.A.; Fonarow, G.C.; Green, J.B.; Grunberger, G.; Januzzi, J.L., Jr; Klein, S.; Kushner, P.R.; McGuire, D.K.; Michos, E.D.; Morales, J.; Pratley, R.E.; Weir, M.R.; Wright, E.; Fonseca, V.A. Early intervention and intensive management of patients with diabetes, cardiorenal, and metabolic diseases. J. Diabetes Complications, 2023, 37(2), 108389.
[http://dx.doi.org/10.1016/j.jdiacomp.2022.108389] [PMID: 36669322]
[67]
Andreozzi, F.; Candido, R.; Corrao, S.; Fornengo, R.; Giancaterini, A.; Ponzani, P.; Ponziani, M.C.; Tuccinardi, F.; Mannino, D. Clinical inertia is the enemy of therapeutic success in the management of diabetes and its complications: A narrative literature review. Diabetol. Metab. Syndr., 2020, 12(1), 52.
[http://dx.doi.org/10.1186/s13098-020-00559-7] [PMID: 32565924]
[68]
Bain, S.C.; Hansen, B.B.; Hunt, B.; Chubb, B.; Valentine, W.J. Evaluating the burden of poor glycemic control associated with therapeutic inertia in patients with type 2 diabetes in the UK. J. Med. Econ., 2020, 23(1), 98-105.
[http://dx.doi.org/10.1080/13696998.2019.1645018] [PMID: 31311364]
[69]
Osataphan, S.; Chalermchai, T.; Ngaosuwan, K. Clinical inertia causing new or progression of diabetic retinopathy in type 2 diabetes: A retrospective cohort study. J. Diabetes, 2017, 9(3), 267-274.
[http://dx.doi.org/10.1111/1753-0407.12410] [PMID: 27092709]
[70]
Cruz, Z.J.N.; Apolinar, M.L.; Flores, A.M.L.; Gonzalez, G.A.; Ahumada, N.A.G.; González, C.N. Health and quality of life outcomes impairment of quality of life in type 2 diabetes mellitus: A cross-sectional study. Health Qual. Life Outcomes, 2018, 16(1), 94.
[http://dx.doi.org/10.1186/s12955-018-0906-y] [PMID: 29764429]
[71]
Jain, V.; Shivkumar, S.; Gupta, O.P. Health-related quality of life (Hr-Qol) in patients with type 2 diabetes mellitus. N. Am. J. Med. Sci., 2014, 6(2), 96-101.
[http://dx.doi.org/10.4103/1947-2714.127752] [PMID: 24696831]
[72]
Giugliano, D.; Maiorino, M.I.; Bellastella, G.; Esposito, K. Clinical inertia, reverse clinical inertia, and medication non-adherence in type 2 diabetes. J. Endocrinol. Invest., 2019, 42(5), 495-503.
[http://dx.doi.org/10.1007/s40618-018-0951-8] [PMID: 30291589]

© 2024 Bentham Science Publishers | Privacy Policy