Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Marine Seaweed Polysaccharides: An Insight into Biological Activities and Biomedical Applications

Author(s): Jegadeshwari B. and Saraswathy S.D.*

Volume 14, Issue 9, 2024

Published on: 22 February, 2024

Article ID: e220224227339 Pages: 18

DOI: 10.2174/0122103155273481240215073356

Price: $65

Abstract

Natural products from various sources play a major role in the healthcare sector, mainly in the pharmaceutical, cosmetic, agro and medical divisions. Polysaccharides are one of the important biomacromolecules present in higher plants, animals, fungi and algae, and aid in the growth and development of an organism. They play a vital role in regulating and maintaining cellular homeostasis in all forms of life. They are considered bioactive polymers and possess promising beneficial effects on human health without any harmful side effects. Among different biopolymers, polysaccharides have gained greater attention in the area of natural products and biomedical research due to their unique physio-chemical properties, bioactivities and health-promoting effects. The molecular structure of the polysaccharides is highly complex, depending on their origin and the structural diversity. Carbohydrate polymers differ largely based on their molecular weight, composition, functional derivatives, pattern of glycosidic linkages and degree of polymerization. In recent years, seaweed polysaccharides have been identified in large numbers and are effectively used by the food and biotechnology industries for the production of nutraceutical and pharmaceutical products. Several researches have demonstrated the biological activities of seaweed polysaccharides such as antioxidant, antiviral, hypoglycemic, antidiabetic, antitumor and immunomodulatory. Moreover, there has been a substantial increase in the utilization of natural polymeric biomaterials in the biomedical field. This review summarizes the diverse biological effects of polysaccharides derived from different types of seaweeds as well as their biomedical applications. The information reviewed here provides an insight into the biopotential efficiency of algal-based polysaccharides, further help in the development of novel pharmaceutical and biomedical products.

Keywords: Biological activity, biomaterials, brown seaweed, green seaweed, marine algae, red seaweed, seaweed polysaccharides.

Graphical Abstract
[1]
Zheng, L.X.; Chen, X.Q.; Cheong, K.L. Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential. Int. J. Biol. Macromol., 2020, 151(2), 344-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.168] [PMID: 32084473]
[2]
Šimat, V. Elabed, N.; Kulawik, P.; Ceylan, Z.; Jamroz, E.; Yazgan, H.; Čagalj, M.; Regenstein, J.M.; Özogul, F. Recent advances in marine-based nutraceuticals and their health benefits. Mar. Drugs, 2020, 18(12), 627-666.
[http://dx.doi.org/10.3390/md18120627] [PMID: 33317025]
[3]
Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine algae-derived bioactive compounds: A new wave of nanodrugs? Mar. Drugs, 2021, 19(9), 484-519.
[http://dx.doi.org/10.3390/md19090484] [PMID: 34564146]
[4]
Francezon, N.; Tremblay, A.; Mouget, J.L.; Pasetto, P.; Beaulieu, L. Algae as a source of natural flavors in innovative foods. J. Agric. Food Chem., 2021, 69(40), 11753-11772.
[http://dx.doi.org/10.1021/acs.jafc.1c04409] [PMID: 34597023]
[5]
Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive polysaccharides from seaweeds. Molecules, 2020, 25(14), 3152-3180.
[http://dx.doi.org/10.3390/molecules25143152] [PMID: 32660153]
[6]
Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules, 2016, 21(5), 551-566.
[http://dx.doi.org/10.3390/molecules21050551] [PMID: 27128892]
[7]
Jönsson, M.; Allahgholi, L.; Sardari, R.R.R.; Hreggviðsson, G.O.; Nordberg Karlsson, E. Extraction and modification of macroalgal polysaccharides for current and next-generation applications. Molecules, 2020, 25(4), 930-958.
[http://dx.doi.org/10.3390/molecules25040930] [PMID: 32093097]
[8]
Ozogul, F.; Elabed, N.; Ceylan, Z.; Ocak, E.; Ozogul, Y. Nano-technological approaches for plant and marine-based polysaccharides for nano-encapsulations and their applications in food industry. Adv. Food Nutr. Res., 2021, 97, 187-236.
[http://dx.doi.org/10.1016/bs.afnr.2021.02.017] [PMID: 34311900]
[9]
Lee, Y.E.; Kim, H.; Seo, C.; Park, T.; Lee, K.B.; Yoo, S.Y.; Hong, S.C.; Kim, J.T.; Lee, J. Marine polysaccharides: Therapeutic efficacy and biomedical applications. Arch. Pharm. Res., 2017, 40(9), 1006-1020.
[http://dx.doi.org/10.1007/s12272-017-0958-2] [PMID: 28918561]
[10]
Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym., 2018, 183(22), 91-101.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.009] [PMID: 29352896]
[11]
Lu, W.; Yang, Z.; Chen, J.; Wang, D.; Zhang, Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr. Polym., 2021, 272(12), 118526.
[http://dx.doi.org/10.1016/j.carbpol.2021.118526] [PMID: 34420760]
[12]
Yao, W.; Qiu, H.M.; Cheong, K.L.; Zhong, S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int. J. Biol. Macromol., 2022, 221(1), 472-485.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.055] [PMID: 36089081]
[13]
Yang, Z.; Wang, H.; Liu, N.; Zhao, K.; Sheng, Y.; Pang, H.; Shao, K.; Zhang, M.; Li, S.; He, N. Algal polysaccharides and derivatives as potential therapeutics for obesity and related metabolic diseases. Food Funct., 2022, 13(22), 11387-11409.
[http://dx.doi.org/10.1039/D2FO02185D] [PMID: 36281657]
[14]
Zheng, Y.; Li, Y.; Yang, Y.; Zhang, Y.; Wang, D.; Wang, P.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Recent advances in bioutilization of marine macroalgae carbohydrates: Degradation, metabolism, and fermentation. J. Agric. Food Chem., 2022, 70(5), 1438-1453.
[http://dx.doi.org/10.1021/acs.jafc.1c07267] [PMID: 35089725]
[15]
Rodríguez Sánchez, R.A.; Matulewicz, M.C.; Ciancia, M. NMR spectroscopy for structural elucidation of sulfated polysaccharides from red seaweeds. Int. J. Biol. Macromol., 2022, 199(5), 386-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.080] [PMID: 34973978]
[16]
Feng, Y.; Wassie, T.; Gan, R.; Wu, X. Structural characteristics and immunomodulatory effects of sulfated polysaccharides derived from marine algae. Crit. Rev. Food Sci. Nutr., 2023, 63(24), 7180-7196.
[http://dx.doi.org/10.1080/10408398.2022.2043823] [PMID: 35193454]
[17]
Manlusoc, J.K.T.; Hsieh, C.L.; Hsieh, C.Y.; Salac, E.S.N.; Lee, Y.T.; Tsai, P.W. Pharmacologic application potentials of sulfated polysaccharide from marine algae. Polymers, 2019, 11(7), 1163.
[http://dx.doi.org/10.3390/polym11071163] [PMID: 31288474]
[18]
Zhu, Z.; Han, Y.; Ding, Y.; Zhu, B.; Song, S.; Xiao, H. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Compr. Rev. Food Sci. Food Saf., 2021, 20(3), 2882-2913.
[http://dx.doi.org/10.1111/1541-4337.12754] [PMID: 33884748]
[19]
Arokiarajan, M.S.; Thirunavukkarasu, R.; Joseph, J.; Ekaterina, O.; Aruni, W. Advance research in biomedical applications on marine sulfated polysaccharide. Int. J. Biol. Macromol., 2022, 194(8), 870-881.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.142] [PMID: 34843816]
[20]
Shen, S.; Chen, X.; Shen, Z.; Chen, H. Marine polysaccharides for wound dressings application: An overview. Pharmaceutics, 2021, 13(10), 1666.
[http://dx.doi.org/10.3390/pharmaceutics13101666] [PMID: 34683959]
[21]
Wang, Z.; Xu, Z.; Yang, X.; Li, M.; Yip, R.C.S.; Li, Y.; Chen, H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. Biomaterials Advances, 2023, 154(11), 213580.
[http://dx.doi.org/10.1016/j.bioadv.2023.213580] [PMID: 37634336]
[22]
Siddhanta, A.K.; Sanandiya, N.D.; Chejara, D.R.; Kondaveeti, S. Functional modification mediated value addition of seaweed polysaccharides – a perspective. RSC Advances, 2015, 5(73), 59226-59239.
[http://dx.doi.org/10.1039/C5RA09027J]
[23]
Adrien, A.; Bonnet, A.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Anticoagulant activity of sulfated ulvan isolated from the green macroalga Ulva rigida. Mar. Drugs, 2019, 17(5), 291.
[http://dx.doi.org/10.3390/md17050291] [PMID: 31091758]
[24]
Pangestuti, R.; Kurnianto, D. Green seaweeds-derived polysaccharides ulvan: Occurrence, medicinal value and potential applications. In: Seaweed Polysaccharides; Elsevier, 2017; pp. 205-221.
[http://dx.doi.org/10.1016/B978-0-12-809816-5.00011-6]
[25]
Cindana Mo’o, F.R.; Wilar, G.; Devkota, H.P.; Wathoni, N. Ulvan, a polysaccharide from macroalga Ulva sp.: A review of chemistry, biological activities and potential for food and biomedical applications. Appl. Sci., 2020, 10(16), 5488.
[http://dx.doi.org/10.3390/app10165488]
[26]
Madany, M.A.; Abdel-Kareem, M.S.; Al-Oufy, A.K.; Haroun, M.; Sheweita, S.A. The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. Int. J. Biol. Macromol., 2021, 177(1), 401-412.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.047] [PMID: 33577821]
[27]
Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Technol., 2015, 50(1), 24-31.
[http://dx.doi.org/10.1111/ijfs.12692]
[28]
Jacobsen, C.; Sørensen, A.D.M.; Holdt, S.L.; Akoh, C.C.; Hermund, D.B. Source, extraction, characterization, and applications of novel antioxidants from seaweed. Annu. Rev. Food Sci. Technol., 2019, 10(1), 541-568.
[http://dx.doi.org/10.1146/annurev-food-032818-121401] [PMID: 30673506]
[29]
Dobrinčić, A.; Jurić, M.; Nenadić, M.; Zorić, Z.; Pedisić, S.; Dragović- Uzelac, V. Microwave-assisted extraction of polysaccharides from brown algae cystoseira compressa. 2020, Cham: Springer International Publishing; 333-339.
[http://dx.doi.org/10.1007/978-3-031-04797-8_29]
[30]
Cajnko, M.M.; Novak, U.; Likozar, B. Cascade valorization process of brown alga seaweed Laminaria hyperborea by isolation of polyphenols and alginate. J. Appl. Phycol., 2019, 31(6), 3915-3924.
[http://dx.doi.org/10.1007/s10811-019-01901-x]
[31]
Montes, L.; Gisbert, M.; Hinojosa, I.; Sineiro, J.; Moreira, R. Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Carbohydr. Polym., 2021, 272, 118455.
[http://dx.doi.org/10.1016/j.carbpol.2021.118455] [PMID: 34420715]
[32]
Purcell-Meyerink, D.; Packer, M.A.; Wheeler, T.T.; Hayes, M. Aquaculture production of the brown seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in food and pharmaceuticals. Molecules, 2021, 26(5), 1306.
[http://dx.doi.org/10.3390/molecules26051306] [PMID: 33671085]
[33]
Kaidi, S.; Bentiss, F.; Jama, C.; Khaya, K.; Belattmania, Z.; Reani, A.; Sabour, B. Isolation and structural characterization of alginates from the kelp species Laminaria ochroleuca and Saccorhiza polyschides from the atlantic coast of Morocco. Colloids and Interfaces, 2022, 6(4), 51.
[http://dx.doi.org/10.3390/colloids6040051]
[34]
Zhao, Y.; Zheng, Y.; Wang, J.; Ma, S.; Yu, Y.; White, W.; Yang, S.; Yang, F.; Lu, J. Fucoidan extracted from Undaria pinnatifida: Source for nutraceuticals/functional foods. Mar. Drugs, 2018, 16(9), 321.
[http://dx.doi.org/10.3390/md16090321] [PMID: 30205616]
[35]
Hsu, W.J.; Lin, M.H.; Kuo, T.C.; Chou, C.M.; Mi, F.L.; Cheng, C.H.; Lin, C.W. Fucoidan from Laminaria japonica exerts antitumor effects on angiogenesis and micrometastasis in triple-negative breast cancer cells. Int. J. Biol. Macromol., 2020, 149(1), 600-608.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.256] [PMID: 32004612]
[36]
Yu, G.; Zhang, Q.; Wang, Y.; Yang, Q.; Yu, H.; Li, H.; Chen, J.; Fu, L. Sulfated polysaccharides from red seaweed Gelidium amansii: Structural characteristics, anti-oxidant and anti-glycation properties, and development of bioactive films. Food Hydrocoll., 2021, 119(8), 106820.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106820]
[37]
Silva, M.M.C.L.; dos Santos Lisboa, L.; Paiva, W.S.; Batista, L.A.N.C.; Luchiari, A.C.; Rocha, H.A.O.; Camara, R.B.G. Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus. Int. J. Biol. Macromol., 2022, 216, 757-767.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.110] [PMID: 35870628]
[38]
Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; Ellis, P.R.; Shewry, P.R. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr., 2017, 57(2), 237-253.
[http://dx.doi.org/10.1080/10408398.2014.939263] [PMID: 25921546]
[39]
Van Dam, J.E.; van den Broek, L.A.; Boeriu, C.G. Polysaccharides in human health care. Nat. Prod. Commun., 2017, 12(6), 821-830.
[http://dx.doi.org/10.1177/1934578X1701200604]
[40]
Barbosa, A.I.; Coutinho, A.J.; Costa Lima, S.A.; Reis, S. Marine polysaccharides in pharmaceutical applications: Fucoidan and chitosan as key players in the drug delivery match field. Mar. Drugs, 2019, 17(12), 654.
[http://dx.doi.org/10.3390/md17120654] [PMID: 31766498]
[41]
Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules, 2019, 24(22), 4182.
[http://dx.doi.org/10.3390/molecules24224182] [PMID: 31752200]
[42]
Vavilala, S.L.; D’Souza, J.S. Algal polysaccharides and their biological applications. In: Marine algae extracts: Processes, products, and applications; Se-Kwon Kim; Chojmacka, K., Ed.; Wiley, 2015; pp. 411-452.
[http://dx.doi.org/10.1002/9783527679577.ch26]
[43]
Usman, A.; Khalid, S.; Usman, A.; Hussain, Z.; Wang, Y. Algal polysaccharides, novel application, and outlook. In: Algae based polymers, blends, and composites; Elsevier, 2017; pp. 115-153.
[http://dx.doi.org/10.1016/B978-0-12-812360-7.00005-7]
[44]
Padmesh, S.; Singh, A. Agars: Properties and applications. In: Polysaccharides: properties and applications; Inamuddin, I.; Ahamed, M.I.; Boddula, R.; Altalhi, T., Eds.; Wiley, 2021; pp. 75-93.
[http://dx.doi.org/10.1002/9781119711414.ch5]
[45]
Gregersen, S.; Kongsted, A.S.H.; Nielsen, R.B.; Hansen, S.S.; Lau, F.A.; Rasmussen, J.B.; Holdt, S.L.; Jacobsen, C. Enzymatic extraction improves intracellular protein recovery from the industrial carrageenan seaweed Eucheuma denticulatum revealed by quantitative, subcellular protein profiling: A high potential source of functional food ingredients. Food Chem. X, 2021, 12(1), 100137.
[http://dx.doi.org/10.1016/j.fochx.2021.100137] [PMID: 34746746]
[46]
Rupert, R.; Rodrigues, K.F.; Thien, V.Y.; Yong, W.T.L. Carrageenan from Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, structure, production, and application. Front. Plant Sci., 2022, 13, 859635.
[http://dx.doi.org/10.3389/fpls.2022.859635] [PMID: 35620679]
[47]
Zank, P.D.; Cerveira, M.M.; Santos, V.B.; Klein, V.P.; Souza, T.T.; Bueno, D.T.; Poletti, T.; Leitzke, A.F.; Luehring Giongo, J.; Carreño, N.L.V.; Mansilla, A.; Astorga-España, M.S.; Pereira, C.M.P.; Vaucher, R.A. Carrageenan from Gigartina skottsbergii: A novel molecular probe to detect SARS-CoV-2. Biosensors, 2023, 13(3), 378.
[http://dx.doi.org/10.3390/bios13030378] [PMID: 36979590]
[48]
Saluri, M.; Kaljuvee, K.L.; Paalme, T.; Reile, I.; Tuvikene, R. Structural variability and rheological properties of furcellaran. Food Hydrocoll., 2021, 111(2), 106227.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106227]
[49]
Kim, S.B.; Zoepfl, M.; Samanta, P.; Zhang, F.; Xia, K.; Thara, R.; Linhardt, R.J.; Doerksen, R.J.; McVoy, M.A.; Pomin, V.H. Fractionation of sulfated galactan from the red alga Botryocladia occidentalis separates its anticoagulant and anti-SARS-CoV-2 properties. J. Biol. Chem., 2022, 298(5), 101856.
[http://dx.doi.org/10.1016/j.jbc.2022.101856] [PMID: 35337800]
[50]
Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int., 2015, 74(8), 10-36.
[http://dx.doi.org/10.1016/j.foodres.2015.04.018] [PMID: 28411973]
[51]
Cho, S.; Kang, S.; Cho, J.; Kim, A.; Park, S.; Hong, Y.K.; Ahn, D.H. The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food, 2007, 10(3), 479-485.
[http://dx.doi.org/10.1089/jmf.2006.099] [PMID: 17887942]
[52]
Li, Y.; Fu, X.; Duan, D.; Liu, X.; Xu, J.; Gao, X. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey). Setchell. Mar. Drugs, 2017, 15(2), 49-64.
[http://dx.doi.org/10.3390/md15020049] [PMID: 28230766]
[53]
Savage, P.E. Chemistry. Algae under pressure and in hot water. Science, 2012, 338(6110), 1039-1040.
[http://dx.doi.org/10.1126/science.1224310] [PMID: 23180853]
[54]
Zhang, Z.; Wang, F.; Wang, X.; Liu, X.; Hou, Y.; Zhang, Q. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydr. Polym., 2010, 82(1), 118-121.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.031]
[55]
long, X.; yan, Q.; cai, L.; li, G.; luo, X. Box-Behnken design-based optimization for deproteinization of crude polysaccharides in Lycium barbarum berry residue using the Sevag method. Heliyon, 2020, 6(5), e03888-e03888.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03888] [PMID: 32420477]
[56]
Seedevi, P.; Ramu Ganesan, A.; Moovendhan, M.; Mohan, K.; Sivasankar, P.; Loganathan, S.; Vairamani, S.; Shanmugam, A. Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on Streptozotocin (STZ)-induced in Wistar rats. Sci. Rep., 2020, 10(1), 556.
[http://dx.doi.org/10.1038/s41598-020-57486-w] [PMID: 31953455]
[57]
Fajriah, S.; Rizki, I.F.; Sinurat, E. Characterization and analysis of the antidiabetic activities of sulphated polysaccharide extract from Caulerpa lentillifera. Pharmacia, 2021, 68(4), 869-875.
[http://dx.doi.org/10.3897/pharmacia.68.e73158]
[58]
Thu, Q.T.; Luong, D.V.; Tam, N.Q.; Nu, N.T.; Nhung, L.T.; Thuy, T.T. Structure and cytotoxic activity of a sulfated polysaccharide from green seaweed Caulerpa racemose collected on Nha Trang bay, Viet Nam. Vietnam J. Chem., 2023, 61(S3), 59-64.
[http://dx.doi.org/10.1002/vjch.202300058]
[59]
Aluta, U.P.; Aderolu, A.Z.; Ishola, I.O.; Alyassin, M.; Morris, G.A.; Olajide, O.A. Chemical characterisation of sulfated polysaccharides from the red seaweed Centroceras clavulatum and their in vitro immunostimulatory and antioxidant properties. Food Hydrocolloids for Health, 2023, 3(1-2), 100135.
[http://dx.doi.org/10.1016/j.fhfh.2023.100135]
[60]
Qin, L.; Yang, Y.; Hao, J.; He, X.; Liu, S.; Chu, X.; Mao, W. Antidiabetic-activity sulfated polysaccharide from Chaetomorpha linum: Characteristics of its structure and effects on oxidative stress and mitochondrial function. Int. J. Biol. Macromol., 2022, 207(1), 333-345.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.129] [PMID: 35227705]
[61]
Qi, J.; Kim, S.M. Characterization and immunomodulatory activities of polysaccharides extracted from green alga Chlorella ellipsoidea. Int. J. Biol. Macromol., 2017, 95, 106-114.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.039] [PMID: 27856321]
[62]
Siddiqui, N.Z.; Rehman, A.U.; Yousuf, W. khan, A.I.; Farooqui, N.A.; Zang, S.; Xin, Y.; Wang, L. Effect of crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) on gut microbiota restoration and anti-diabetic activity in streptozotocin (STZ)-induced T1DM mice. Gut Pathog., 2022, 14(1), 39.
[http://dx.doi.org/10.1186/s13099-022-00512-1] [PMID: 36115959]
[63]
Qin, L.; Xu, H.; He, Y.; Liang, C.; Wang, K.; Cao, J.; Qu, C.; Miao, J. Purification, chemical characterization and immunomodulatory activity of a sulfated polysaccharide from marine brown algae Durvillaea antarctica. Mar. Drugs, 2022, 20(4), 223.
[http://dx.doi.org/10.3390/md20040223] [PMID: 35447896]
[64]
Khongthong, S.; Theapparat, Y.; Roekngam, N.; Tantisuwanno, C.; Otto, M.; Piewngam, P. Characterization and immunomodulatory activity of sulfated galactan from the red seaweed Gracilaria fisheri. Int. J. Biol. Macromol., 2021, 189(1), 705-714.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.182] [PMID: 34474051]
[65]
Cao, S.; Yang, Y.; Liu, S.; Shao, Z.; Chu, X.; Mao, W. Immunomodulatory activity in vitro and in vivo of a sulfated polysaccharide with novel structure from the green Alga Ulva conglobata Kjellman. Mar. Drugs, 2022, 20(7), 447.
[http://dx.doi.org/10.3390/md20070447] [PMID: 35877740]
[66]
Sun, Y.; Hou, S.; Song, S.; Zhang, B.; Ai, C.; Chen, X.; Liu, N. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides. Int. J. Biol. Macromol., 2018, 112, 985-995.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.066] [PMID: 29447968]
[67]
Liu, Y.; Wu, X.; Jin, W.; Guo, Y. Immunomodulatory effects of a low-molecular weight polysaccharide from Enteromorpha prolifera on RAW 264.7 macrophages and cyclophosphamide-induced immunosuppression mouse models. Mar. Drugs, 2020, 18(7), 340.
[http://dx.doi.org/10.3390/md18070340] [PMID: 32605327]
[68]
Jose, G.M.; Kurup, G.M. The efficacy of sulfated polysaccharides from Padina tetrastromatica in modulating the immune functions of RAW 264.7 cells. Biomed. Pharmacother., 2017, 88, 677-683.
[http://dx.doi.org/10.1016/j.biopha.2017.01.094] [PMID: 28152476]
[69]
Zhang, Z.; Wang, X.; Zhao, M.; Yu, S.; Qi, H. The immunological and antioxidant activities of polysaccharides extracted from Enteromorpha linza. Int. J. Biol. Macromol., 2013, 57, 45-49.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.006] [PMID: 23500444]
[70]
Kim, H.J.; Kim, W.J.; Koo, B.W.; Kim, D.W.; Lee, J.H.; Nugroho, W.S.K. Anticancer activity of sulfated polysaccharides isolated from the Antarctic red seaweed Iridaea cordata. Ocean Polar Res., 2016, 38(2), 129-137.
[http://dx.doi.org/10.4217/OPR.2016.38.2.129]
[71]
Menshova, R.V.; Anastyuk, S.D.; Ermakova, S.P.; Shevchenko, N.M.; Isakov, V.I.; Zvyagintseva, T.N. Structure and anticancer activity in vitro of sulfated galactofucan from brown alga Alaria angusta. Carbohydr. Polym., 2015, 132, 118-125.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.020] [PMID: 26256332]
[72]
Sinurat, E.; Rosmawaty, P.; Saepudin, E. Characterization of fucoidan extracted from Binuangeun’s brown seaweeds. Int. J. Chem. Environ. Biol. Sci., 2015, 3(4), 329-332.
[73]
Vaikundamoorthy, R.; Krishnamoorthy, V.; Vilwanathan, R.; Rajendran, R. Structural characterization and anticancer activity (MCF7 and MDA-MB-231) of polysaccharides fractionated from brown seaweed Sargassum wightii. Int. J. Biol. Macromol., 2018, 111, 1229-1237.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.125] [PMID: 29415413]
[74]
Chi, Y.; Li, Y.; Zhang, G.; Gao, Y.; Ye, H.; Gao, J.; Wang, P. Effect of extraction techniques on properties of polysaccharides from Enteromorpha prolifera and their applicability in iron chelation. Carbohydr. Polym., 2018, 181, 616-623.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.104] [PMID: 29254014]
[75]
Nogueira, M.T.; Chica, L.R.; Yamashita, C.; Nunes, N.S.S.; Moraes, I.C.F.; Branco, C.C.Z.; Branco, I.G. Optimal conditions for alkaline treatment of alginate extraction from the brown seaweed Sargassum cymosum C. Agardh by response surface methodology. Applied Food Research, 2022, 2(2), 100141.
[http://dx.doi.org/10.1016/j.afres.2022.100141]
[76]
Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the central west coast of Portugal. J. Agric. Food Chem., 2015, 63(12), 3177-3188.
[http://dx.doi.org/10.1021/jf504220e] [PMID: 25756735]
[77]
Wijesinghe, W.A.J.P.; Jeon, Y.J. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia, 2012, 83(1), 6-12.
[http://dx.doi.org/10.1016/j.fitote.2011.10.016] [PMID: 22061659]
[78]
Rhein-Knudsen, N.; Ale, M.; Meyer, A. Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Mar. Drugs, 2015, 13(6), 3340-3359.
[http://dx.doi.org/10.3390/md13063340] [PMID: 26023840]
[79]
Sanjeewa, K.K.A.; Herath, K.H.I.N.M.; Kim, Y.S.; Jeon, Y.J.; Kim, S.K. Enzyme-assisted extraction of bioactive compounds from seaweeds and microalgae. Trends Analyt. Chem., 2023, 167, 117266.
[http://dx.doi.org/10.1016/j.trac.2023.117266]
[80]
Sanjeewa, K.K.A.; Fernando, I.P.S.; Kim, E.A.; Ahn, G.; Jee, Y.; Jeon, Y.J. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr. Res. Pract., 2017, 11(1), 3-10.
[http://dx.doi.org/10.4162/nrp.2017.11.1.3] [PMID: 28194259]
[81]
Presa, F.; Marques, M.; Viana, R.; Nobre, L.; Costa, L.; Rocha, H. The protective role of sulfated polysaccharides from green seaweed Udotea flabellum in cells exposed to oxidative damage. Mar. Drugs, 2018, 16(4), 135.
[http://dx.doi.org/10.3390/md16040135] [PMID: 29677120]
[82]
Wang, L.; Oh, J.Y.; Hwang, J.; Ko, J.Y.; Jeon, Y.J.; Ryu, B. In vitro and in vivo antioxidant activities of polysaccharides isolated from celluclast-assisted extract of an edible brown seaweed, Sargassum fulvellum. Antioxidants, 2019, 8(10), 493.
[http://dx.doi.org/10.3390/antiox8100493] [PMID: 31635214]
[83]
Kang, M.C.; Lee, H.; Choi, H.D.; Jeon, Y.J. Antioxidant properties of a sulfated polysaccharide isolated from an enzymatic digest of Sargassum thunbergii. Int. J. Biol. Macromol., 2019, 132(2), 142-149.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.178] [PMID: 30926508]
[84]
da Silva Barbosa, J.; Palhares, L.C.G.F.; Silva, C.H.F.; Sabry, D.A.; Chavante, S.F.; Rocha, H.A.O. In vitro antitumor potential of sulfated polysaccharides from seaweed Caulerpa cupressoides var. flabellata. Mar. Biotechnol., 2021, 23(1), 77-89.
[http://dx.doi.org/10.1007/s10126-020-10004-5] [PMID: 33170369]
[85]
Wang, L.; Je, J.G.; Huang, C.; Oh, J.Y.; Fu, X.; Wang, K.; Ahn, G.; Xu, J.; Gao, X.; Jeon, Y.J. Anti-inflammatory effect of sulfated polysaccharides isolated from Codium fragile in vitro in RAW 264.7 macrophages and in vivo in zebrafish. Mar. Drugs, 2022, 20(6), 391.
[http://dx.doi.org/10.3390/md20060391] [PMID: 35736194]
[86]
Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem., 2013, 61(20), 4667-4675.
[http://dx.doi.org/10.1021/jf400819p] [PMID: 23634989]
[87]
Tang, W.; Lin, L.; Xie, J.; Wang, Z.; Wang, H.; Dong, Y.; Shen, M.; Xie, M. Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus. Carbohydr. Polym., 2016, 151(4), 305-312.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.078] [PMID: 27474571]
[88]
Cui, M.; Wu, J.; Wang, S.; Shu, H.; Zhang, M.; Liu, K.; Liu, K. Characterization and anti-inflammatory effects of sulfated polysaccharide from the red seaweed Gelidium pacificum Okamura. Int. J. Biol. Macromol., 2019, 129(3), 377-385.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.043] [PMID: 30742920]
[89]
Chen, Y.; Ouyang, Y.; Chen, X.; Chen, R.; Ruan, Q.; Farag, M.A.; Chen, X.; Zhao, C. Hypoglycaemic and anti-ageing activities of green alga Ulva lactuca polysaccharide via gut microbiota in ageing-associated diabetic mice. Int. J. Biol. Macromol., 2022, 212, 97-110.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.109] [PMID: 35597378]
[90]
Wan, P.; Yang, X.; Cai, B.; Chen, H.; Sun, H.; Chen, D.; Pan, J. Ultrasonic extraction of polysaccharides from Laminaria japonica and their antioxidative and glycosidase inhibitory activities. J. Ocean Univ. China, 2015, 14(4), 651-662.
[http://dx.doi.org/10.1007/s11802-015-2648-3]
[91]
Rahimi, F.; Tabarsa, M.; Rezaei, M. Ulvan from green algae Ulva intestinalis: Optimization of ultrasound-assisted extraction and antioxidant activity. J. Appl. Phycol., 2016, 28(5), 2979-2990.
[http://dx.doi.org/10.1007/s10811-016-0824-5]
[92]
Hmelkov, A.B.; Zvyagintseva, T.N.; Shevchenko, N.M.; Rasin, A.B.; Ermakova, S.P. Ultrasound-assisted extraction of polysaccharides from brown alga Fucus evanescens. Structure and biological activity of the new fucoidan fractions. J. Appl. Phycol., 2018, 30(3), 2039-2046.
[http://dx.doi.org/10.1007/s10811-017-1342-9]
[93]
Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S. Ultrasound-assisted extraction of sulfated polysaccharide from Nizamuddinia zanardinii: Process optimization, structural characterization, and biological properties. J. Food Process Eng., 2019, 42(2), e12979.
[http://dx.doi.org/10.1111/jfpe.12979]
[94]
Martín-del-Campo, A.; Fermín-Jiménez, J.A.; Fernández-Escamilla, V.V.; Escalante-García, Z.Y.; Macías-Rodríguez, M.E.; Estrada-Girón, Y. Improved extraction of carrageenan from red seaweed (Chondracantus canaliculatus) using ultrasound-assisted methods and evaluation of the yield, physicochemical properties and functional groups. Food Sci. Biotechnol., 2021, 30(7), 901-910.
[http://dx.doi.org/10.1007/s10068-021-00935-7] [PMID: 34395021]
[95]
Sousa, A.M.M.; Alves, V.D.; Morais, S.; Delerue-Matos, C.; Gonçalves, M.P. Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: Evaluation of a microwave-assisted process using response surface methodology. Bioresour. Technol., 2010, 101(9), 3258-3267.
[http://dx.doi.org/10.1016/j.biortech.2009.12.061] [PMID: 20056408]
[96]
Hahn, T.; Lang, S.; Ulber, R.; Muffler, K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem., 2012, 47(12), 1691-1698.
[http://dx.doi.org/10.1016/j.procbio.2012.06.016]
[97]
Yuan, Y.; Macquarrie, D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym., 2015, 129(10), 101-107.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.057] [PMID: 26050894]
[98]
Ben Salem, Y.; Abdelhamid, A.; Mkadmini Hammi, K.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Microwave-assisted extraction and pharmacological evaluation of polysaccharides from Posidonia oceanica. Biosci. Biotechnol. Biochem., 2017, 81(10), 1917-1925.
[http://dx.doi.org/10.1080/09168451.2017.1361808] [PMID: 28789591]
[99]
Le, B.; Golokhvast, K.S.; Yang, S.H.; Sun, S. Optimization of microwave-assisted extraction of polysaccharides from Ulva pertusa and evaluation of their antioxidant activity. Antioxidants, 2019, 8(5), 129.
[http://dx.doi.org/10.3390/antiox8050129] [PMID: 31091698]
[100]
Zhong, Q.W.; Zhou, T.S.; Qiu, W.H.; Wang, Y.K.; Xu, Q.L.; Ke, S.Z.; Wang, S.J.; Jin, W.H.; Chen, J.W.; Zhang, H.W.; Wei, B.; Wang, H. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida. Food Chem., 2021, 341(Pt 1), 128148.
[http://dx.doi.org/10.1016/j.foodchem.2020.128148] [PMID: 33038776]
[101]
Du, H.; Jin, X.; Jin, S.; Zhang, D.; Chen, Q.; Jin, X.; Wang, C.; Qian, G.; Ding, H. Anti-leukemia activity of polysaccharide from Sargassum fusiformevia the PI3K/AKT/BAD pathway in vivo and in vitro. Mar. Drugs, 2023, 21(5), 289.
[http://dx.doi.org/10.3390/md21050289] [PMID: 37233483]
[102]
Pérez-Recalde, M.; Matulewicz, M.C.; Pujol, C.A.; Carlucci, M.J. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from red seaweed Nemalion helminthoides. Int. J. Biol. Macromol., 2014, 63, 38-42.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.024] [PMID: 24444887]
[103]
Wu, G.J.; Shiu, S.M.; Hsieh, M.C.; Tsai, G.J. Anti-inflammatory activity of a sulfated polysaccharide from the brown alga Sargassum cristaefolium. Food Hydrocoll., 2016, 53(1), 16-23.
[http://dx.doi.org/10.1016/j.foodhyd.2015.01.019]
[104]
Silva, M.; Gomes, F.; Oliveira, F.; Morais, S.; Delerue-Matos, C. Microwave-assisted alginate extraction from Portuguese Saccorhiza polyschides–influence of acid pretreatment. International Journal of Chemical, Nuclear. Metall. Mater. Eng., 2015, 9(1), 30-33.
[105]
Ghannam, A.; Murad, H.; Jazzara, M.; Odeh, A.; Allaf, A.W. Isolation, Structural characterization, and antiproliferative activity of phycocolloids from the red seaweed Laurencia papillosa on MCF-7 human breast cancer cells. Int. J. Biol. Macromol., 2018, 108(12), 916-926.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.001] [PMID: 29113895]
[106]
Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohydr. Polym., 2014, 103(1), 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.008] [PMID: 24528694]
[107]
Supanto, K.M.; Saepudin, E.; Sinurat, E. Modification of fucoidan from Sargassum filipendula by sulfate enrichment and its antioxidant activity. In: AIP Conference Proceedings ;; AIP Publishing, 2019; p. (1)2168.
[http://dx.doi.org/10.1063/1.5132491]
[108]
Xiao, H.; Fu, X.; Cao, C.; Li, C.; Chen, C.; Huang, Q. Sulfated modification, characterization, antioxidant and hypoglycemic activities of polysaccharides from Sargassum pallidum. Int. J. Biol. Macromol., 2019, 121(3), 407-414.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.197] [PMID: 30291933]
[109]
Wang, J.; Liu, L.; Zhang, Q.; Zhang, Z.; Qi, H.; Li, P. Synthesized oversulphated, acetylated and benzoylated derivatives of fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Food Chem., 2009, 114(4), 1285-1290.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.082]
[110]
Gu, Y.; Cheong, K.L.; Du, H. Modification and comparison of three Gracilaria spp. agarose with methylation for promotion of its gelling properties. Chem. Cent. J., 2017, 11(1), 104.
[http://dx.doi.org/10.1186/s13065-017-0334-9] [PMID: 29086888]
[111]
Adão, P.; Reboleira, J.; Teles, M.; Santos, B.; Ribeiro, N.; Teixeira, C.M.; Guedes, M.; Pessoa, J.C.; Bernardino, S. Enhancement of the antioxidant and antimicrobial activities of porphyran through chemical modification with tyrosine derivatives. Molecules, 2021, 26(10), 2916.
[http://dx.doi.org/10.3390/molecules26102916] [PMID: 34068969]
[112]
Gajaria, T.K.; Bhatt, H.; Khandelwal, A.; Vasu, V.T.; Reddy, C.R.K.; Shanthana Lakshmi, D. A facile chemical cross-linking approach toward the fabrication of a sustainable porous ulvan scaffold. J. Bioact. Compat. Polym., 2020, 35(4-5), 301-313.
[http://dx.doi.org/10.1177/0883911520939986]
[113]
Can, M.; Sahiner, N. A facile one-pot synthesis of microgels and nanogels of laminarin for biomedical applications. J. Colloid Interface Sci., 2021, 588, 40-49.
[http://dx.doi.org/10.1016/j.jcis.2020.12.053] [PMID: 33387824]
[114]
de Sousa Ferreira, M.; de Oliveira Silva Ribeiro, F.; Dourado, F.F.; de Jesus Oliveira, A.C.; Araújo, T.D.S.; Brito, L.M.; Pessoa, C.; de Lima, L.R.M.; de Paula, R.C.M.; Silva-Filho, E.C.; da Silva, D.A. Production of galactan phthalates derivatives extracted from Gracilaria birdie: Characterization, cytotoxic and antioxidant profile. Int. J. Biol. Macromol., 2023, 243(1), 125254.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125254] [PMID: 37295699]
[115]
V. Brito, T. Barros, F.C.N.; Silva, R.O.; Dias Júnior, G.J.; C Júnior, J.S.; Franco, Á.X.; Soares, P.M.G.; Chaves, L.S.; Abreu, C.M.W.S.; de Paula, R.C.M.; Souza, M.H.L.P.; Freitas, A.L.P.; R Barbosa, A.L. Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats. Carbohydr. Polym., 2016, 151(1), 957-964.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.047] [PMID: 27474644]
[116]
Song, W.; Li, Y.; Zhang, X.; Wang, Z. Potent anti-inflammatory activity of polysaccharides extracted from Blidingia minima and their effect in a mouse model of inflammatory bowel disease. J. Funct. Foods, 2019, 61, 103494.
[http://dx.doi.org/10.1016/j.jff.2019.103494]
[117]
Venkatesan, J.; Lowe, B.; Anil, S.; Manivasagan, P.; Kheraif, A.A.A.; Kang, K.H.; Kim, S.K. Seaweed polysaccharides and their potential biomedical applications. Stärke, 2015, 67(5-6), 381-390.
[http://dx.doi.org/10.1002/star.201400127]
[118]
Jin, J.; Ji, Z.; Xu, M.; Liu, C.; Ye, X.; Zhang, W.; Li, S.; Wang, D.; Zhang, W.; Chen, J.; Ye, F.; Lv, Z. Microspheres of carboxymethyl chitosan, sodium alginate, and collagen as a hemostatic agent in vivo. ACS Biomater. Sci. Eng., 2018, 4(7), 2541-2551.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00453] [PMID: 33435117]
[119]
Liu, M.; Song, X.; Wen, Y.; Zhu, J.L.; Li, J. Injectable Thermoresponsive hydrogel formed by alginate-g-poly (N-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl. Mater. Interfaces, 2017, 9(41), 35673-35682.
[http://dx.doi.org/10.1021/acsami.7b12849] [PMID: 28937214]
[120]
Sato, T.; Takami, T.; Saito, H.; Murakami, Y. Thermosensitive polysaccharide particles for pulmonary drug delivery. Colloids Surf. A Physicochem. Eng. Asp., 2019, 580, 123720.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123720]
[121]
Custódio, C.A.; Reis, R.L.; Mano, J.F. Photo-cross-linked laminarin-based hydrogels for biomedical applications. Biomacromolecules, 2016, 17(5), 1602-1609.
[http://dx.doi.org/10.1021/acs.biomac.5b01736] [PMID: 27017983]
[122]
Tziveleka, L.A.; Ioannou, E.; Roussis, V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr. Polym., 2019, 218, 355-370.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.074] [PMID: 31221340]
[123]
Dounighi, N.M.; Zolfagharian, H.; Khaki, P.; Bidhendi, S.M.; Sarei, F. Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J. Pharm. Sci., 2013, 75(4), 442-449.
[http://dx.doi.org/10.4103/0250-474X.119829] [PMID: 24302799]
[124]
Azizi, S.; Mohamad, R.; Abdul Rahim, R.; Mohammadinejad, R.; Bin Ariff, A. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int. J. Biol. Macromol., 2017, 104(Pt A), 423-431.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.010] [PMID: 28591593 ]
[125]
Muthulakshmi, L.; Pavithra, U.; Sivaranjani, V.; Balasubramanian, N.; Sakthivel, K.M.; Pruncu, C.I. A novel Ag/carrageenan–gelatin hybrid hydrogel nanocomposite and its biological applications: Preparation and characterization. J. Mech. Behav. Biomed. Mater., 2021, 115, 104257.
[http://dx.doi.org/10.1016/j.jmbbm.2020.104257] [PMID: 33333481]
[126]
Venkatesan, J.; Bhatnagar, I.; Kim, S.K. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs, 2014, 12(1), 300-316.
[http://dx.doi.org/10.3390/md12010300] [PMID: 24441614]
[127]
Peng, C.W.; Lin, H.Y.; Wang, H.W.; Wu, W.W. The influence of operating parameters on the drug release and anti-bacterial performances of alginate wound dressings prepared by three-dimensional plotting. Mater. Sci. Eng. C, 2012, 32(8), 2491-2500.
[http://dx.doi.org/10.1016/j.msec.2012.07.031]
[128]
Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Sooraparaju, S.G.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol., 2018, 110, 97-109.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.140] [PMID: 28866015]
[129]
Morelli, A.; Puppi, D.; Chiellini, F. Perspectives on biomedical applications of ulvan. In: Seaweed polysaccharides; Elsevier, 2017; pp. 305-330.
[http://dx.doi.org/10.1016/B978-0-12-809816-5.00016-5]
[130]
Vunain, E.; Mishra, A.K.; Mamba, B.B. Fundamentals of chitosan for biomedical applications. In: Chitosan Based Biomaterials: Woodhead Publishing, 2017, 3-30, Woodhead Publishing,;
[http://dx.doi.org/10.1016/B978-0-08-100230-8.00001-7]
[131]
Murakami, K.; Aoki, H.; Nakamura, S.; Nakamura, S.; Takikawa, M.; Hanzawa, M.; Kishimoto, S.; Hattori, H.; Tanaka, Y.; Kiyosawa, T.; Sato, Y.; Ishihara, M. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 2010, 31(1), 83-90.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.031] [PMID: 19775748]
[132]
Rahmati, M.; Alipanahi, Z.; Mozafari, M. Emerging biomedical applications of algal polysaccharides. Curr. Pharm. Des., 2019, 25(11), 1335-1344.
[http://dx.doi.org/10.2174/1381612825666190423160357] [PMID: 31020932]
[133]
Hu, C.; Gong, R.H.; Zhou, F.L. Electrospun sodium alginate/polyethylene oxide fibers and nanocoated yarns. Int. J. Polym. Sci., 2015, 2015(3), 1-12.
[http://dx.doi.org/10.1155/2015/126041]
[134]
Cao, Z.; Shen, Z.; Luo, X.; Zhang, H.; Liu, Y.; Cai, N.; Xue, Y.; Yu, F. Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr. Polym., 2017, 166, 320-328.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.012] [PMID: 28385239]
[135]
Lokhande, G.; Carrow, J.K.; Thakur, T.; Xavier, J.R.; Parani, M.; Bayless, K.J.; Gaharwar, A.K. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater., 2018, 70, 35-47.
[http://dx.doi.org/10.1016/j.actbio.2018.01.045] [PMID: 29425720]
[136]
Dash, M.; Samal, S.K.; Morelli, A.; Bartoli, C.; Declercq, H.A.; Douglas, T.E.L.; Dubruel, P.; Chiellini, F. Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization. Carbohydr. Polym., 2018, 182(10), 254-264.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.016] [PMID: 29279122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy