Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Development of Potential Antidiabetic Agents using 2D and 3D QSAR, Molecular Docking and ADME Properties In-silico Studies of α-amylase Inhibitors

Author(s): Kalusing S. Padvi, Aniket P. Sarkate*, Shashikant V. Bhandari and Mahadevi V. Kendre

Volume 21, Issue 16, 2024

Published on: 21 February, 2024

Page: [3443 - 3464] Pages: 22

DOI: 10.2174/0115701808279839240206123454

Price: $65

Abstract

Background: A series of 2-arylbenzimidazole derivatives were designed and developed as antidiabetic drugs using 2D and 3D QSAR, molecular docking and ADME studies.

Methods: All molecular modeling studies were performed using Molecular Design Suite V-Life MDS software. New chemical entities (NCEs) were designed based on the results of 2D and 3D QSAR studies. Docking studies were performed with the designed NCEs in PDB: 5E0F and the results were compared with the receptor ligand. According to the ADME results, all the proposed compounds have good oral absorption, correct molecular weight, QPlogPo/w. All units show oral absorption above 80%, it is considered well absorbed. All the proposed units show satisfactory results in the area. This indicated that these NCEs have little or no chance of failure in the final stages of the drug development process.

Results: The 2D QSAR results showed that the descriptor k2alpha, T_T_N_5, IodinesCount and BrominesCount play the most important role in determining the inhibitory activity of α-amylase. Although 3D QSAR showed that, the q2 and Pred_r2 values of the model (SA kNN MFA model) were 0.7476 and 0.6932. The G score of the proposed compound numbers mol-1, mol-2, mol-3, mol- 4, mol-5, mol-6, mol-7 and mol-8 are better compared to the standards, indicating that the proposed compounds have good binding properties affinity to bind to α-amylase.

Conclusion: These investigations have produced statistically significant and exceptionally reliable 2D and 3D Quantitative Structure-Activity Relationship (QSAR) models for antidiabetic medications, particularly α-amylase inhibitors. Furthermore, docking experiments involving the α-amylase enzyme have revealed that the binding energies of most Novel Chemical Entities (NCEs) are comparable to those of the established standards. Docking studies with α-amylase enzyme showed that most NCEs have binding energies comparable to the standard.

Keywords: Antidiabetic, QSAR, NCE's, α-Amylase, docking, ADME.

Graphical Abstract
[1]
Whitcomb, D.C.; Lowe, M.E. Human pancreatic digestive enzymes. Dig. Dis. Sci., 2007, 52(1), 1-17.
[http://dx.doi.org/10.1007/s10620-006-9589-z] [PMID: 17205399]
[2]
Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci., 2012, 15(1), 141-183.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[3]
Sundarram, A.; Murthy, T.P.K. α-Amylase production and applications: A review. J. Appl. Environ. Microbiol., 2014, 2, 166-175.
[4]
Taha, M.; Tariq Javid, M.; Imran, S.; Selvaraj, M.; Chigurupati, S.; Ullah, H.; Rahim, F.; Khan, F.; Islam Mohammad, J.; Mohammed Khan, K. Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorg. Chem., 2017, 74, 179-186.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.003] [PMID: 28826047]
[5]
Adegboye, A.A.; Khan, K.M.; Salar, U.; Aboaba, S.A. Kanwal; Chigurupati, S.; Fatima, I.; Taha, M.; Wadood, A.; Mohammad, J.I.; Khan, H.; Perveen, S. 2-Aryl benzimidazoles: Synthesis, In vitro α-amylase inhibitory activity, and molecular docking study. Eur. J. Med. Chem., 2018, 150, 248-260.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.011] [PMID: 29533872]
[6]
Salar, U.; Khan, K.M.; Chigurupati, S.; Taha, M.; Wadood, A.; Vijayabalan, S.; Ghufran, M.; Perveen, S. New hybrid hydrazinyl thiazole substituted chromones: as potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Sci. Rep., 2017, 7(1), 16980.
[http://dx.doi.org/10.1038/s41598-017-17261-w] [PMID: 29209017]
[7]
Ranilla, L.G.; Kwon, Y.I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol., 2010, 101(12), 4676-4689.
[http://dx.doi.org/10.1016/j.biortech.2010.01.093] [PMID: 20185303]
[8]
Mitra, A.; Tamil, I.G.; Dineshkumar, B.; Nandhakumar, M.; Senthilkumar, M. In vitro study on α-amylase inhibitory activity of an Indian medicinal plant, Phyllanthus amarus. Indian J. Pharmacol., 2010, 42(5), 280-282.
[http://dx.doi.org/10.4103/0253-7613.70107] [PMID: 21206618]
[9]
Bhosle, M.R.; Wahul, D.B.; Bondle, G.M.; Sarkate, A.; Tiwari, S.V. An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2,5-diones. Synth. Commun., 2018, 48(16), 2046-2060.
[http://dx.doi.org/10.1080/00397911.2018.1480042]
[10]
Bhosle, M.; Andil, P.; Wahul, D.; Bondle, G.; Sarkate, A.; Tiwari, S. Straightforward multicomponent synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones in β-cyclodextrin cavity and evaluation of their anticancer activity. J. Indian Chem. Soc., 2019, 16, 1553-1561.
[11]
Shahidpour, S.; Panahi, F.; Yousefi, R.; Nourisefat, M.; Nabipoor, M.; Khalafi-Nezhad, A. Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Med. Chem. Res., 2015, 24(7), 3086-3096.
[http://dx.doi.org/10.1007/s00044-015-1356-2]
[12]
Alagesan, K.; Raghupathi, P.; Sankarnarayanan, S. Amylase inhibitors: Potential source of anti-diabetic drug discovery from medicinal plants. Int. J. of Pharm. & Life Sci., 2012, 3, 1407-1412.
[13]
Taha, M.; Imran, S.; Ismail, N.H.; Selvaraj, M.; Rahim, F.; Chigurupati, S.; Ullah, H.; Khan, F.; Salar, U.; Javid, M.T.; Vijayabalan, S.; Zaman, K.; Khan, K.M. Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorg. Chem., 2017, 74, 1-9.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.001] [PMID: 28719801]
[14]
Arshad, T.; Khan, K.M.; Rasool, N.; Salar, U.; Hussain, S.; Tahir, T.; Ashraf, M.; Wadood, A.; Riaz, M.; Perveen, S.; Taha, M.; Ismail, N.H. Syntheses, in vitro evaluation and molecular docking studies of 5-bromo-2-aryl benzimidazoles as α-glucosidase inhibitors. Med. Chem. Res., 2016, 25(9), 2058-2069.
[http://dx.doi.org/10.1007/s00044-016-1614-y]
[15]
Reyes, A.A.; Gomez, G.O.; Torres, J.J. Synthesis of azolines and imidazoles and their use in drug design. Med. Chem., 2016, 6, 561-570.
[16]
Rambabu, R.; Subbarao, J.; Kumar, P.P. Synthesis, characterization and biological activities of some new substituted imidazoles. IJPSR, 2015, 6, 1761-1765.
[17]
Aboul-Enein, H.Y.; El-Rashedy, A.A. Benzimidazole derivatives as antidiabetic agents. Med. Chem., 2015, 318-325.
[18]
Gan, Z.; Tian, Q.; Shang, S.; Luo, W.; Dai, Z.; Wang, H.; Li, D.; Wang, X.; Yuan, J. Imidazolium chloride-catalyzed synthesis of benzimidazoles and 2-substituted benzimidazoles from o-phenylenediamines and DMF derivatives. Tetrahedron, 2018, 74(52), 7450-7456.
[http://dx.doi.org/10.1016/j.tet.2018.11.014]
[19]
Shinde, D.; Sarkate, A.; Bahekar, S.; Wadhai, V.; Ghandge, G.; Wakte, P. Microwave-assisted synthesis of nonsymmetrical aryl ethers using nitroarenes. Synlett, 2013, 24(12), 1513-1516.
[http://dx.doi.org/10.1055/s-0033-1338869]
[20]
Morais, G.R.; Palma, E.; Marques, F.; Gano, L.; Oliveira, M.C.; Abrunhosa, A.; Miranda, H.V.; Outeiro, T.F.; Santos, I.; Paulo, A. Synthesis and biological evaluation of novel 2‐aryl benzimidazoles as chemotherapeutic agents. J. Heterocycl. Chem., 2017, 54(1), 255-267.
[http://dx.doi.org/10.1002/jhet.2575]
[21]
Ozil, M.; Parlak, C.; Baltaş, N. A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity. Bioorg. Chem., 2017.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.019] [PMID: 29287256]
[22]
Mohammed Khan, K.; Khan, M.; Ambreen, N.; Rahim, F.; Naureen, S.; Perveen, S.; Iqbal Choudhary, M.; Voelter, W. Synthesis and β-glucuronidase inhibitory potential of benzimidazole derivatives. Med. Chem., 2012, 8(3), 421-427.
[http://dx.doi.org/10.2174/1573406411208030421] [PMID: 22530898]
[23]
V-Life MDS Molecular Design Suite, Available from: www.vlifesciences.com
[24]
Veerasamy, R.; Subramaniam, D.K.; Chean, O.C.; Ying, N.M. Designing hypothesis of substituted benzoxazinones as HIV-1 reverse transcriptase inhibitors: QSAR approach. J. Enzyme Inhib. Med. Chem., 2012, 27(5), 693-707.
[http://dx.doi.org/10.3109/14756366.2011.608664] [PMID: 21961709]
[25]
Hansch, C.; Leo, A.; Exploring, Q.S.A.R. Exploring QSAR. In: Fundamentals and Applications in Chemistry and Biology; American Chemical Society: Washington, 1995.
[26]
Baumann, K. An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J. Chem. Inf. Comput. Sci., 2002, 42(1), 26-35.
[http://dx.doi.org/10.1021/ci990070t] [PMID: 11855963]
[27]
Halgren, T.A. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem., 1996, 17, 553-586.
[28]
Raut, V.V.; Bhandari, S.V.; Patil, S.M.; Sarkate, A.P. A rational approach to anticancer drug design: 2D and 3D- QSAR, molecular docking and prediction of ADME properties using silico studies of thymidine phosphorylase inhibitors. Lett. Drug Des. Discov., 2023, 20(2), 153-166.
[http://dx.doi.org/10.2174/1570180819666220215115633]
[29]
Pradhan, J.; Goyal, A. Synthesis, anticonvulsant activity and QSAR studies of some new pyrazolyl pyridines. Med. Chem. Res., 2016, 25(8), 1639-1656.
[http://dx.doi.org/10.1007/s00044-016-1597-8]
[30]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[31]
Sharma, M.C.; Kohli, D.V. Insight into the structural requirement of substituted quinazolinone biphenyl acylsulfonamides derivatives as Angiotensin II AT1 receptor antagonist: 2D and 3D QSAR approach. J. Saudi Chem. Soc., 2014, 18(1), 35-45.
[http://dx.doi.org/10.1016/j.jscs.2011.05.011]
[32]
Shaikh, A.; Gonsalves, S.; Nikam, A.; Kshirsagar, S.; Thombare, Y. Predicting pyrazinecarboxamides derivatives as an herbicidal agent: 3d Qsar by kNN-MFA and Multiple linear regression approach. World Appl. Sci. J., 2015, 33, 980-989.
[33]
Lokwani, D.; Bhandari, S.; Pujari, R.; Shastri, P. shelke, G.; Pawar, V. Use of quantitative structure–activity relationship (QSAR) and ADMET prediction studies as screening methods for design of benzyl urea derivatives for anti-cancer activity. J. Enzyme Inhib. Med. Chem., 2011, 26(3), 319-331.
[http://dx.doi.org/10.3109/14756366.2010.506437] [PMID: 20846089]
[34]
Chitre, T.S.; Asgaonkar, K.D.; Patil, S.M.; Kumar, S.; Khedkar, V.M.; Garud, D.R. QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity. Comput. Biol. Chem., 2017, 68, 211-218.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.015] [PMID: 28411471]
[35]
Umesh, H.R.; Ramesh, K.V.; Devaraju, K.S. Molecular docking studies of phytochemicals against trehalose–6–phosphate phosphatases of pathogenic microbes. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 5.
[http://dx.doi.org/10.1186/s43088-019-0028-6]
[36]
Asgaonkar, K.D.; Mote, G.D.; Chitre, T.S. QSAR and molecular docking studies of oxadiazole-ligated pyrrole derivatives as enoyl-ACP (CoA) reductase inhibitors. Sci. Pharm., 2014, 82(1), 71-85.
[http://dx.doi.org/10.3797/scipharm.1310-05] [PMID: 24634843]
[37]
RCSB Protein Data Bank Available from: https://www.rcsb.org
[38]
Zaman, K.; Rahim, F.; Taha, M.; Ullah, H.; Wadood, A.; Nawaz, M.; Khan, F.; Wahab, Z.; Shah, S.A.A.; Rehman, A.U.; Kawde, A.N.; Gollapalli, M. Synthesis, in vitro urease inhibitory potential and molecular docking study of Benzimidazole analogues. Bioorg. Chem., 2019, 89, 103024.
[http://dx.doi.org/10.1016/j.bioorg.2019.103024] [PMID: 31176853]
[39]
Doherty, W.; Adler, N.; Knox, A.; Nolan, D.; McGouran, J.; Nikalje, A.P.; Lokwani, D.; Sarkate, A.; Evans, P. Synthesis and evaluation of 1,2,3‐triazole‐containing vinyl and allyl sulfones as anti‐trypanosomal agents. Eur. J. Org. Chem., 2017, 2017(1), 175-185.
[http://dx.doi.org/10.1002/ejoc.201601221]
[40]
Abchir, O.; Daoui, O.; Belaidi, S.; Ouassaf, M.; Qais, F.A.; ElKhattabi, S.; Belaaouad, S.; Chtita, S. Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. J. Mol. Model., 2022, 28(4), 106.
[http://dx.doi.org/10.1007/s00894-022-05097-9] [PMID: 35352175]
[41]
Pawar, V.; Lokwani, D.; Bhandari, S.; Mitra, D.; Sabde, S.; Bothara, K.; Madgulkar, A. Design of potential reverse transcriptase inhibitor containing Isatin nucleus using molecular modeling studies. Bioorg. Med. Chem., 2010, 18(9), 3198-3211.
[http://dx.doi.org/10.1016/j.bmc.2010.03.030] [PMID: 20381364]
[42]
Karnik, K.S.; Sarkate, A.P.; Tiwari, S.V.; Azad, R.; Burra, P.V.L.S.; Wakte, P.S. Computational and synthetic approach with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC). Bioorg. Chem., 2021, 107, 104612.
[http://dx.doi.org/10.1016/j.bioorg.2020.104612] [PMID: 33476869]
[43]
Durgun, M.; Türkeş, C.; Işık, M.; Demir, Y.; Saklı, A.; Kuru, A.; Güzel, A.; Beydemir, Ş.; Akocak, S.; Osman, S.M.; AlOthman, Z.; Supuran, C.T. Synthesis, characterisation, biological evaluation and in silico studies of sulphonamide Schiff bases. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 950-962.
[http://dx.doi.org/10.1080/14756366.2020.1746784] [PMID: 32249705]
[44]
Vyas, V.K.; Ghate, M. 2D and 3D QSAR study on amino nicotinic acid and isonicotinic acid derivatives as potential inhibitors of dihydroorotate dehydrogenase (DHODH). Med. Chem. Res., 2012, 21(10), 3021-3034.
[http://dx.doi.org/10.1007/s00044-011-9837-4]
[45]
Inamdar, P.; Bhandari, S.; Sonawane, B.; Hole, A.; Jadhav, C. Structure optimization of neuraminidase inhibitors as potential anti-influenza (H1N1Inhibitors) agents using QSAR and molecular docking studies. Iran. J. Pharm. Res., 2014, 13(1), 49-65.
[PMID: 24734056]
[46]
Araujo da Silva, R. Screening of P-glycoprotein inducers and activators as effective antidotes against its toxic substrates in Caco-2 cells. The Example of Paraquat. Med. Chem. Res., 2013. Available from: https://repositorio-aberto.up.pt/handle/10216/71855
[47]
Sharma, M.C. Structural insights into mode of actions of novel substituted 4- and 6-azaindole-3-carboxamides analogs as renin inhibitors: Molecular modeling studies. Med. Chem. Res., 2015, 24(3), 1038-1059.
[http://dx.doi.org/10.1007/s00044-014-1163-1]
[48]
Asati, V.; Bajaj, S.; Mahapatra, D.K.; Bharti, S.K. Molecular modeling studies of some thiazolidine-2,4-dione derivatives as 15-PGDH inhibitors. Med. Chem. Res., 2016, 25(1), 94-108.
[http://dx.doi.org/10.1007/s00044-015-1442-5]
[49]
Xiao, Z.; Varma, S.; Xiao, Y.D.; Tropsha, A. Modeling of p38 mitogen-activated protein kinase inhibitors using the Catalyst™ HypoGen and k-nearest neighbor QSAR methods. J. Mol. Graph. Model., 2004, 23(2), 129-138.
[http://dx.doi.org/10.1016/j.jmgm.2004.05.001] [PMID: 15363455]
[50]
de Molfetta, F.A.; de Freitas, R.F.; da Silva, A.B.F.; Montanari, C.A. Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity. J. Mol. Model., 2009, 15(10), 1175-1184.
[http://dx.doi.org/10.1007/s00894-009-0468-3] [PMID: 19263098]

© 2024 Bentham Science Publishers | Privacy Policy