General Research Article

颗粒酰胺B及其结构类似物的合成及生物学评价

卷 31, 期 25, 2024

发表于: 12 February, 2024

页: [3997 - 4021] 页: 25

弟呕挨: 10.2174/0109298673272687231226111132

价格: $65

conference banner
摘要

背景:虽然颗粒酰胺A和B先前已被分离出来,但它们的生物活性仅得到部分研究。本研究的目的是利用Sun and Fürstner及其12个结构类似物的著名程序,通过修饰侧链,合成天然存在于Eunicella珊瑚物种中的色胺衍生物granulatamide B (4b),该侧链的长度、饱和度以及双键的数量和共轭性不同。 方法:制备的化合物库进行了全面的生物活性评估,包括抗氧化,抗增殖和抗菌特性,以及使用斑马鱼模型进行体内毒性评估。含维甲酸的化合物4i对ABTS自由基的清除活性最强(IC50 = 36±2 μM)。此外,4b和部分类似物(4a、4c和4i)主要含有一个不饱和链和共轭双键,具有中等但非选择性的活性,IC50值在20 ~ 40 μM范围内。 结果:相比之下,类似物4l, α -亚麻酸的衍生物,对正常细胞系的毒性最小。此外,4b对革兰氏阳性枯草芽孢杆菌也很有活性,MIC为125 μM。然而,众所周知,4b和4i是观察效果最好的,在斑马鱼模型Danio rerio中引起了显著的发育异常。 结论:由于侧链的修饰与母体化合物granulatamide B (4b)相比,生物活性的变化并不明显,因此需要考虑吲哚环的取代。我们的团队目前正在进行新的合成,重点是吲哚核心的功能化。

关键词: 颗粒酰胺B, n -脂肪酰基衍生物,抗氧化,抗增殖,抗菌,胚胎毒性。

[1]
Barzkar, N.; Tamadoni Jahromi, S.; Poorsaheli, H.B.; vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs, 2019, 17(8), 464.
[http://dx.doi.org/10.3390/md17080464] [PMID: 31398953]
[2]
Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2019, 36(1), 122-173.
[http://dx.doi.org/10.1039/C8NP00092A] [PMID: 30663727]
[3]
Matulja, D.; Vranješević, F.; Kolympadi Markovic, M.; Pavelić, S.K.; Marković, D. Anticancer activities of marine-derived phenolic compounds and their derivatives. Molecules, 2022, 27(4), 1449.
[http://dx.doi.org/10.3390/molecules27041449] [PMID: 35209235]
[4]
Xu, J.; Yi, M.; Ding, L.; He, S. A review of anti-inflammatory compounds from marine fungi, 2000-2018. Mar. Drugs, 2019, 17(11), 636.
[http://dx.doi.org/10.3390/md17110636] [PMID: 31717541]
[5]
Habbu, P.; Warad, V.; Shastri, R.; Madagundi, S.; Kulkarni, V.H. Antimicrobial metabolites from marine microorganisms. Chin. J. Nat. Med., 2016, 14(2), 101-116.
[http://dx.doi.org/10.1016/S1875-5364(16)60003-1] [PMID: 26968676]
[6]
Tziveleka, L.A.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants, 2021, 10(9), 1431.
[http://dx.doi.org/10.3390/antiox10091431] [PMID: 34573063]
[7]
Lindequist, U. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther., 2016, 24(6), 561-571.
[http://dx.doi.org/10.4062/biomolther.2016.181] [PMID: 27795450]
[8]
Ercolano, G.; De Cicco, P.; Ianaro, A. New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs, 2019, 17(1), 31.
[http://dx.doi.org/10.3390/md17010031] [PMID: 30621025]
[9]
Nigam, M.; Suleria, H.A.R.; Farzaei, M.H.; Mishra, A.P. Marine anticancer drugs and their relevant targets: A treasure from the ocean. Daru, 2019, 27(1), 491-515.
[http://dx.doi.org/10.1007/s40199-019-00273-4] [PMID: 31165439]
[10]
Matulja, D.; Wittine, K.; Malatesti, N.; Laclef, S.; Turks, M.; Markovic, M.K.; Ambrožić, G.; Marković, D. Marine natural products with high anticancer activities. Curr. Med. Chem., 2020, 27(8), 1243-1307.
[http://dx.doi.org/10.2174/0929867327666200113154115] [PMID: 31931690]
[11]
Hu, Y.; Chen, S.; Yang, F.; Dong, S. Marine indole alkaloids-isolation, structure and bioactivities. Mar. Drugs, 2021, 19(12), 658.
[http://dx.doi.org/10.3390/md19120658] [PMID: 34940657]
[12]
Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs, 2015, 13(8), 4814-4914.
[http://dx.doi.org/10.3390/md13084814] [PMID: 26287214]
[13]
Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds- an overview of the last decade and future steps for bioprospecting. Mar. Drugs, 2011, 9(10), 1860-1886.
[http://dx.doi.org/10.3390/md9101860] [PMID: 22073000]
[14]
Ma, Q.; Zhang, X.; Qu, Y. Biodegradation and biotransformation of indole: Advances and perspectives. Front. Microbiol., 2018, 9, 2625.
[http://dx.doi.org/10.3389/fmicb.2018.02625] [PMID: 30443243]
[15]
Cariello, L.; Prota, G. Occurence of 3-hydroxy-l-kynurenine in gorgonians. Comp. Biochem. Physiol. B, 1972, 41(1), 195-199.
[http://dx.doi.org/10.1016/0305-0491(72)90022-3] [PMID: 4403888]
[16]
Gao, C.; Yi, X.; Huang, R.; Yan, F.; He, B.; Chen, B. Alkaloids from corals. Chem. Biodivers., 2013, 10(8), 1435-1447.
[http://dx.doi.org/10.1002/cbdv.201100276] [PMID: 23939792]
[17]
Reyes, F.; Martín, R.; Fernández, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod., 2006, 69(4), 668-670.
[http://dx.doi.org/10.1021/np050382s] [PMID: 16643049]
[18]
Chávez, D.; Acevedo, L.A.; Mata, R. Tryptamine derived amides and acetogenins from the seeds of Rollinia mucosa. J. Nat. Prod., 1999, 62(8), 1119-1122.
[http://dx.doi.org/10.1021/np990118x] [PMID: 10479316]
[19]
Maeda, U.; Hara, N.; Fujimoto, Y.; Srivastava, A.; Gupra, Y.K.; Sahai, M. N-fatty acyl tryptamines from Annona reticulata. Phytochemistry, 1993, 34(6), 1633-1635.
[http://dx.doi.org/10.1016/S0031-9422(00)90860-4] [PMID: 7763559]
[20]
Wu, Y.C.; Chang, F.R.; Chen, C.Y. Tryptamine-derived amides and alkaloids from the seeds of Annona atemoya. J. Nat. Prod., 2005, 68(3), 406-408.
[http://dx.doi.org/10.1021/np040177x] [PMID: 15787445]
[21]
Schmidt, F.; Douaron, G.L.; Champy, P.; Amar, M.; Séon-Méniel, B.; Raisman-Vozari, R.; Figadère, B. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg. Med. Chem., 2010, 18(14), 5103-5113.
[http://dx.doi.org/10.1016/j.bmc.2010.05.067] [PMID: 20579892]
[22]
Venepally, V.; Prasad, R.; Poornachandra, Y.; Kumar, C.; Jala, R. Synthesis and biological evaluation of some new N-fatty acyl derivatives of 4,5-Dimethoxy tryptamine. IJC-B, 2017, 56B(5), 531-41.
[23]
Marot, C.; Chavatte, P.; Morin-Allory, L.; viaud, M.C.; Guillaumet, G.; Renard, P.; Lesieur, D.; Michel, A. Pharmacophoric search and 3D-QSAR comparative molecular field analysis studies on agonists of melatonin sheep receptors. J. Med. Chem., 1998, 41(23), 4453-4465.
[http://dx.doi.org/10.1021/jm980026p] [PMID: 9804685]
[24]
Chang, F.Y.; Siuti, P.; Laurent, S.; Williams, T.; Glassey, E.; Sailer, A.W.; Gordon, D.B.; Hemmerle, H.; Voigt, C.A. Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nat. Microbiol., 2021, 6(6), 792-805.
[http://dx.doi.org/10.1038/s41564-021-00887-y] [PMID: 33846627]
[25]
Pakhare, D.; Kusurkar, R. Application of Horner–Wadsworth–Emmons olefination for the synthesis of granulatamide A, its E isomer and other amides of tryptamine. New J. Chem., 2016, 40(6), 5428-5431.
[http://dx.doi.org/10.1039/C5NJ03533C]
[26]
Sun, C.L.; Fürstner, A. Formal ring-opening/cross-coupling reactions of 2-pyrones: iron-catalyzed entry into stereodefined dienyl carboxylates. Angew. Chem. Int. Ed., 2013, 52(49), 13071-13075.
[http://dx.doi.org/10.1002/anie.201307028] [PMID: 24123891]
[27]
Kumar, S.; Ritika. A brief review of the biological potential of indole derivatives. Fut. J. Pharmaceut. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[28]
Bentz, E.N.; Lobayan, R.M.; Martínez, H.; Redondo, P.; Largo, A. Intrinsic antioxidant potential of the aminoindole structure: A computational kinetics study of tryptamine. J. Phys. Chem. B, 2018, 122(24), 6386-6395.
[http://dx.doi.org/10.1021/acs.jpcb.8b03807] [PMID: 29775059]
[29]
Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615.
[http://dx.doi.org/10.3390/molecules25071615] [PMID: 32244744]
[30]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[31]
Pal, C.; Bindu, S.; Dey, S.; Alam, A.; Goyal, M.; Iqbal, M.S.; Sarkar, S.; Kumar, R.; Halder, K.K.; Debnath, M.C.; Adhikari, S.; Bandyopadhyay, U. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells. J. Biol. Chem., 2012, 287(5), 3495-3509.
[http://dx.doi.org/10.1074/jbc.M111.307199] [PMID: 22157011]
[32]
Laclef, S.; Kolympadi Marković, M.; Marković, D. Amide synthesis by transamidation of primary carboxamides. Synthesis, 2020, 52(21), 3231-3242.
[http://dx.doi.org/10.1055/s-0040-1707133]
[33]
Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol., 2020, 871, 172937.
[http://dx.doi.org/10.1016/j.ejphar.2020.172937] [PMID: 31958454]
[34]
Mukerjee, S.; Saeedan, A.S.; Ansari, M.N.; Singh, M. Polyunsaturated fatty acids mediated regulation of membrane biochemistry and tumor cell membrane integrity. Membranes, 2021, 11(7), 479.
[http://dx.doi.org/10.3390/membranes11070479] [PMID: 34203433]
[35]
Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res., 2008, 57(6), 451-455.
[http://dx.doi.org/10.1016/j.phrs.2008.05.002] [PMID: 18583147]
[36]
Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; Scarano, F.; Nicita, C.; Coppoletta, A.R.; Ruga, S.; Scicchitano, M.; Mollace, R.; Palma, E.; Mollace, V. The anti-inflammatory and antioxidant properties of n-3 pufas: Their role in cardiovascular protection. Biomedicines, 2020, 8(9), 306.
[http://dx.doi.org/10.3390/biomedicines8090306] [PMID: 32854210]
[37]
Matulja, D.; Kolympadi Markovic, M.; Ambrožić, G.; Laclef, S.; Pavelić, S.K.; Marković, D. Secondary metabolites from gorgonian corals of the genus eunicella: Structural characterizations, biological activities, and synthetic approaches. Molecules, 2019, 25(1), 129.
[http://dx.doi.org/10.3390/molecules25010129] [PMID: 31905691]
[38]
Matulja, D.; Grbčić, P.; Bojanić, K.; Topić-Popović, N.; Čož-Rakovac, R.; Laclef, S.; Šmuc, T.; Jović, O.; Marković, D.; Pavelić, S.K. Chemical evaluation, antioxidant, antiproliferative, anti-inflammatory and antibacterial activities of organic extract and semi-purified fractions of the adriatic sea fan, eunicella cavolini. Molecules, 2021, 26(19), 5751.
[http://dx.doi.org/10.3390/molecules26195751] [PMID: 34641295]
[39]
Yoshida, T.; Kawamura, S.; Nakata, K. Chemoselective N-acetylation of primary aliphatic amines promoted by pivalic or acetic acid using ethyl acetate as an acetyl donor. Tetrahedron Lett., 2017, 58(12), 1181-1184.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.015]
[40]
Zheleva-Dimitrova, D.; Nedialkov, P.; Kitanov, G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn. Mag., 2010, 6(22), 74-78.
[http://dx.doi.org/10.4103/0973-1296.62889] [PMID: 20668569]
[41]
Gazivoda, T.; Raić-Malić, S.; Krištafor, V.; Makuc, D.; Plavec, J.; Bratulić, S.; Kraljević-Pavelić, S.; Pavelić, K.; Naesens, L.; Andrei, G.; Snoeck, R.; Balzarini, J.; Mintas, M. Synthesis, cytostatic and anti-HIV evaluations of the new unsaturated acyclic C-5 pyrimidine nucleoside analogues. Bioorg. Med. Chem., 2008, 16(10), 5624-5634.
[http://dx.doi.org/10.1016/j.bmc.2008.03.074] [PMID: 18424155]
[42]
Rashidi, M.; Seghatoleslam, A.; Namavari, M.; Amiri, A.; Fahmidehkar, M.A.; Ramezani, A.; Eftekhar, E.; Hosseini, A.; Erfani, N.; Fakher, S. Selective cytotoxicity and apoptosis-induction of Cyrtopodion scabrum extract against digestive cancer cell lines. Int. J. Cancer Manag., 2017, 10(5), e8633.
[http://dx.doi.org/10.5812/ijcm.8633]
[43]
Babić, S.; Čižmek, L.; Maršavelski, A.; Malev, O.; Pflieger, M.; Strunjak-Perović, I.; Popović, N.T.; Čož-Rakovac, R.; Trebše, P. Utilization of the zebrafish model to unravel the harmful effects of biomass burning during Amazonian wildfires. Sci. Rep., 2021, 11(1), 2527.
[http://dx.doi.org/10.1038/s41598-021-81789-1] [PMID: 33510260]
[44]
DIRECTIVE. 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA Relevance). 2010. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
[45]
Legros, J.; Figadère, B. Iron-promoted C–C bond formation in the total synthesis of natural products and drugs. Nat. Prod. Rep., 2015, 32(11), 1541-1555.
[http://dx.doi.org/10.1039/C5NP00059A] [PMID: 26395292]
[46]
Riemer, B.; Hofer, O.; Greger, H. Tryptamine derived amides from Clausena indica. Phytochemistry, 1997, 45(2), 337-341.
[http://dx.doi.org/10.1016/S0031-9422(96)00848-5] [PMID: 9004546]
[47]
Folstar, P.; Schols, H.A.; Van der Plas, H.C.; Pilnik, W.; Landheer, C.A.; Van Veldhuizen, A. New tryptamine derivatives isolated from wax of green coffee beans. J. Agric. Food Chem., 1980, 28(4), 872-874.
[http://dx.doi.org/10.1021/jf60230a022] [PMID: 7462501]
[48]
Shirinzadeh, H.; Eren, B.; Gurer-Orhan, H.; Suzen, S.; Özden, S. Novel indole-based analogs of melatonin: synthesis and in vitro antioxidant activity studies. Molecules, 2010, 15(4), 2187-2202.
[http://dx.doi.org/10.3390/molecules15042187] [PMID: 20428037]
[49]
Kruk, I.; Aboul-Enein, H.Y.; Michalska, T.; Lichszteld, K.; Kubasik-Kladna, K.; Ölgen, S. In vitro scavenging activity for reactive oxygen species by N-substituted indole-2-carboxylic acid esters. Luminescence, 2007, 22(4), 379-386.
[http://dx.doi.org/10.1002/bio.974] [PMID: 17471487]
[50]
Yang, R.; Chung, H.Y.; Shin, D.B.; Cho, T.Y.; Yang, S.H. Melatonin-related compounds have high free radical scavenging activity. Ann. N. Y. Acad. Sci., 2001, 928(1), 369-369.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb05688.x]
[51]
Álvarez-Diduk, R.; Galano, A.; Tan, D.X.; Reiter, R.J. N -acetylserotonin and 6-hydroxymelatonin against oxidative stress: implications for the overall protection exerted by melatonin. J. Phys. Chem. B, 2015, 119(27), 8535-8543.
[http://dx.doi.org/10.1021/acs.jpcb.5b04920] [PMID: 26079042]
[52]
Sofic, E.; Rimpapa, Z.; Kundurovic, Z.; Sapcanin, A.; Tahirovic, I.; Rustembegovic, A.; Cao, G. Antioxidant capacity of the neurohormone melatonin. J. Neural Transm., 2005, 112(3), 349-358.
[http://dx.doi.org/10.1007/s00702-004-0270-4] [PMID: 15666035]
[53]
Mor, M.; Spadoni, G.; Diamantini, G.; Bedini, A.; Tarzia, G.; Silva, C.; Vacondio, F.; Rivara, M.; Plazzi, P.V.; Franceschini, D. Antioxidant and cytoprotective activity of indole derivatives related to melatonin. In: Advances in Experimental Medicine and Biology; Allegri, G.; Costa, C.V.L.; Ragazzi, E.; Steinhart, H.; Varesio, L., Eds.; Kluwer Academic/Plenum Publishers: Springer: Boston, MA, 2003; pp. 567-575.
[54]
Jasiewicz, B.; Kozanecka-Okupnik, W.; Przygodzki, M.; Warżajtis, B.; Rychlewska, U.; Pospieszny, T.; Mrówczyńska, L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci. Rep., 2021, 11(1), 15425.
[http://dx.doi.org/10.1038/s41598-021-94904-z] [PMID: 34326403]
[55]
Lobayan, R.M.; Pérez Schmit, M.C.; Jubert, A.H.; Vitale, A. Conformational and stereoelectronic investigation of tryptamine. An AIM/NBO study. J. Mol. Model., 2012, 18(6), 2577-2588.
[http://dx.doi.org/10.1007/s00894-011-1271-5] [PMID: 22072379]
[56]
Galano, A.; Reiter, R.J. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J. Pineal Res., 2018, 65(1), e12514.
[http://dx.doi.org/10.1111/jpi.12514] [PMID: 29888508]
[57]
Kousara, S.; Anjuma, S.N.; Jaleela, F.; Khana, J.; Naseema, S. Biomedical significance of tryptamine: A review. J. Pharmacovigil., 2017, 5(5), 1-6.
[http://dx.doi.org/10.4172/2329-6887.1000239]
[58]
Herraiz, T.; Galisteo, J. Endogenous and dietary indoles: A class of antioxidants and radical scavengers in the ABTS assay. Free Radic. Res., 2004, 38(3), 323-331.
[http://dx.doi.org/10.1080/10611860310001648167] [PMID: 15129740]
[59]
Gürkök, G.; Coban, T.; Suzen, S. Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: Synthesis and structure-activity relationships. J. Enzyme Inhib. Med. Chem., 2009, 24(2), 506-515.
[http://dx.doi.org/10.1080/14756360802218516] [PMID: 18972245]
[60]
Gozzo, A.; Lesieur, D.; Duriez, P.; Fruchart, J.C.; Teissier, E. Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model. Free Radic. Biol. Med., 1999, 26(11-12), 1538-1543.
[http://dx.doi.org/10.1016/S0891-5849(99)00020-9] [PMID: 10401620]
[61]
Estevão, M.S.; Carvalho, L.C.; Ribeiro, D.; Couto, D.; Freitas, M.; Gomes, A.; Ferreira, L.M.; Fernandes, E.; Marques, M.M.B. Antioxidant activity of unexplored indole derivatives: Synthesis and screening. Eur. J. Med. Chem., 2010, 45(11), 4869-4878.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.059] [PMID: 20727623]
[62]
Wojtunik-Kulesza, K.A.; Cieśla, Ł.M.; Waksmundzka-Hajnos, M. Approach to determination a structure - Antioxidant activity relationship of selected common terpenoids evaluated by ABTS •+ radical cation assay. Nat. Prod. Commun., 2018, 13(3), 1934578X1801300.
[http://dx.doi.org/10.1177/1934578X1801300308]
[63]
Jin, M.C.; Yoo, J.M.; Sok, D.E.; Kim, M.R. Neuroprotective effect of N-acyl 5-hydroxytryptamines on glutamate-induced cytotoxicity in HT-22 cells. Neurochem. Res., 2014, 39(12), 2440-2451.
[http://dx.doi.org/10.1007/s11064-014-1448-2] [PMID: 25307111]
[64]
Henry, G.E.; Momin, R.A.; Nair, M.G.; Dewitt, D.L. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem., 2002, 50(8), 2231-2234.
[http://dx.doi.org/10.1021/jf0114381] [PMID: 11929276]
[65]
Wang, W.; Yang, H.; Johnson, D.; Gensler, C.; Decker, E.; Zhang, G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat., 2017, 132, 84-91.
[http://dx.doi.org/10.1016/j.prostaglandins.2016.12.004] [PMID: 28049021]
[66]
Fagali, N.; Catalá, A. Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophys. Chem., 2008, 137(1), 56-62.
[http://dx.doi.org/10.1016/j.bpc.2008.07.001] [PMID: 18656302]
[67]
Francenia Santos-Sánchez, N.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In: Antioxidant Compounds and their Antioxidant Mechanism; Shalaby, E., Ed.; IntechOpen: London, United Kingdom, 2019; pp. 1-28.
[http://dx.doi.org/10.5772/intechopen.85270]
[68]
Pu, J.; Chen, D.; Tian, G.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; Luo, Y. All-trans retinoic acid attenuates transmissible gastroenteritis virus-induced inflammation in IPEC-J2 cells via suppressing the RLRs/NF-κB signaling pathway. Antioxidants, 2022, 11(2), 345.
[http://dx.doi.org/10.3390/antiox11020345] [PMID: 35204227]
[69]
Khafaga, A.F.; El-Sayed, Y.S. All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(1), 59-70.
[http://dx.doi.org/10.1007/s00210-017-1437-5] [PMID: 29085977]
[70]
Rao, J.; Zhang, C.; Wang, P.; Lu, L.; Zhang, F. All-trans retinoic acid alleviates hepatic ischemia/reperfusion injury by enhancing manganese superoxide dismutase in rats. Biol. Pharm. Bull., 2010, 33(5), 869-875.
[http://dx.doi.org/10.1248/bpb.33.869] [PMID: 20460768]
[71]
Siddikuzzaman; Grace, V.M.B. Antioxidant potential of all- trans retinoic acid (ATRA) and enhanced activity of liposome encapsulated ATRA against inflammation and tumor-directed angiogenesis. Immunopharmacol. Immunotoxicol., 2013, 35(1), 164-173.
[http://dx.doi.org/10.3109/08923973.2012.736520] [PMID: 23116338]
[72]
Chambers, C.S.; Biedermann, D.; Valentová, K.; Petrásková, L.; Viktorová, J.; Kuzma, M.; Křen, V. Preparation of retinoyl-flavonolignan hybrids and their antioxidant properties. Antioxidants, 2019, 8(7), 236.
[http://dx.doi.org/10.3390/antiox8070236] [PMID: 31340489]
[73]
Gurkan, A.S.; Karabay, A.; Buyukbingol, Z.; Adejare, A.; Buyukbingol, E. Syntheses of novel indole lipoic acid derivatives and their antioxidant effects on lipid peroxidation. Arch. Pharm., 2005, 338(2-3), 67-73.
[http://dx.doi.org/10.1002/ardp.200400932] [PMID: 15765493]
[74]
Pecnard, S.; Hamze, A.; Bignon, J.; Prost, B.; Deroussent, A.; Gallego-Yerga, L.; Peláez, R.; Paik, J.Y.; Diederich, M.; Alami, M.; Provot, O. Anticancer properties of indole derivatives as Iso Combretastatin A-4 analogues. Eur. J. Med. Chem., 2021, 223, 113656.
[http://dx.doi.org/10.1016/j.ejmech.2021.113656] [PMID: 34171660]
[75]
Sachdeva, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents: A review. J. Chil. Chem. Soc., 2020, 65(3), 4900-4907.
[http://dx.doi.org/10.4067/s0717-97072020000204900]
[76]
Orellana, E.; Kasinski, A.; Sulforhodamine, B. Sulforhodamine B (SRB) assay in cell culture to investigate cell proliferation. Bio Protoc., 2016, 6(21), e1984.
[http://dx.doi.org/10.21769/BioProtoc.1984] [PMID: 28573164]
[77]
Wyld, L.; Smith, O.; Lawry, J.; Reed, M.W.R.; Brown, N.J. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro. Br. J. Cancer, 1998, 78(1), 50-55.
[http://dx.doi.org/10.1038/bjc.1998.441] [PMID: 9662250]
[78]
Qian, S.Y.; Xu, Y. Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomed. J., 2014, (0), 0.
[http://dx.doi.org/10.4103/2319-4170.131378] [PMID: 24923568]
[79]
Huang, W.; Guo, X.; Wang, C.; Alzhan, A.; Liu, Z.; Ma, X.; Shu, Q. α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J. Funct. Foods, 2022, 92, 105041.
[http://dx.doi.org/10.1016/j.jff.2022.105041]
[80]
González-Fernández, M.J.; Ortea, I.; Guil-Guerrero, J.L. α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells. Toxicol. Res. (Camb.), 2020, 9(4), 474-483.
[http://dx.doi.org/10.1093/toxres/tfaa046] [PMID: 32905142]
[81]
Borges, G.S.M.; Lima, F.A.; Carneiro, G.; Goulart, G.A.C.; Ferreira, L.A.M. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin. Drug Deliv., 2021, 18(10), 1335-1354.
[http://dx.doi.org/10.1080/17425247.2021.1919619] [PMID: 33896323]
[82]
Schenk, T.; Stengel, S.; Zelent, A. Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer, 2014, 111(11), 2039-2045.
[http://dx.doi.org/10.1038/bjc.2014.412] [PMID: 25412233]
[83]
Chen, M.C.; Hsu, S.L.; Lin, H.; Yang, T.Y. Retinoic acid and cancer treatment. Biomedicine, 2014, 4(4), 22.
[http://dx.doi.org/10.7603/s40681-014-0022-1] [PMID: 25520935]
[84]
di Masi, A.; Leboffe, L.; De Marinis, E.; Pagano, F.; Cicconi, L.; Rochette-Egly, C.; Lo-Coco, F.; Ascenzi, P.; Nervi, C. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol. Aspects Med., 2015, 41, 1-115.
[http://dx.doi.org/10.1016/j.mam.2014.12.003] [PMID: 25543955]
[85]
Hunsu, V.O.; Facey, C.O.B.; Fields, J.Z.; Boman, B.M. Retinoids as chemo-preventive and molecular-targeted anti-cancer therapies. Int. J. Mol. Sci., 2021, 22(14), 7731.
[http://dx.doi.org/10.3390/ijms22147731] [PMID: 34299349]
[86]
Mohrbacher, A.M.; Yang, A.S.; Groshen, S.; Kummar, S.; Gutierrez, M.E.; Kang, M.H.; Tsao-Wei, D.; Reynolds, C.P.; Newman, E.M.; Maurer, B.J.; Phase, I. Phase i study of fenretinide delivered intravenously in patients with relapsed or refractory hematologic malignancies: A california cancer consortium trial. Clin. Cancer Res., 2017, 23(16), 4550-4555.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0234] [PMID: 28420721]
[87]
Maurer, B.J.; Kang, M.H.; Villablanca, J.G.; Janeba, J.; Groshen, S.; Matthay, K.K.; Sondel, P.M.; Maris, J.M.; Jackson, H.A.; Goodarzian, F.; Shimada, H.; Czarnecki, S.; Hasenauer, B.; Reynolds, C.P.; Marachelian, A. Phase I trial of fenretinide delivered orally in a novel organized lipid complex in patients with relapsed/refractory neuroblastoma: A report from the new approaches to neuroblastoma therapy (NANT) consortium. Pediatr. Blood Cancer, 2013, 60(11), 1801-1808.
[http://dx.doi.org/10.1002/pbc.24643] [PMID: 23813912]
[88]
Cooper, J.P.; Reynolds, C.P.; Cho, H.; Kang, M.H. Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives. Exp. Biol. Med., 2017, 242(11), 1178-1184.
[http://dx.doi.org/10.1177/1535370217706952] [PMID: 28429653]
[89]
Bildziukevich, U.; Kvasnicová, M.; Šaman, D.; Rárová, L.; Wimmer, Z. Novel oleanolic acid-tryptamine and -fluorotryptamine amides: From adaptogens to agents targeting in vitro cell apoptosis. Plants, 2021, 10(10), 2082.
[http://dx.doi.org/10.3390/plants10102082] [PMID: 34685891]
[90]
Rani, P.; Pal, D.; Hegde, R.R.; Hashim, S.R. Acetamides: Chemotherapeutic agents for inflammation-associated cancers. J. Chemother., 2016, 28(4), 255-265.
[http://dx.doi.org/10.1179/1973947815Y.0000000060] [PMID: 26198312]
[91]
Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.J.; Xu, D.P.; Li, H.B.; Li, Y.; Li, S.; Zhou, Y. Melatonin for the prevention and treatment of cancer. Oncotarget, 2017, 8(24), 39896-39921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]
[92]
Samec, M.; Liskova, A.; Koklesova, L.; Zhai, K.; Varghese, E.; Samuel, S.M.; Šudomová, M.; Lucansky, V.; Kassayova, M.; Pec, M.; Biringer, K.; Brockmueller, A.; Kajo, K.; Hassan, S.T.S.; Shakibaei, M.; Golubnitschaja, O.; Büsselberg, D.; Kubatka, P. Metabolic anti-cancer effects of melatonin: Clinically relevant prospects. Cancers, 2021, 13(12), 3018.
[http://dx.doi.org/10.3390/cancers13123018] [PMID: 34208645]
[93]
Bojková, B.; Kubatka, P.; Qaradakhi, T.; Zulli, A.; Kajo, K. Melatonin may increase anticancer potential of pleiotropic drugs. Int. J. Mol. Sci., 2018, 19(12), 3910.
[http://dx.doi.org/10.3390/ijms19123910] [PMID: 30563247]
[94]
Himmler, T.; Pirro, F.; Schmeer, N. Synthesis and antibacterial in vitro activity of novel analogues of nematophin. Bioorg. Med. Chem. Lett., 1998, 8(15), 2045-2050.
[http://dx.doi.org/10.1016/S0960-894X(98)00358-8] [PMID: 9873483]
[95]
Campos, P.E.; Pichon, E.; Moriou, C.; Clerc, P.; Trépos, R.; Frederich, M.; De Voogd, N.; Hellio, C.; Gauvin-Bialecki, A.; Al-Mourabit, A. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar. Drugs, 2019, 17(3), 167.
[http://dx.doi.org/10.3390/md17030167] [PMID: 30875899]
[96]
Li, J.; Chen, G.; Webster, J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can. J. Microbiol., 1997, 43(8), 770-773.
[http://dx.doi.org/10.1139/m97-110] [PMID: 9304787]
[97]
Wesche, F.; Adihou, H.; Wichelhaus, T.A.; Bode, H.B. Synthesis and SAR of the antistaphylococcal natural product nematophin from Xenorhabdus nematophila. Beilstein J. Org. Chem., 2019, 15, 535-541.
[http://dx.doi.org/10.3762/bjoc.15.47] [PMID: 30873237]
[98]
He, F.; Wu, X.; Zhang, Q.; Li, Y.; Ye, Y.; Li, P.; Chen, S.; Peng, Y.; Hardeland, R.; Xia, Y. Bacteriostatic potential of melatonin: Therapeutic standing and mechanistic insights. Front. Immunol., 2021, 12, 683879.
[http://dx.doi.org/10.3389/fimmu.2021.683879] [PMID: 34135911]
[99]
Hunt, L.R.; Smith, S.M.; Downum, K.R.; Mydlarz, L.D. Microbial regulation in gorgonian corals. Mar. Drugs, 2012, 10(12), 1225-1243.
[http://dx.doi.org/10.3390/md10061225] [PMID: 22822369]
[100]
Li, J.; Chen, G.; Webster, J.M.; Czyzewska, E. Antimicrobial metabolites from a bacterial symbiont. J. Nat. Prod., 1995, 58(7), 1081-1086.
[http://dx.doi.org/10.1021/np50121a016] [PMID: 7561900]
[101]
Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol., 2010, 85(6), 1629-1642.
[http://dx.doi.org/10.1007/s00253-009-2355-3] [PMID: 19956944]
[102]
Ramlawi, S.; Abusharkh, S.; Carroll, A.; McMullin, D.R.; Avis, T.J. Biological and chemical characterization of antimicrobial activity in Arthrobacter spp. isolated from disease-suppressive compost. J. Basic Microbiol., 2021, 61(8), 745-756.
[http://dx.doi.org/10.1002/jobm.202100213] [PMID: 34228381]
[103]
Zhang, W.; Wei, S.; Zhang, J.; Wu, W. Antibacterial activity composition of the fermentation broth of Streptomyces djakartensis NW35. Molecules, 2013, 18(3), 2763-2768.
[http://dx.doi.org/10.3390/molecules18032763] [PMID: 23455667]
[104]
Casillas-Vargas, G.; Ocasio-Malavé, C.; Medina, S.; Morales-Guzmán, C.; Del Valle, R.G.; Carballeira, N.M.; Sanabria-Ríos, D.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog. Lipid Res., 2021, 82, 101093.
[http://dx.doi.org/10.1016/j.plipres.2021.101093] [PMID: 33577909]
[105]
Badawy, M.E.I. Structure and antimicrobial activity relationship of quaternary N -alkyl chitosan derivatives against some plant pathogens. J. Appl. Polym. Sci., 2010, 117(2), 960-969.
[http://dx.doi.org/10.1002/app.31492]
[106]
Sahariah, P.; Benediktssdóttir, B.E.; Hjálmarsdóttir, M.Á.; Sigurjonsson, O.E.; Sørensen, K.K.; Thygesen, M.B.; Jensen, K.J.; Másson, M. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and n,n-dialkyl chitosan derivatives. Biomacromolecules, 2015, 16(5), 1449-1460.
[http://dx.doi.org/10.1021/acs.biomac.5b00163] [PMID: 25830631]
[107]
Lin, P.A.; Cheng, C.H.; Hsieh, K.T.; Lin, J.C. Effect of alkyl chain length and fluorine content on the surface characteristics and antibacterial activity of surfaces grafted with brushes containing quaternized ammonium and fluoro-containing monomers. Colloids Surf. B Biointerfaces, 2021, 202, 111674.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111674] [PMID: 33690062]
[108]
Goswami, S.; Adhikari, M.D.; Kar, C.; Thiyagarajan, D.; Das, G.; Ramesh, A. Synthetic amphiphiles as therapeutic antibacterials: Lessons on bactericidal efficacy and cytotoxicity and potential application as an adjuvant in antimicrobial chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(20), 2612-2623.
[http://dx.doi.org/10.1039/c3tb20226g] [PMID: 32260949]
[109]
Cassar, S.; Adatto, I.; Freeman, J.L.; Gamse, J.T.; Iturria, I.; Lawrence, C.; Muriana, A.; Peterson, R.T.; Van Cruchten, S.; Zon, L.I. Use of zebrafish in drug discovery toxicology. Chem. Res. Toxicol., 2020, 33(1), 95-118.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00335] [PMID: 31625720]
[110]
Herrmann, K. Teratogenic effects of retinoic acid and related substances on the early development of the zebrafish (Brachydanio rerio) as assessed by a novel scoring system. Toxicol. In vitro, 1995, 9(3), 267-283.
[http://dx.doi.org/10.1016/0887-2333(95)00012-W] [PMID: 20650088]
[111]
Kin Ting Kam, R.; Deng, Y.; Chen, Y.; Zhao, H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci., 2012, 2(1), 11.
[http://dx.doi.org/10.1186/2045-3701-2-11] [PMID: 22439772]
[112]
Wang, Y.; Chen, J.; Du, C.; Li, C.; Huang, C.; Dong, Q. Characterization of retinoic acid–induced neurobehavioral effects in developing zebrafish. Environ. Toxicol. Chem., 2014, 33(2), 431-437.
[http://dx.doi.org/10.1002/etc.2453] [PMID: 24395056]
[113]
Navarro-Martín, L.; Oliveira, E.; Casado, M.; Barata, C.; Piña, B. Dysregulatory effects of retinoic acid isomers in late zebrafish embryos. Environ. Sci. Pollut. Res. Int., 2018, 25(4), 3849-3859.
[http://dx.doi.org/10.1007/s11356-017-0732-5] [PMID: 29178002]
[114]
Curtis, R.F.; Coxon, D.T.; Levett, G. Toxicity of fatty acids in assays for mycotoxins using the brine shrimp (Artemia salina). Food Cosmet. Toxicol., 1974, 12(2), 233-235.
[http://dx.doi.org/10.1016/0015-6264(74)90369-1] [PMID: 4459239]
[115]
Quinlivan, V.H.; Farber, S.A. Lipid uptake, metabolism, and transport in the larval zebrafish. Front. Endocrinol., 2017, 8, 319.
[http://dx.doi.org/10.3389/fendo.2017.00319] [PMID: 29209275]
[116]
Adam, A.C.; Skjærven, K.H.; Whatmore, P.; Moren, M.; Lie, K.K. Parental high dietary arachidonic acid levels modulated the hepatic transcriptome of adult zebrafish (Danio rerio) progeny. PLoS One, 2018, 13(8), e0201278.
[http://dx.doi.org/10.1371/journal.pone.0201278] [PMID: 30070994]
[117]
de Vrieze, E.; Moren, M.; Metz, J.R.; Flik, G.; Lie, K.K. Arachidonic acid enhances turnover of the dermal skeleton: Studies on zebrafish scales. PLoS One, 2014, 9(2), e89347.
[http://dx.doi.org/10.1371/journal.pone.0089347] [PMID: 24586706]
[118]
Nayak, S.; Khozin-Goldberg, I.; Cohen, G.; Zilberg, D. Dietary supplementation with ω6 LC-PUFA-Rich algae modulates zebrafish immune function and improves resistance to streptococcal infection. Front. Immunol., 2018, 9, 1960.
[http://dx.doi.org/10.3389/fimmu.2018.01960] [PMID: 30237797]
[119]
Zhang, Y.; Guo, S.Y.; Zhu, X.Y.; Zhou, J.; Liao, W.H. Arachidonic acid induced thrombosis in zebrafish larvae for assessing human anti-thrombotic drugs. JSM Cell Dev. Biol., 2017, 5(1), 1023.
[120]
Adam, A.C.; Lie, K.K.; Moren, M.; Skjærven, K.H. High dietary arachidonic acid levels induce changes in complex lipids and immune-related eicosanoids and increase levels of oxidised metabolites in zebrafish ( Danio rerio ). Br. J. Nutr., 2017, 117(8), 1075-1085.
[http://dx.doi.org/10.1017/S0007114517000903] [PMID: 28485254]
[121]
Savoldi, R.; Polari, D.; Pinheiro-da-Silva, J.; Silva, P.F.; Lobao-Soares, B.; Yonamine, M.; Freire, F.A.M.; Luchiari, A.C. Behavioral changes over time following ayahuasca exposure in zebrafish. Front. Behav. Neurosci., 2017, 11, 139.
[http://dx.doi.org/10.3389/fnbeh.2017.00139] [PMID: 28804451]
[122]
Zhong, H.J.; Liu, L.J.; Chong, C.M.; Lu, L.; Wang, M.; Chan, D.S.H.; Chan, P.W.H.; Lee, S.M.Y.; Ma, D.L.; Leung, C.H. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo. PLoS One, 2014, 9(4), e92905.
[http://dx.doi.org/10.1371/journal.pone.0092905] [PMID: 24690920]
[123]
Kumari, S.; Mazumder, A.G.; Bhardwaj, A.; Singh, D. Early α-linolenic acid exposure to embryo reduces pentylenetetrazol-induced seizures in zebrafish larva. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 143, 15-20.
[http://dx.doi.org/10.1016/j.plefa.2019.02.002] [PMID: 30975378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy