Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Molecular Targets of Valeric Acid: A Bioactive Natural Product for Endocrine, Metabolic, and Immunological Disorders

Author(s): Bindu Kumari, Usha Kumari, Dhananjay Kumar Singh, Gulam Mohammed Husain, Dinesh Kumar Patel, Anshul Shakya, Ravi Bhushan Singh, Gyan Prakash Modi and Gireesh Kumar Singh*

Volume 24, Issue 13, 2024

Published on: 16 February, 2024

Page: [1506 - 1517] Pages: 12

DOI: 10.2174/0118715303262653231120043819

Price: $65

Abstract

Backgrounds: Postbiotics produced by gut microbiota have exhibited diverse pharmacological activities. Valeric acid, a postbiotic material produced by gut microbiota and some plant species like valerian, has been explored to have diverse pharmacological activities.

Methods: This narrative review aims to summarise the beneficial role of valeric acid for different health conditions along with its underlying mechanism. In order to get ample scientific evidence, various databases like Science Direct, PubMed, Scopus, Google Scholar and Google were exhaustively explored to collect relevant information. Collected data were arranged and analyzed to reach a meaningful conclusion regarding the bioactivity profiling of valeric acid, its mechanism, and future prospects.

Results: Valeric acid belongs to short-chain fatty acids (SCFAs) compounds like acetate, propionate, butyrate, pentanoic (valeric) acid, and hexanoic (caproic) acid. Valeric acid has been identified as one of the potent histone deacetylase (HDAC) inhibitors. In different preclinical in -vitro and in-vivo studies, valeric acid has been found to have anti-cancer, anti-diabetic, antihypertensive, anti-inflammatory, and immunomodulatory activity and affects molecular pathways of different diseases like Alzheimer’s, Parkinson’s, and epilepsy.

Conclusion: These findings highlight the role of valeric acid as a potential novel therapeutic agent for endocrine, metabolic and immunity-related health conditions, and it must be tested under clinical conditions to develop as a promising drug.

Keywords: Postbiotics, valeric acid, valerian, short chain fatty acids, HDAC inhibitor, gut-microbiota, metabolic syndrome, immunomodulator.

Graphical Abstract
[1]
Jayaraj, R.L.; Beiram, R.; Azimullah, S.; Mf, N.M.; Ojha, S.K.; Adem, A.; Jalal, F.Y. Valeric acid protects dopaminergic neurons by suppressing oxidative stress, neuroinflammation and modulating autophagy pathways. Int. J. Mol. Sci., 2020, 21(20), 7670.
[http://dx.doi.org/10.3390/ijms21207670] [PMID: 33081327]
[2]
Shi, F.; Li, Y.; Han, R.; Fu, A.; Wang, R.; Nusbaum, O.; Qin, Q.; Chen, X.; Hou, L.; Zhu, Y. Valerian and valeric acid inhibit growth of breast cancer cells possibly by mediating epigenetic modifications. Sci. Rep., 2021, 11(1), 2519.
[http://dx.doi.org/10.1038/s41598-021-81620-x] [PMID: 33510252]
[3]
Shinjyo, N.; Waddell, G.; Green, J. Valerian root in treating sleep problems and associated disorders-A systematic review and metaanalysis. J. Evid.-Based Integr. Med., 2020, 25, 2515690X20967323.
[4]
Li, J.; Li, X.; Wang, C.; Zhang, M.; Ye, M.; Wang, Q. The potential of Valeriana as a traditional Chinese medicine: traditional clinical applications, bioactivities, and phytochemistry. Front. Pharmacol., 2022, 13, 973138.
[http://dx.doi.org/10.3389/fphar.2022.973138] [PMID: 36210806]
[5]
Ortiz, J.G.; Nieves-Natal, J.; Chavez, P. Effects of Valeriana officinalis extracts on [3H]flunitrazepam binding, synaptosomal [3H]GABA uptake, and hippocampal [3H]GABA release. Neurochem. Res., 1999, 24(11), 1373-1378.
[http://dx.doi.org/10.1023/A:1022576405534] [PMID: 10555777]
[6]
Marder, M.; Viola, H.; Wasowski, C.; Fernández, S.; Medina, J.H.; Paladini, A.C. 6-Methylapigenin and hesperidin: New valeriana flavonoids with activity on the CNS. Pharmacol. Biochem. Behav., 2003, 75(3), 537-545.
[http://dx.doi.org/10.1016/S0091-3057(03)00121-7] [PMID: 12895671]
[7]
Wagner, H.; Jurcic, K. Über die spasmolytisçhe Wirkung des Baldrians. Planta Med., 1979, 37(9), 84-86.
[http://dx.doi.org/10.1055/s-0028-1097303] [PMID: 504481]
[8]
Wang, X.; Zhang, J.H.; Yuan, Y.; Liu, X.; Wang, S.F. Advances in research on chemical constituents and pharmacological effects of Valeriana officinalis L. Guizhou J. Anim. Husb. Vet. Med, 2019, 43, 6-9.
[9]
Hosseini, M.; Neamati, A.; Chaman, F.; Boskabady, M. The effects of Valeriana officinalis L. hydro-alcoholic extract on depression like behavior in ovalbumin sensitized rats. J. Pharm. Bioallied Sci., 2014, 6(2), 97-103.
[http://dx.doi.org/10.4103/0975-7406.129174] [PMID: 24741277]
[10]
Zhou, C.C.; Zeng, Y.S.; Qin, Y.J. Effect of valerlan on number of p-CREB positive neurons in cerebral hippocampus of depression-model rats induced by chrinoc mild stress. Jiepou Xue Zazhi, 2010, 32(2), 81-87.
[11]
Murphy, K.; Kubin, Z.J.; Shepherd, J.N.; Ettinger, R.H. Valeriana officinalis root extracts have potent anxiolytic effects in laboratory rats. Phytomedicine, 2010, 17(8-9), 674-678.
[http://dx.doi.org/10.1016/j.phymed.2009.10.020] [PMID: 20042323]
[12]
Wu, B.; Fu, Y.M.; Huang, A.H.; Ma, Y.J. Changes of GABA and Glu content in hippocampus of PTZ-induced epileptic rats treated with volatile oil of Valeriana. Zhong Yi Xue, 2008, 26(11), 2476-2477.
[13]
Nouri, K.; Abad, A.N.A. Gabaergic system role in aqueous extract of Valeriana officinalis L. root on PTZ-induced clonic seizure threshold in mice. Afr. J. Pharm. Pharmacol., 2011, 5(9), 1212-1217.
[http://dx.doi.org/10.5897/AJPP11.241]
[14]
Yoo, D.Y.; Jung, H.Y.; Nam, S.M.; Kim, J.W.; Choi, J.H.; Kwak, Y.G.; Yoo, M.; Lee, S.; Yoon, Y.S.; Hwang, I.K. Valeriana officinalis extracts ameliorate neuronal damage by suppressing lipid peroxidation in the gerbil hippocampus following transient cerebral ischemia. J. Med. Food, 2015, 18(6), 642-647.
[http://dx.doi.org/10.1089/jmf.2014.3295] [PMID: 25785762]
[15]
Zhang, Z.; Zuo, Y. Effect of extracts from Valeriana officinalis on spatial learning memory and antioxidant capacity in rat model of sleep disorder Alzheimer’s disease. Zhongguo Laonianxue Zazhi, 2018, 38(16), 3976-3979.
[16]
Zeng, Q.; Jin, H.Z.; Qin, J.J.; Fu, J.J.; Hu, X.J.; Liu, J.H.; Yan, L.; Chen, M.; Zhang, W.D. Chemical constituents of plants from the genus Dracocephalum. Chem. Biodivers., 2010, 7(8), 1911-1929.
[http://dx.doi.org/10.1002/cbdv.200900188] [PMID: 20730957]
[17]
Ganta, K.K.; Mandal, A.; Debnath, S.; Hazra, B.; Chaubey, B. Anti‐HCV activity from semi‐purified methanolic root extracts of Valeriana Wallichii. Phytother. Res., 2017, 31(3), 433-440.
[http://dx.doi.org/10.1002/ptr.5765] [PMID: 28078810]
[18]
Murakami, N.; Ye, Y.; Kawanishi, M.; Aoki, S.; Kudo, N.; Yoshida, M.; Nakayama, E.E.; Shioda, T.; Kobayashi, M. New Rev-transport inhibitor with anti-HIV activity from valerianae radix. Bioorg. Med. Chem. Lett., 2002, 12(20), 2807-2810.
[http://dx.doi.org/10.1016/S0960-894X(02)00624-8] [PMID: 12270151]
[19]
Lin, S.; Fu, P.; Chen, T.; Ye, J.; Su, Y.Q.; Yang, X.W.; Zhang, Z.X.; Zhang, W.D. Minor valepotriates from Valeriana jatamansi and their cytotoxicity against metastatic prostate cancer cells. Planta Med., 2015, 81(1), 56-61.
[PMID: 25469856]
[20]
Xue, C.; He, X.; Zhang, S. Experimental study of anti-tumor effect of valerian iridoids. Modern J. Integr. Chin. Ttradit and West. Med., 2005, 14(15), 1969.
[21]
Tsilingiri, K.; Rescigno, M. Postbiotics: what else? Benef. Microbes, 2013, 4(1), 101-107.
[http://dx.doi.org/10.3920/BM2012.0046] [PMID: 23271068]
[22]
Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics-A step beyond pre-and probiotics. Nutrients, 2020, 12(8), 2189.
[http://dx.doi.org/10.3390/nu12082189] [PMID: 32717965]
[23]
Fernandes, M.F.; de Oliveira, S.; Portovedo, M.; Rodrigues, P.B.; Vinolo, M.A.R. Effect of short chain fatty acids on age-related disorders. Rev. New Drug Targets Age-Relat. Disord, 2020, 85-105.
[24]
Hillman, E.T.; Lu, H.; Yao, T.; Nakatsu, C.H. Microbial ecology along the gastrointestinal tract. Microbes Environ., 2017, 32(4), 300-313.
[http://dx.doi.org/10.1264/jsme2.ME17017] [PMID: 29129876]
[25]
Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Walter, J.; Menon, R.; Koecher, K.; Knights, D. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host Microbe, 2019, 25(6), 789-802.e5.
[http://dx.doi.org/10.1016/j.chom.2019.05.005] [PMID: 31194939]
[26]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[27]
Gao, Y.; Chen, H.; Li, J.; Ren, S.; Yang, Z.; Zhou, Y.; Xuan, R. Alterations of gut microbiota‐derived metabolites in gestational diabetes mellitus and clinical significance. J. Clin. Lab. Anal., 2022, 36(4), e24333.
[http://dx.doi.org/10.1002/jcla.24333] [PMID: 35285096]
[28]
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[29]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[30]
Tian, Z.; Zhuang, X.; Luo, M.; Yin, W.; Xiong, L. The propionic acid and butyric acid in serum but not in feces are increased in patients with diarrhea-predominant irritable bowel syndrome. BMC Gastroenterol., 2020, 20(1), 73.
[http://dx.doi.org/10.1186/s12876-020-01212-3] [PMID: 32178625]
[31]
Huda-Faujan, N.; Abdulamir, A.S.; Fatimah, A.B.; Anas, O.M.; Shuhaimi, M.; Yazid, A.M.; Loong, Y.Y. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem. J., 2010, 4, 53-58.
[http://dx.doi.org/10.2174/1874091X01004010053] [PMID: 20563285]
[32]
Ramakrishna, B.S.; Mathan, V.I. Colonic dysfunction in acute diarrhoea: the role of luminal short chain fatty acids. Gut, 1993, 34(9), 1215-1218.
[http://dx.doi.org/10.1136/gut.34.9.1215] [PMID: 8406157]
[33]
Skonieczna-Żydecka, K.; Grochans, E.; Maciejewska, D.; Szkup, M.; Schneider-Matyka, D.; Jurczak, A.; Łoniewski, I.; Kaczmarczyk, M.; Marlicz, W.; Czerwińska-Rogowska, M.; Pełka-Wysiecka, J.; Dec, K.; Stachowska, E. Faecal short chain fatty acids profile is changed in Polish depressive women. Nutrients, 2018, 10(12), 1939.
[http://dx.doi.org/10.3390/nu10121939] [PMID: 30544489]
[34]
Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; Zheng, P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep., 2019, 9(1), 287.
[http://dx.doi.org/10.1038/s41598-018-36430-z] [PMID: 30670726]
[35]
Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Chang, J.; Rudi, K.; Paulin, L.; Hertzberg, V.; Auvinen, P.; Tansey, M.G.; Scheperjans, F. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener., 2021, 16(1), 6.
[http://dx.doi.org/10.1186/s13024-021-00427-6] [PMID: 33557896]
[36]
Melbye, P.; Olsson, A.; Hansen, T.H.; Søndergaard, H.B.; Bang Oturai, A. Short-chain fatty acids and gut microbiota in multiple sclerosis. Acta Neurol. Scand., 2019, 139(3), 208-219.
[http://dx.doi.org/10.1111/ane.13045] [PMID: 30427062]
[37]
Bhutia, Y.D.; Ganapathy, V. Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain. Immunity, 2015, 43(4), 629-631.
[http://dx.doi.org/10.1016/j.immuni.2015.09.014] [PMID: 26488813]
[38]
Mizuno, M.; Noto, D.; Kaga, N.; Chiba, A.; Miyake, S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS One, 2017, 12(2), e0173032.
[http://dx.doi.org/10.1371/journal.pone.0173032] [PMID: 28235016]
[39]
Rios-Covian, D.; González, S.; Nogacka, A.M.; Arboleya, S.; Salazar, N.; Gueimonde, M.; de los Reyes-Gavilán, C.G. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: Associated dietary and anthropometric factors. Front. Microbiol., 2020, 11, 973.
[http://dx.doi.org/10.3389/fmicb.2020.00973] [PMID: 32547507]
[40]
Nagpal, R.; Tsuji, H.; Takahashi, T.; Nomoto, K.; Kawashima, K.; Nagata, S.; Yamashiro, Y. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Front. Microbiol., 2017, 8, 1388.
[http://dx.doi.org/10.3389/fmicb.2017.01388] [PMID: 28785253]
[41]
Kim, M.; Benayoun, B.A. The microbiome: An emerging key player in aging and longevity. Transl. Med. Aging, 2020, 4, 103-116.
[http://dx.doi.org/10.1016/j.tma.2020.07.004] [PMID: 32832742]
[42]
de la Cuesta-Zuluaga, J.; Kelley, S.T.; Chen, Y.; Escobar, J.S.; Mueller, N.T.; Ley, R.E.; McDonald, D.; Huang, S.; Swafford, A.D.; Knight, R.; Thackray, V.G. Age-and sex-dependent patterns of gut microbial diversity in human adults. mSystems, 2019, 4(4), e00261-e19.
[http://dx.doi.org/10.1128/mSystems.00261-19] [PMID: 31098397]
[43]
Krautkramer, K.A.; Kreznar, J.H.; Romano, K.A.; Vivas, E.I.; Barrett-Wilt, G.A.; Rabaglia, M.E.; Keller, M.P.; Attie, A.D.; Rey, F.E.; Denu, J.M. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell, 2016, 64(5), 982-992.
[http://dx.doi.org/10.1016/j.molcel.2016.10.025] [PMID: 27889451]
[44]
Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132.
[http://dx.doi.org/10.1016/j.neuint.2016.06.011] [PMID: 27346602]
[45]
Yuille, S.; Reichardt, N.; Panda, S.; Dunbar, H.; Mulder, I.E. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One, 2018, 13(7), e0201073.
[http://dx.doi.org/10.1371/journal.pone.0201073] [PMID: 30052654]
[46]
Han, R.; Nusbaum, O.; Chen, X.; Zhu, Y. Valeric acid suppresses liver cancer development by acting as a novel HDAC inhibitor. Mol. Ther. Oncolytics, 2020, 19, 8-18.
[http://dx.doi.org/10.1016/j.omto.2020.08.017] [PMID: 33024815]
[47]
Zuckerkandl, E.; Pauling, L. Evolutionary divergence and convergence in proteins. In: Evolving genes and proteins; Academic Press, 1965; pp. 97-166.
[http://dx.doi.org/10.1016/B978-1-4832-2734-4.50017-6]
[48]
Yoon, S.; Eom, G.H. HDAC and HDAC inhibitor: From cancer to cardiovascular diseases. Chonnam Med. J., 2016, 52(1), 1-11.
[http://dx.doi.org/10.4068/cmj.2016.52.1.1] [PMID: 26865995]
[49]
Lai, F.; Jin, L.; Gallagher, S.; Mijatov, B.; Zhang, X.D.; Hersey, P. Histone deacetylases (HDACs) as mediators of resistance to apoptosis in melanoma and as targets for combination therapy with selective BRAF inhibitors. Adv. Pharmacol., 2012, 65, 27-43.
[http://dx.doi.org/10.1016/B978-0-12-397927-8.00002-6] [PMID: 22959022]
[50]
Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med., 2020, 52(2), 204-212.
[http://dx.doi.org/10.1038/s12276-020-0382-4] [PMID: 32071378]
[51]
Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene, 2007, 26(37), 5541-5552.
[http://dx.doi.org/10.1038/sj.onc.1210620] [PMID: 17694093]
[52]
Groselj, B.; Sharma, N.L.; Hamdy, F.C.; Kerr, M.; Kiltie, A.E. Histone deacetylase inhibitors as radiosensitisers: Effects on DNA damage signalling and repair. Br. J. Cancer, 2013, 108(4), 748-754.
[http://dx.doi.org/10.1038/bjc.2013.21] [PMID: 23361058]
[53]
Blander, G.; Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem., 2004, 73(1), 417-435.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073651] [PMID: 15189148]
[54]
Bradner, J.E.; West, N.; Grachan, M.L.; Greenberg, E.F.; Haggarty, S.J.; Warnow, T.; Mazitschek, R. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol., 2010, 6(3), 238-243.
[http://dx.doi.org/10.1038/nchembio.313] [PMID: 20139990]
[55]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[56]
Telles, E.; Seto, E. Modulation of cell cycle regulators by HDACs. Front. Biosci., 2012, 4, 831.
[57]
Cao, F.; Xiao, Z.; Chen, S.; Zhao, C.; Chen, D.; Haisma, H.J.; Dekker, F.J. HDAC/MIF dual inhibitor inhibits NSCLC cell survival and proliferation by blocking the AKT pathway. Bioorg. Chem., 2021, 117, 105396.
[http://dx.doi.org/10.1016/j.bioorg.2021.105396] [PMID: 34649152]
[58]
Buurman, R.; Sandbothe, M.; Schlegelberger, B.; Skawran, B. HDAC inhibition activates the apoptosome via Apaf1 upregulation in hepatocellular carcinoma. Eur. J. Med. Res., 2016, 21(1), 26.
[http://dx.doi.org/10.1186/s40001-016-0217-x] [PMID: 27342975]
[59]
Lahue, R.S.; Frizzell, A. Histone deacetylase complexes as caretakers of genome stability. Epigenetics, 2012, 7(8), 806-810.
[http://dx.doi.org/10.4161/epi.20922] [PMID: 22722985]
[60]
Suraweera, A.; O’Byrne, K.J.; Richard, D.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front. Oncol., 2018, 8, 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[61]
Marks, P.A.; Breslow, R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol., 2007, 25(1), 84-90.
[http://dx.doi.org/10.1038/nbt1272] [PMID: 17211407]
[62]
Iyer, S.P.; Foss, F.F. Romidepsin for the treatment of peripheral T-cell lymphoma. Oncologist, 2015, 20(9), 1084-1091.
[http://dx.doi.org/10.1634/theoncologist.2015-0043] [PMID: 26099743]
[63]
Boffa, L.C.; Vidali, G.; Mann, R.S.; Allfrey, V.G. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J. Biol. Chem., 1978, 253(10), 3364-3366.
[http://dx.doi.org/10.1016/S0021-9258(17)34804-4] [PMID: 649576]
[64]
Hinnebusch, B.F.; Meng, S.; Wu, J.T.; Archer, S.Y.; Hodin, R.A. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J. Nutr., 2002, 132(5), 1012-1017.
[http://dx.doi.org/10.1093/jn/132.5.1012] [PMID: 11983830]
[65]
Soliman, M.L.; Rosenberger, T.A. Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol. Cell. Biochem., 2011, 352(1-2), 173-180.
[http://dx.doi.org/10.1007/s11010-011-0751-3] [PMID: 21359531]
[66]
Sealy, L.; Chalkley, R. The effect of sodium butyrate on histone modification. Cell, 1978, 14(1), 115-121.
[http://dx.doi.org/10.1016/0092-8674(78)90306-9] [PMID: 667928]
[67]
Bora-Tatar, G.; Dayangaç-Erden, D.; Demir, A.S.; Dalkara, S.; Yelekçi, K.; Erdem-Yurter, H. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg. Med. Chem., 2009, 17(14), 5219-5228.
[http://dx.doi.org/10.1016/j.bmc.2009.05.042] [PMID: 19520580]
[68]
Ediriweera, M.K.; To, N.B.; Lim, Y.; Cho, S.K. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie, 2021, 186, 147-156.
[http://dx.doi.org/10.1016/j.biochi.2021.04.011] [PMID: 33965456]
[69]
Pinheiro, P.S.; Callahan, K.E.; Jones, P.D.; Morris, C.; Ransdell, J.M.; Kwon, D.; Brown, C.P.; Kobetz, E.N. Liver cancer: A leading cause of cancer death in the United States and the role of the 1945–1965 birth cohort by ethnicity. JHEP Reports, 2019, 1(3), 162-169.
[http://dx.doi.org/10.1016/j.jhepr.2019.05.008] [PMID: 32039366]
[70]
Freese, K.; Seitz, T.; Dietrich, P.; Lee, S.M.L.; Thasler, W.E.; Bosserhoff, A.; Hellerbrand, C. Histone deacetylase expressions in hepatocellular carcinoma and functional effects of histone deacetylase inhibitors on liver cancer cells in-vitro. Cancers, 2019, 11(10), 1587.
[http://dx.doi.org/10.3390/cancers11101587] [PMID: 31635225]
[71]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[72]
Han, R.; Yang, H.; Li, Y.; Ling, C.; Lu, L. Valeric acid acts as a novel HDAC3 inhibitor against prostate cancer. Med. Oncol., 2022, 39(12), 213.
[http://dx.doi.org/10.1007/s12032-022-01814-9] [PMID: 36175803]
[73]
Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther., 2019, 4(1), 62.
[http://dx.doi.org/10.1038/s41392-019-0095-0] [PMID: 31871779]
[74]
Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic syndrome: Updates on pathophysiology and management in 2021. Int. J. Mol. Sci., 2022, 23(2), 786.
[http://dx.doi.org/10.3390/ijms23020786] [PMID: 35054972]
[75]
Zieve, F.J. The metabolic syndrome: Diagnosis and treatment. Clin. Cornerstone, 2004, 6(3)(Suppl. 3), S5-S13.
[http://dx.doi.org/10.1016/S1098-3597(04)80093-0] [PMID: 15707265]
[76]
Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care, 2012, 35(11), 2402-2411.
[http://dx.doi.org/10.2337/dc12-0336] [PMID: 23093685]
[77]
Procaccini, C.; Santopaolo, M.; Faicchia, D.; Colamatteo, A.; Formisano, L.; de Candia, P.; Galgani, M.; De Rosa, V.; Matarese, G. Role of metabolism in neurodegenerative disorders. Metabolism, 2016, 65(9), 1376-1390.
[http://dx.doi.org/10.1016/j.metabol.2016.05.018] [PMID: 27506744]
[78]
Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet, 2005, 365(9468), 1415-1428.
[http://dx.doi.org/10.1016/S0140-6736(05)66378-7] [PMID: 15836891]
[79]
Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed. Pharmacother., 2022, 153, 113138.
[http://dx.doi.org/10.1016/j.biopha.2022.113138] [PMID: 35717780]
[80]
den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 2013, 54(9), 2325-2340.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[81]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[82]
Cabello-Olmo, M.; Araña, M.; Urtasun, R.; Encio, I.J.; Barajas, M. Role of postbiotics in diabetes mellitus: Current knowledge and future perspectives. Foods, 2021, 10(7), 1590.
[http://dx.doi.org/10.3390/foods10071590] [PMID: 34359462]
[83]
Min, Q.; Wang, Y.; Jin, T.; Zhu, L.; Wu, X.; Li, Y.; Wang, Y.; Xu, N. Analysis of intestinal short-chain fatty acid metabolism profile after probiotics and GLP-1 treatment for type 2 diabetes mellitus. Front. Endocrinol., 2022, 13, 892127.
[http://dx.doi.org/10.3389/fendo.2022.892127] [PMID: 35846273]
[84]
Taylor, R. Insulin resistance and type 2 diabetes. Diabetes, 2012, 61(4), 778-779.
[http://dx.doi.org/10.2337/db12-0073] [PMID: 22442298]
[85]
Hallberg, S.J.; Gershuni, V.M.; Hazbun, T.L.; Athinarayanan, S.J. Reversing type 2 diabetes: A narrative review of the evidence. Nutrients, 2019, 11(4), 766.
[http://dx.doi.org/10.3390/nu11040766] [PMID: 30939855]
[86]
Han, J.H.; Kim, I.S.; Jung, S.H.; Lee, S.G.; Son, H.Y.; Myung, C.S. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41. PLoS One, 2014, 9(4), e95268.
[http://dx.doi.org/10.1371/journal.pone.0095268] [PMID: 24748202]
[87]
Onyszkiewicz, M.; Gawrys-Kopczynska, M.; Konopelski, P.; Aleksandrowicz, M.; Sawicka, A.; Koźniewska, E.; Samborowska, E.; Ufnal, M. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Arch., 2019, 471(11-12), 1441-1453.
[http://dx.doi.org/10.1007/s00424-019-02322-y] [PMID: 31728701]
[88]
Murugesan, S.; Ulloa-Martínez, M.; Martínez-Rojano, H.; Galván-Rodríguez, F.M.; Miranda-Brito, C.; Romano, M.C.; Piña-Escobedo, A.; Pizano-Zárate, M.L.; Hoyo-Vadillo, C.; García-Mena, J. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(7), 1337-1346.
[http://dx.doi.org/10.1007/s10096-015-2355-4] [PMID: 25761741]
[89]
Miranda, M. Miguel Venegas of Ávila. In: Miguel Venegas and the Earliest Jesuit Theater; Brill, 2019; pp. 1-11.
[90]
Yin, X.Q.; An, Y.X.; Yu, C.G.; Ke, J.; Zhao, D.; Yu, K. The association between fecal short-chain fatty acids, gut microbiota, and visceral fat in monozygotic twin pairs. Diabetes Metab. Syndr. Obes., 2022, 359-368.
[91]
Ho, R.H.; Chan, J.C.Y.; Fan, H.; Kioh, D.Y.Q.; Lee, B.W.; Chan, E.C.Y. In-silico and in-vitro interactions between short chain fatty acids and human histone deacetylases. Biochemistry, 2017, 56(36), 4871-4878.
[http://dx.doi.org/10.1021/acs.biochem.7b00508] [PMID: 28809557]
[92]
Dahiya, D.; Nigam, P.S. Probiotics, prebiotics, synbiotics, and fermented foods as potential biotics in nutrition improving health via microbiome-gut-brain axis. Fermentation, 2022, 8(7), 303.
[http://dx.doi.org/10.3390/fermentation8070303]
[93]
Chudzik, A.; Orzyłowska, A.; Rola, R.; Stanisz, G.J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: modulation of the brain–gut–microbiome axis. Biomolecules, 2021, 11(7), 1000.
[http://dx.doi.org/10.3390/biom11071000] [PMID: 34356624]
[94]
Wei, P.; Keller, C.; Li, L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput. Struct. Biotechnol. J., 2020, 18, 843-851.
[http://dx.doi.org/10.1016/j.csbj.2020.02.018] [PMID: 32322366]
[95]
Wu, Y.; Wang, Y.; Hu, A.; Shu, X.; Huang, W.; Liu, J.; Wang, B.; Zhang, R.; Yue, M.; Yang, C. Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut–brain axis in mice. Front. Nutr., 2022, 9, 946096.
[http://dx.doi.org/10.3389/fnut.2022.946096] [PMID: 35967771]
[96]
Ho, L.; Ono, K.; Tsuji, M.; Mazzola, P.; Singh, R.; Pasinetti, G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother., 2018, 18(1), 83-90.
[http://dx.doi.org/10.1080/14737175.2018.1400909] [PMID: 29095058]
[97]
Zilberter, Y.; Zilberter, M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J. Neurosci. Res., 2017, 95(11), 2217-2235.
[http://dx.doi.org/10.1002/jnr.24064] [PMID: 28463438]
[98]
Mirzaei, R.; Bouzari, B.; Hosseini-Fard, S.R.; Mazaheri, M.; Ahmadyousefi, Y.; Abdi, M.; Jalalifar, S.; Karimitabar, Z.; Teimoori, A.; Keyvani, H.; Zamani, F.; Yousefimashouf, R.; Karampoor, S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed. Pharmacother., 2021, 139, 111661.
[http://dx.doi.org/10.1016/j.biopha.2021.111661] [PMID: 34243604]
[99]
Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int., 2012, 95(1), 50-60.
[http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane] [PMID: 22468341]
[100]
Bostanciklioğlu, M. The role of gut microbiota in pathogenesis of Alzheimer’s disease. J. Appl. Microbiol., 2019, 127(4), 954-967.
[http://dx.doi.org/10.1111/jam.14264] [PMID: 30920075]
[101]
Panijel, M. Treatment of moderately severe anxiety states. Ther, woche, 1985, 35(41), 4659-4668.
[102]
Wills, R.B.H.; Bone, K.; Morgan, M. Herbal products: Active constituents, modes of action and quality control. Nutr. Res. Rev., 2000, 13(1), 47-77.
[http://dx.doi.org/10.1079/095442200108729007] [PMID: 19087433]
[103]
Loeb, C.; Patrone, A.; Besio, G.; Balestrino, M.; Mainardi, P. The excitatory amino acid antagonist amino-phosphono-valeric acid (APV) provides protection against penicillin-induced epileptic activity in the rat. Epilepsy Res., 1990, 6(3), 249-251.
[http://dx.doi.org/10.1016/0920-1211(90)90080-F] [PMID: 1980246]
[104]
Rahman, H.; Shaik, H.A.; Madhavi, P.; Eswaraiah, M.C. A review: Pharmacognostics and pharmacological profiles of Nardastachys jatamansi DC. Elixir Pharm, 2011, 39, 5017-5020.
[105]
Singh, Y.P.; Rai, H.; Singh, G.; Singh, G.K.; Mishra, S.; Kumar, S.; Srikrishna, S.; Modi, G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 215, 113278.
[http://dx.doi.org/10.1016/j.ejmech.2021.113278] [PMID: 33662757]
[106]
Singh, Y.P.; Kumar, N.; Priya, K.; Chauhan, B.S.; Shankar, G.; Kumar, S.; Singh, G.K.; Srikrishna, S.; Garg, P.; Singh, G.; Rai, G.; Modi, G. Exploration of neuroprotective properties of a naturally inspired multifunctional molecule (F24) against oxidative stress and amyloid β induced neurotoxicity in Alzheimer’s disease models. ACS Chem. Neurosci., 2022, 13(1), 27-42.
[http://dx.doi.org/10.1021/acschemneuro.1c00443] [PMID: 34931800]
[107]
Dulla, B.S.; Bindhu, S. A study on the effect of valeric acid in alzheimer's induced rats by the estimation of Aβ 1-42 biomarker. J. Health Allied Sci NU, 2022, 12(2), 134-138.
[108]
Braak, H.; Tredici, K.D.; Rüb, U.; de Vos, R.A.I.; Jansen Steur, E.N.H.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[109]
Zafar, S.; Yaddanapudi, S.S. Parkinson disease. In: StatPearls; StatPearls Publishing, 2022. Internet
[110]
Hofmann, K.W.; Schuh, A.F.S.; Saute, J.; Townsend, R.; Fricke, D.; Leke, R.; Souza, D.O.; Portela, L.V.; Chaves, M.L.F.; Rieder, C.R.M. Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem. Res., 2009, 34(8), 1401-1404.
[http://dx.doi.org/10.1007/s11064-009-9921-z] [PMID: 19214748]
[111]
Leal, M.C.; Casabona, J.C.; Puntel, M.; Pitossi, F.J. Interleukin-1β and tumor necrosis factor-α: Reliable targets for protective therapies in Parkinson’s disease? Front. Cell. Neurosci., 2013, 7, 53.
[http://dx.doi.org/10.3389/fncel.2013.00053] [PMID: 23641196]
[112]
Aquilano, K.; Baldelli, S.; Rotilio, G.; Ciriolo, M.R. Role of nitric oxide synthases in Parkinson’s disease: A review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem. Res., 2008, 33(12), 2416-2426.
[http://dx.doi.org/10.1007/s11064-008-9697-6] [PMID: 18415676]
[113]
Allen Reish, H.E.; Standaert, D.G. Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. J. Parkinsons Dis., 2015, 5(1), 1-19.
[http://dx.doi.org/10.3233/JPD-140491] [PMID: 25588354]
[114]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91.
[http://dx.doi.org/10.3389/fnana.2015.00091] [PMID: 26217195]
[115]
Falco-Walter, J. Epilepsy—definition, classification, pathophysiology, and epidemiology. Semin. Neurol., 2020, 40(6), 617-623.
[http://dx.doi.org/10.1055/s-0040-1718719] [PMID: 33155183]
[116]
Treiman, D.M. GABAergic mechanisms in epilepsy. Epilepsia, 2001, 42(s3)(Suppl. 3), 8-12.
[http://dx.doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x] [PMID: 11520315]
[117]
Sagratella, S. Nmda antagonists: Antiepileptic-neuroprotective drugs with diversified neuropharmacological profiles. Pharmacol. Res., 1995, 32(1-2), 1-13.
[http://dx.doi.org/10.1016/S1043-6618(95)80002-6] [PMID: 8668641]
[118]
Eadie, M.J. Could valerian have been the first anticonvulsant? Epilepsia, 2004, 45(11), 1338-1343.
[http://dx.doi.org/10.1111/j.0013-9580.2004.27904.x] [PMID: 15509234]
[119]
Vishwakarma, S.; Goyal, R.; Gupta, V.; Dhar, K.L. GABAergic effect of valeric acid from Valeriana Wallichii in amelioration of ICV STZ induced dementia in rats. Rev. Bras. Farmacogn., 2016, 26(4), 484-489.
[http://dx.doi.org/10.1016/j.bjp.2016.02.008]
[120]
Chateauvieux, S.; Morceau, F.; Dicato, M.; Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biotechnol. Biomed., 2010, 479364.
[121]
Du, Y.; Wei, J.; Yang, X.; Dou, Y.; Zhao, L.; Qi, X.; Yu, X.; Guo, W.; Wang, Q.; Deng, W.; Li, M.; Lin, D.; Li, T.; Ma, X. Plasma metabolites were associated with spatial working memory in major depressive disorder. Medicine, 2021, 100(8), e24581.
[http://dx.doi.org/10.1097/MD.0000000000024581] [PMID: 33663067]
[122]
Lai, Z.; Shan, W.; Li, J.; Min, J.; Zeng, X.; Zuo, Z. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol. Psychiatry, 2021, 26(12), 7167-7187.
[http://dx.doi.org/10.1038/s41380-021-01291-y] [PMID: 34663905]
[123]
Gio-Batta, M.; Spetz, K.; Barman, M.; Bråbäck, L.; Norin, E.; Björkstén, B.; Wold, A.E.; Sandin, A. Low concentration of fecal valeric acid at 1 year of age is linked with eczema and food allergy at 13 years of age: Findings from a Swedish birth cohort. Int. Arch. Allergy Immunol., 2022, 183(4), 398-408.
[http://dx.doi.org/10.1159/000520149] [PMID: 34839288]
[124]
Rodrigues, H.G.; Takeo, S.F.; Curi, R.; Vinolo, M.A.R. Fatty acids as modulators of neutrophil recruitment, function and survival. Eur. J. Pharmacol., 2016, 785, 50-58.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.098] [PMID: 25987417]
[125]
Gio-Batta, M.; Sjöberg, F.; Jonsson, K.; Barman, M.; Lundell, A.C.; Adlerberth, I.; Hesselmar, B.; Sandberg, A.S.; Wold, A.E. Fecal short chain fatty acids in children living on farms and a link between valeric acid and protection from eczema. Sci. Rep., 2020, 10(1), 22449.
[http://dx.doi.org/10.1038/s41598-020-79737-6] [PMID: 33384449]
[126]
Vijay, A.; Kouraki, A.; Gohir, S.; Turnbull, J.; Kelly, A.; Chapman, V.; Barrett, D.A.; Bulsiewicz, W.J.; Valdes, A.M. The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes, 2021, 13(1), 1997559.
[http://dx.doi.org/10.1080/19490976.2021.1997559] [PMID: 34787065]
[127]
Liu, T.; Li, J.; Liu, Y.; Xiao, N.; Suo, H.; Xie, K.; Yang, C.; Wu, C. Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation, 2012, 35(5), 1676-1684.
[http://dx.doi.org/10.1007/s10753-012-9484-z] [PMID: 22669487]
[128]
Nakkarach, A.; Foo, H.L.; Song, A.A.L.; Mutalib, N.E.A.; Nitisinprasert, S.; Withayagiat, U. Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota. Microb. Cell Fact., 2021, 20(1), 36.
[http://dx.doi.org/10.1186/s12934-020-01477-z] [PMID: 33546705]
[129]
Lin, X.; Xiao, H.M.; Liu, H.M.; Lv, W.Q.; Greenbaum, J.; Yuan, S.J.; Deng, H.W. Gut microbiota impacts bone via B. vulgatus-valeric acid-related pathways. medRxiv, 2020, 2020-2023.
[130]
Skrzypecki, J.; Niewęgłowska, K.; Samborowska, E. Valeric acid, a gut microbiota product, penetrates to the eye and lowers intraocular pressure in rats. Nutrients, 2020, 12(2), 387.
[http://dx.doi.org/10.3390/nu12020387] [PMID: 32024034]
[131]
Li, Y.; Dong, J.; Xiao, H.; Zhang, S.; Wang, B.; Cui, M.; Fan, S. Gut commensal derived-valeric acid protects against radiation injuries. Gut Microbes, 2020, 11(4), 789-806.
[http://dx.doi.org/10.1080/19490976.2019.1709387] [PMID: 31931652]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy