Research Article

调控HIF-1α-NCOA4-FTH1信号轴调控凋亡诱导的肝星状细胞衰老探讨姜黄酚抗肝纤维化机制

卷 31, 期 19, 2024

发表于: 13 February, 2024

页: [2821 - 2837] 页: 17

弟呕挨: 10.2174/0109298673271261231213051410

价格: $65

Open Access Journals Promotions 2
摘要

介绍:活化的肝星状细胞(HSC)衰老减少细胞外基质表达,逆转肝纤维化。铁下垂与细胞衰老密切相关,但其调控机制有待进一步研究。细胞内与铁蛋白弱结合的铁离子称为不稳定铁池(LIP),它们与铁蛋白一起维持细胞铁稳态并调节细胞对铁凋亡的敏感性。 方法:采用脂多糖(LPS)建立病理模型组,将肝星状细胞分为空白组、模型组、姜黄酚12.5 mg/L组、姜黄酚25 mg/L组、姜黄酚50 mg/L组。通过各种细胞分子生物学实验检测HIF-1α-NCOA4- FTH1信号轴、铁下垂和细胞衰老。 结果:我们发现姜黄酚可以通过促进肝星状细胞铁死亡来诱导肝星状细胞衰老。姜黄酚通过激活HIF-1α-NCOA4-FTH1信号轴,诱导肝星状细胞铁离子大量沉积,进而导致铁超载和脂质过氧化诱导铁凋亡。有趣的是,我们敲低HIF-1α挽救了姜黄醇诱导的LIP和肝星状细胞中的铁沉积,这表明HIF-1α是姜黄醇调节铁代谢和铁凋亡的关键靶点。当我们使用铁螯合剂减少LIP和铁离子沉积时,我们能够挽救姜黄醇诱导的肝星状细胞衰老。 结论:综上所述,姜黄酚通过增加HIF-1α的表达和增加NCOA4与FTH1的相互作用,导致LIP和铁离子的大量沉积,诱导铁凋亡和细胞衰老,这可能是姜黄酚抗肝纤维化的分子生物学机制。

关键词: 肝纤维化、铁下垂、衰老、HIF-1α、姜黄酚、铁离子。

« Previous
[1]
Lambrecht, J.; van Grunsven, L.A.; Tacke, F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin. Pharmacother., 2020, 21(13), 1637-1649.
[http://dx.doi.org/10.1080/14656566.2020.1774553] [PMID: 32543284]
[2]
Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells, 2020, 9(4), 875.
[http://dx.doi.org/10.3390/cells9040875] [PMID: 32260126]
[3]
Chang, M.L.; Yang, S.S. Metabolic signature of hepatic fibrosis: From individual pathways to systems biology. Cells, 2019, 8(11), 1423.
[http://dx.doi.org/10.3390/cells8111423] [PMID: 31726658]
[4]
Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166.
[http://dx.doi.org/10.1038/s41575-020-00372-7] [PMID: 33128017]
[5]
Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[6]
Liang, D.; Minikes, A.M.; Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell, 2022, 82(12), 2215-2227.
[http://dx.doi.org/10.1016/j.molcel.2022.03.022] [PMID: 35390277]
[7]
Mehta, K.J.; Farnaud, S.J.; Sharp, P.A. Iron and liver fibrosis: Mechanistic and clinical aspects. World J. Gastroenterol., 2019, 25(5), 521-538.
[http://dx.doi.org/10.3748/wjg.v25.i5.521] [PMID: 30774269]
[8]
Yuan, S.; Wei, C.; Liu, G.; Zhang, L.; Li, J.; Li, L.; Cai, S.; Fang, L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif., 2022, 55(1), e13158.
[http://dx.doi.org/10.1111/cpr.13158] [PMID: 34811833]
[9]
Roger, L.; Tomas, F.; Gire, V. Mechanisms and regulation of cellular senescence. Int. J. Mol. Sci., 2021, 22(23), 13173.
[http://dx.doi.org/10.3390/ijms222313173] [PMID: 34884978]
[10]
Zhang, M.; Serna-Salas, S.; Damba, T.; Borghesan, M.; Demaria, M.; Moshage, H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech. Ageing Dev., 2021, 199, 111572.
[http://dx.doi.org/10.1016/j.mad.2021.111572] [PMID: 34536446]
[11]
Maharajan, N.; Ganesan, C.D.; Moon, C.; Jang, C.H.; Oh, W.K.; Cho, G.W.; Licochalcone, D. Licochalcone D ameliorates oxidative stress-induced senescence via aMPK activation. Int. J. Mol. Sci., 2021, 22(14), 7324.
[http://dx.doi.org/10.3390/ijms22147324] [PMID: 34298945]
[12]
Nakamura, T.; Naguro, I.; Ichijo, H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(9), 1398-1409.
[http://dx.doi.org/10.1016/j.bbagen.2019.06.010] [PMID: 31229492]
[13]
Li, S.; Wang, M.; Wang, Y.; Guo, Y.; Tao, X.; Wang, X.; Cao, Y.; Tian, S.; Li, Q. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol. In vitro, 2021, 73, 105146.
[http://dx.doi.org/10.1016/j.tiv.2021.105146] [PMID: 33737050]
[14]
Zheng, Y.; Wang, J.; Zhao, T.; Wang, L.; Wang, J. Modulation of the VEGF/AKT/eNOS signaling pathway to regulate liver angiogenesis to explore the anti-hepatic fibrosis mechanism of curcumol. J. Ethnopharmacol., 2021, 280, 114480.
[http://dx.doi.org/10.1016/j.jep.2021.114480] [PMID: 34358654]
[15]
Zheng, Y.; Wang, L.; Wang, J.; Liu, L.; Zhao, T. Effect of curcumol on NOD-like receptor thermoprotein domain 3 inflammasomes in liver fibrosis of mice. Chin. J. Integr. Med., 2022, 28(11), 992-999.
[http://dx.doi.org/10.1007/s11655-021-3310-0] [PMID: 34319504]
[16]
Yuan, Y.; Zhai, Y.; Chen, J.; Xu, X.; Wang, H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules, 2021, 11(7), 923.
[http://dx.doi.org/10.3390/biom11070923] [PMID: 34206421]
[17]
Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med., 2019, 65, 37-55.
[http://dx.doi.org/10.1016/j.mam.2018.09.002] [PMID: 30213667]
[18]
Wu, A.; Feng, B.; Yu, J.; Yan, L.; Che, L.; Zhuo, Y.; Luo, Y.; Yu, B.; Wu, D.; Chen, D. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol., 2021, 46, 102131.
[http://dx.doi.org/10.1016/j.redox.2021.102131] [PMID: 34530349]
[19]
Wang, H.; Jiang, C.; Yang, Y.; Li, J.; Wang, Y.; Wang, C.; Gao, Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ, 2022, 10, e13592.
[http://dx.doi.org/10.7717/peerj.13592] [PMID: 35698613]
[20]
Wang, F.; Li, Z.; Chen, L.; Yang, T.; Liang, B.; Zhang, Z.; Shao, J.; Xu, X.; Yin, G.; Wang, S.; Ding, H.; Zhang, F.; Zheng, S. Inhibition of ASCT2 induces hepatic stellate cell senescence with modified proinflammatory secretome through an IL-1α/NF-κB feedback pathway to inhibit liver fibrosis. Acta Pharm. Sin. B, 2022, 12(9), 3618-3638.
[http://dx.doi.org/10.1016/j.apsb.2022.03.014] [PMID: 36176909]
[21]
Jiang, P.; Yang, F.; Zou, C.; Bao, T.; Wu, M.; Yang, D.; Bu, S. The construction and analysis of a ferroptosis-related gene prognostic signature for pancreatic cancer. Aging, 2021, 13(7), 10396-10414.
[http://dx.doi.org/10.18632/aging.202801] [PMID: 33819918]
[22]
Yang, W.S.; Stockwell, B.R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol., 2016, 26(3), 165-176.
[http://dx.doi.org/10.1016/j.tcb.2015.10.014] [PMID: 26653790]
[23]
Wang, L.; Liu, Y.; Du, T.; Yang, H.; Lei, L.; Guo, M.; Ding, H.F.; Zhang, J.; Wang, H.; Chen, X.; Yan, C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ., 2020, 27(2), 662-675.
[http://dx.doi.org/10.1038/s41418-019-0380-z] [PMID: 31273299]
[24]
Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2019, 133, 144-152.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.014] [PMID: 30219704]
[25]
Miao, Y.; Chen, Y.; Xue, F.; Liu, K.; Zhu, B.; Gao, J.; Yin, J.; Zhang, C.; Li, G. Contribution of ferroptosis and GPX4’s dual functions to osteoarthritis progression. E. Bio. Medicine, 2022, 76, 103847.
[http://dx.doi.org/10.1016/j.ebiom.2022.103847] [PMID: 35101656]
[26]
Marku, A.; Galli, A.; Marciani, P.; Dule, N.; Perego, C.; Castagna, M. Iron metabolism in pancreatic beta-cell function and dysfunction. Cells, 2021, 10(11), 2841.
[http://dx.doi.org/10.3390/cells10112841] [PMID: 34831062]
[27]
He, Y.J.; Liu, X.Y.; Xing, L.; Wan, X.; Chang, X.; Jiang, H.L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials, 2020, 241, 119911.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119911] [PMID: 32143060]
[28]
McGill, M.R.; Jaeschke, H. Biomarkers of drug-induced liver injury. Adv. Pharmacol., 2019, 85, 221-239.
[http://dx.doi.org/10.1016/bs.apha.2019.02.001] [PMID: 31307588]
[29]
Douros, A.; Bronder, E.; Andersohn, F.; Klimpel, A.; Kreutz, R.; Garbe, E.; Bolbrinker, J. Herb-induced liver injury in the berlin case-control surveillance study. Int. J. Mol. Sci., 2016, 17(1), 114.
[http://dx.doi.org/10.3390/ijms17010114] [PMID: 26784183]
[30]
Visentin, M.; Lenggenhager, D.; Gai, Z.; Kullak-Ublick, G.A. Drug-induced bile duct injury. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(4)(4 Pt B), 1498-1506.
[http://dx.doi.org/10.1016/j.bbadis.2017.08.033] [PMID: 28882625]
[31]
Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced liver injury: From animal models to humans. J. Clin. Transl. Hepatol., 2014, 2(3), 153-161.
[PMID: 26355817]
[32]
Chao, X.; Wang, H.; Jaeschke, H.; Ding, W.X. Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int., 2018, 38(8), 1363-1374.
[http://dx.doi.org/10.1111/liv.13866] [PMID: 29682868]
[33]
Aluri, J.; Cooper, M.A.; Schuettpelz, L.G. Toll-like receptor signaling in the establishment and function of the immune system. Cells, 2021, 10(6), 1374.
[http://dx.doi.org/10.3390/cells10061374] [PMID: 34199501]
[34]
Yang, T.; Wang, H.; Wang, X.; Li, J.; Jiang, L. The dual role of innate immune response in acetaminophen-induced liver injury. Biology, 2022, 11(7), 1057.
[http://dx.doi.org/10.3390/biology11071057] [PMID: 36101435]
[35]
Yamada, N.; Karasawa, T.; Kimura, H.; Watanabe, S.; Komada, T.; Kamata, R.; Sampilvanjil, A.; Ito, J.; Nakagawa, K.; Kuwata, H.; Hara, S.; Mizuta, K.; Sakuma, Y.; Sata, N.; Takahashi, M. Ferroptosis driven by radical oxidation of n-6 polyunsaturated fatty acids mediates acetaminophen-induced acute liver failure. Cell Death Dis., 2020, 11(2), 144.
[http://dx.doi.org/10.1038/s41419-020-2334-2] [PMID: 32094346]
[36]
Wu, Y.; Jiao, H.; Yue, Y.; He, K.; Jin, Y.; Zhang, J.; Zhang, J.; Wei, Y.; Luo, H.; Hao, Z.; Zhao, X.; Xia, Q.; Zhong, Q.; Zhang, J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ., 2022, 29(9), 1705-1718.
[http://dx.doi.org/10.1038/s41418-022-00957-6] [PMID: 35260822]
[37]
Niu, B.; Lei, X.; Xu, Q.; Ju, Y.; Xu, D.; Mao, L.; Li, J.; Zheng, Y.; Sun, N.; Zhang, X.; Mao, Y.; Li, X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol. Toxicol., 2022, 38(3), 505-530.
[http://dx.doi.org/10.1007/s10565-021-09624-x] [PMID: 34401974]
[38]
Wu, J.; Xue, R.; Wu, M.; Yin, X.; Xie, B.; Meng, Q. Nrf2-mediated ferroptosis inhibition exerts a protective effect on acute-on-chronic liver failure. Oxid. Med. Cell. Longev., 2022, 2022, 1-23.
[http://dx.doi.org/10.1155/2022/4505513] [PMID: 35480867]
[39]
Li, L.; Wang, K.; Jia, R.; xie, J.; Ma, L.; Hao, Z.; Zhang, W.; Mo, J.; Ren, F. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol., 2022, 56, 102435.
[http://dx.doi.org/10.1016/j.redox.2022.102435] [PMID: 36029649]
[40]
You, Y.; Liu, C.; Liu, T.; Tian, M.; Wu, N.; Yu, Z.; Zhao, F.; Qi, J.; Zhu, Q. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease. Free Radic. Biol. Med., 2022, 193(Pt 2), 808-819.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.10.322] [PMID: 36336231]
[41]
Kowdley, K.V.; Belt, P.; Wilson, L.A.; Yeh, M.M.; Neuschwander-Tetri, B.A.; Chalasani, N.; Sanyal, A.J.; Nelson, J.E. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology, 2012, 55(1), 77-85.
[http://dx.doi.org/10.1002/hep.24706] [PMID: 21953442]
[42]
Gao, G.; Xie, Z.; Li, E.; Yuan, Y.; Fu, Y.; Wang, P.; Zhang, X.; Qiao, Y.; Xu, J.; Hölscher, C.; Wang, H.; Zhang, Z. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J. Nat. Med., 2021, 75(3), 540-552.
[http://dx.doi.org/10.1007/s11418-021-01491-4] [PMID: 33590347]
[43]
Chen, S.; Zhu, J.; Zang, X.; Zhai, Y. The emerging role of ferroptosis in liver diseases. Front. Cell Dev. Biol., 2021, 9, 801365.
[http://dx.doi.org/10.3389/fcell.2021.801365] [PMID: 34970553]
[44]
Ali, N.; Ferrao, K.; Mehta, K.J. Liver iron loading in alcohol-associated liver disease. Am. J. Pathol., 2023, 193(10), 1427-1439.
[http://dx.doi.org/10.1016/j.ajpath.2022.08.010] [PMID: 36306827]
[45]
Liu, C.Y.; Wang, M.; Yu, H.M.; Han, F.X.; Wu, Q.S.; Cai, X.J.; Kurihara, H.; Chen, Y.X.; Li, Y.F.; He, R.R. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro. Biosci. Biotechnol. Biochem., 2020, 84(8), 1621-1628.
[http://dx.doi.org/10.1080/09168451.2020.1763155] [PMID: 32419644]
[46]
Gao, R.; Tang, H.; Mao, J. Programmed cell death in liver fibrosis. J. Inflamm. Res., 2023, 16, 3897-3910.
[http://dx.doi.org/10.2147/JIR.S427868] [PMID: 37674533]
[47]
Wang, L.; Zhang, Z.; Li, M.; Wang, F.; Jia, Y.; Zhang, F.; Shao, J.; Chen, A.; Zheng, S. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation. IUBMB Life, 2019, 71(1), 45-56.
[http://dx.doi.org/10.1002/iub.1895] [PMID: 30321484]
[48]
Wang, S.; Li, F.; Qiao, R.; Hu, X.; Liao, H.; Chen, L.; Wu, J.; Wu, H.; Zhao, M.; Liu, J.; Chen, R.; Ma, X.; Kim, D.; Sun, J.; Davis, T.P.; Chen, C.; Tian, J.; Hyeon, T.; Ling, D. Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano, 2018, 12(12), 12380-12392.
[http://dx.doi.org/10.1021/acsnano.8b06399] [PMID: 30495919]
[49]
He, G.N.; Bao, N.R.; Wang, S.; Xi, M.; Zhang, T.H.; Chen, F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther., 2021, 15, 3965-3978.
[http://dx.doi.org/10.2147/DDDT.S332847] [PMID: 34566408]
[50]
Yang, Y.; Wang, H.; Guo, Y.; Lei, W.; Wang, J.; Hu, X.; Yang, J.; He, Q. Metal ion imbalance-related oxidative stress is involved in the mechanisms of liver injury in a rat model of chronic aluminum exposure. Biol. Trace Elem. Res., 2016, 173(1), 126-131.
[http://dx.doi.org/10.1007/s12011-016-0627-1] [PMID: 26811106]
[51]
Blázovics, A.; Sárdi, É.; Szentmihályi, K.; Váli, L.; Takács-Hájos, M.; Stefanovits-Bányai, É. Extreme consumption of beta vulgaris var. rubra can cause metal ion accumulation in the liver. Acta Biol. Hung., 2007, 58(3), 281-286.
[http://dx.doi.org/10.1556/ABiol.58.2007.3.4] [PMID: 17899785]
[52]
Liu, Z.; Ma, H.; Lai, Z. The role of ferroptosis and cuproptosis in curcumin against hepatocellular carcinoma. Molecules, 2023, 28(4), 1623.
[http://dx.doi.org/10.3390/molecules28041623] [PMID: 36838613]
[53]
Zatulovskaia, Y.A.; Ilyechova, E.Y.; Puchkova, L.V. The features of copper metabolism in the rat liver during development. PLoS One, 2015, 10(10), e0140797.
[http://dx.doi.org/10.1371/journal.pone.0140797] [PMID: 26474410]
[54]
Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429.
[http://dx.doi.org/10.1007/s00424-020-02412-2] [PMID: 32506322]
[55]
Hatano, R.; Ebara, M.; Fukuda, H.; Yoshikawa, M.; Sugiura, N.; Kondo, F.; Yukawa, M.; Saisho, H. Accumulation of copper in the liver and hepatic injury in chronic hepatitis C. J. Gastroenterol. Hepatol., 2000, 15(7), 786-791.
[http://dx.doi.org/10.1046/j.1440-1746.2000.02199.x] [PMID: 10937686]
[56]
Tassabehji, N.M.; Vanlandingham, J.W.; Levenson, C.W. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human Hep G2 cells. Exp. Biol. Med., 2005, 230(10), 699-708.
[http://dx.doi.org/10.1177/153537020523001002] [PMID: 16246896]
[57]
Mikhail, T.H.; Nicola, W.G.; Ibrahim, K.H.; Salama, S.H.; Emam, M. Abnormal zinc and copper metabolism in hepatic steatosis. Boll. Chim. Farm., 1996, 135(10), 591-597.
[PMID: 9048448]
[58]
Mousa, S.O.; Abd Alsamia, E.M.; Moness, H.M.; Mohamed, O.G. The effect of zinc deficiency and iron overload on endocrine and exocrine pancreatic function in children with transfusion-dependent thalassemia: A cross-sectional study. BMC Pediatr., 2021, 21(1), 468.
[http://dx.doi.org/10.1186/s12887-021-02940-5] [PMID: 34686155]
[59]
Himoto, T.; Masaki, T. Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients, 2018, 10(1), 88.
[http://dx.doi.org/10.3390/nu10010088] [PMID: 29342898]
[60]
Rayssiguier, Y.; Chevalier, F.; Bonnet, M.; Kopp, J.; Durlach, J. Influence of magnesium deficiency on liver collagen after carbon tetrachloride or ethanol administration to rats. J. Nutr., 1985, 115(12), 1656-1662.
[http://dx.doi.org/10.1093/jn/115.12.1656] [PMID: 4067656]
[61]
Dong, Z.; Yang, X.; Qiu, T.; an, Y.; Zhang, G.; Li, Q.; Jiang, L.; Yang, G.; Cao, J.; Sun, X.; Liu, X.; Liu, D.; Yao, X. Exosomal miR-181a-2-3p derived from citreoviridin-treated hepatocytes activates hepatic stellate cells trough inducing mitochondrial calcium overload. Chem. Biol. Interact., 2022, 358, 109899.
[http://dx.doi.org/10.1016/j.cbi.2022.109899] [PMID: 35305974]
[62]
Birch, J.; Gil, J. Senescence and the SASP: Many therapeutic avenues. Genes Dev., 2020, 34(23-24), 1565-1576.
[http://dx.doi.org/10.1101/gad.343129.120] [PMID: 33262144]
[63]
Mohamad Kamal, N.S.; Safuan, S.; Shamsuddin, S.; Foroozandeh, P. Aging of the cells: Insight into cellular senescence and detection methods. Eur. J. Cell Biol., 2020, 99(6), 151108.
[http://dx.doi.org/10.1016/j.ejcb.2020.151108] [PMID: 32800277]
[64]
Wagner, V.; Gil, J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene, 2020, 39(29), 5165-5176.
[http://dx.doi.org/10.1038/s41388-020-1354-9] [PMID: 32541838]
[65]
Duan, J.L.; Ruan, B.; Song, P.; Fang, Z.Q.; Yue, Z.S.; Liu, J.J.; Dou, G.R.; Han, H.; Wang, L. Shear stress–induced cellular senescence blunts liver regeneration through Notch–sirtuin 1–P21/P16 axis. Hepatology, 2022, 75(3), 584-599.
[http://dx.doi.org/10.1002/hep.32209] [PMID: 34687050]
[66]
Tchkonia, T.; Zhu, Y.; van Deursen, J.; Campisi, J.; Kirkland, J.L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest., 2013, 123(3), 966-972.
[http://dx.doi.org/10.1172/JCI64098] [PMID: 23454759]
[67]
Krizhanovsky, V.; Yon, M.; Dickins, R.A.; Hearn, S.; Simon, J.; Miething, C.; Yee, H.; Zender, L.; Lowe, S.W. Senescence of activated stellate cells limits liver fibrosis. Cell, 2008, 134(4), 657-667.
[http://dx.doi.org/10.1016/j.cell.2008.06.049] [PMID: 18724938]
[68]
Kong, X.; Feng, D.; Wang, H.; Hong, F.; Bertola, A.; Wang, F.S.; Gao, B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology, 2012, 56(3), 1150-1159.
[http://dx.doi.org/10.1002/hep.25744] [PMID: 22473749]
[69]
Jin, H.; Lian, N.; Zhang, F.; Chen, L.; Chen, Q.; Lu, C.; Bian, M.; Shao, J.; Wu, L.; Zheng, S. Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis., 2016, 7(4), e2189.
[http://dx.doi.org/10.1038/cddis.2016.92] [PMID: 27077805]
[70]
Aravinthan, A.D.; Alexander, G.J.M. Senescence in chronic liver disease: Is the future in aging? J. Hepatol., 2016, 65(4), 825-834.
[http://dx.doi.org/10.1016/j.jhep.2016.05.030] [PMID: 27245432]
[71]
Yuen, V.W.H.; Wong, C.C.L. Hypoxia-inducible factors and innate immunity in liver cancer. J. Clin. Invest., 2020, 130(10), 5052-5062.
[http://dx.doi.org/10.1172/JCI137553] [PMID: 32750043]
[72]
Li, X.; Lozovatsky, L.; Sukumaran, A.; Gonzalez, L.; Jain, A.; Liu, D.; Ayala-Lopez, N.; Finberg, K.E. NCOA4 is regulated by HIF and mediates mobilization of murine hepatic iron stores after blood loss. Blood, 2020, 136(23), blood.2020006321.
[http://dx.doi.org/10.1182/blood.2020006321] [PMID: 32659785]
[73]
Mancias, J.D.; Pontano Vaites, L.; Nissim, S.; Biancur, D.E.; Kim, A.J.; Wang, X.; Liu, Y.; Goessling, W.; Kimmelman, A.C.; Harper, J.W. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife, 2015, 4, e10308.
[http://dx.doi.org/10.7554/eLife.10308] [PMID: 26436293]
[74]
Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting ferroptosis through disrupting the NCOA4–FTH1 interaction: A new mechanism of action. ACS Cent. Sci., 2021, 7(6), 980-989.
[http://dx.doi.org/10.1021/acscentsci.0c01592] [PMID: 34235259]
[75]
Muckenthaler, M.U.; Rivella, S.; Hentze, M.W.; Galy, B. A red carpet for iron metabolism. Cell, 2017, 168(3), 344-361.
[http://dx.doi.org/10.1016/j.cell.2016.12.034] [PMID: 28129536]
[76]
Huang, Y.; Zhang, N.; Xie, C.; You, Y.; Guo, L.; Ye, F.; Xie, X.; Wang, J. Lipocalin-2 in neutrophils induces ferroptosis in septic cardiac dysfunction via increasing labile iron pool of cardiomyocytes. Front. Cardiovasc. Med., 2022, 9, 922534.
[http://dx.doi.org/10.3389/fcvm.2022.922534] [PMID: 35990970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy