Research Article

TRIP13激活糖酵解促进结直肠癌细胞干性增强阿霉素耐药

卷 31, 期 22, 2024

发表于: 12 February, 2024

页: [3397 - 3411] 页: 15

弟呕挨: 10.2174/0109298673255498231117100421

价格: $65

conference banner
摘要

背景:化疗耐药是临床化疗失败的主要原因之一。目前的癌症研究正在探索耐药机制和新的治疗靶点。本研究旨在阐明甲状腺激素受体相互作用因子13 (TRIP13)影响结直肠癌(CRC)中阿霉素(DOX)耐药的机制。 方法:利用生物信息学分析明确了TRIP13在结直肠癌组织中的表达,并预测了TRIP13富集途径与糖酵解相关基因和干性指数mRNAsi的相关性。采用实时定量聚合酶链反应和western blot方法分析TRIP13及糖酵解相关基因的表达情况。细胞计数试剂盒-8测定细胞活力和IC50值。Western blot检测干细胞相关因子的表达。细胞功能检测细胞成球能力和糖酵解水平。构建动物模型以确定TRIP13表达对结直肠癌肿瘤生长的影响。 结果:TRIP13在结直肠癌中显著过表达,集中在糖酵解信号通路,且与干性指数mRNAsi呈正相关。高表达的TRIP13促进了结直肠癌中DOX的耐药。进一步的机制研究表明,过表达TRIP13可以通过糖酵解促进细胞的干细胞化,这在动物实验中也得到了证实 结论:TRIP13在结直肠癌中高表达,通过激活糖酵解促进细胞干性,增强结直肠癌细胞对DOX的抗性。这些发现为CRC中DOX耐药的发病机制提供了新的见解,并提示TRIP13可能是逆转CRC中DOX耐药的新靶点。

关键词: TRIP13,糖酵解,干性,结直肠癌,阿霉素耐药,生物信息学分析。

[1]
Wen, J.; Min, X.; Shen, M.; Hua, Q.; Han, Y.; Zhao, L.; Liu, L.; Huang, G.; Liu, J.; Zhao, X. ACLY facilitates colon cancer cell metastasis by CTNNB1. . J. Exp. Clin. Cancer Res., 2019, 38(1), 401.
[2]
Xi, L.; Liu, Q.; Zhang, W.; Luo, L.; Song, J.; Liu, R.; Wei, S.; Wang, Y. Circular RNA circCSPP1 knockdown attenuates doxorubicin resistance and suppresses tumor progression of colorectal cancer via miR-944/FZD7 axis. Cancer Cell Int., 2021, 21(1), 153.
[http://dx.doi.org/10.1186/s12935-021-01855-6] [PMID: 33663510]
[3]
Lu, S.; Guo, M.; Fan, Z.; Chen, Y.; Shi, X.; Gu, C.; Yang, Y. Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer. Am. J. Transl. Res., 2019, 11(7), 4397-4410.
[PMID: 31396344]
[4]
Bian, X.; Chen, H.; Yang, P.; Li, Y.; Zhang, F.; Zhang, J.; Wang, W.; Zhao, W.; Zhang, S.; Chen, Q.; Zheng, Y.; Sun, X.; Wang, X.; Chien, K.Y.; Wu, Q. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat. Commun., 2017, 8(1), 14420.
[http://dx.doi.org/10.1038/ncomms14420] [PMID: 28240261]
[5]
Li, W.; Xu, M.; Li, Y.; Huang, Z.; Zhou, J.; Zhao, Q.; Le, K.; Dong, F.; Wan, C.; Yi, P. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J. Transl. Med., 2020, 18(1), 92.
[http://dx.doi.org/10.1186/s12967-020-02267-2] [PMID: 32070368]
[6]
Li, C.; Zhang, G.; Zhao, L.; Ma, Z.; Chen, H. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer. World J. Surg. Oncol., 2015, 14(1), 15.
[http://dx.doi.org/10.1186/s12957-016-0769-9] [PMID: 26791262]
[7]
Chen, Z.; Hu, Z.; Sui, Q.; Huang, Y.; Zhao, M.; Li, M.; Liang, J.; Lu, T.; Zhan, C.; Lin, Z.; Sun, F.; Wang, Q.; Tan, L. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/glycolysis axis in lung adenocarcinoma. Int. J. Biol. Sci., 2022, 18(2), 522-535.
[http://dx.doi.org/10.7150/ijbs.67556] [PMID: 35002507]
[8]
Fang, Z.; Sun, Q.; Yang, H.; Zheng, J. SDHB suppresses the tumorigenesis and development of ccRCC by inhibiting glycolysis. Front. Oncol., 2021, 11, 639408.
[http://dx.doi.org/10.3389/fonc.2021.639408] [PMID: 34094922]
[9]
Zhao, S.; Guan, B.; Mi, Y.; Shi, D.; Wei, P.; Gu, Y.; Cai, S.; Xu, Y.; Li, X.; Yan, D.; Huang, M.; Li, D. LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit. Oncogene, 2021, 40(28), 4709-4724.
[http://dx.doi.org/10.1038/s41388-021-01859-6] [PMID: 34145399]
[10]
Zhou, Y.; Tozzi, F.; Chen, J.; Fan, F.; Xia, L.; Wang, J.; Gao, G.; Zhang, A.; Xia, X.; Brasher, H.; Widger, W.; Ellis, L.M.; Weihua, Z. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res., 2012, 72(1), 304-314.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1674] [PMID: 22084398]
[11]
Shi, H.; Li, K.; Feng, J.; Zhang, X. Overexpression of long non-coding RNA urothelial carcinoma associated 1 causes paclitaxel (Taxol) resistance in colorectal cancer cells by promoting glycolysis. J. Chemother., 2021, 33(6), 409-419.
[http://dx.doi.org/10.1080/1120009X.2021.1906032] [PMID: 33818320]
[12]
Dai, S.; Peng, Y.; Zhu, Y.; Xu, D.; Zhu, F.; Xu, W.; Chen, Q.; Zhu, X.; Liu, T.; Hou, C.; Wu, J.; Miao, Y. Glycolysis promotes the progression of pancreatic cancer and reduces cancer cell sensitivity to gemcitabine. Biomed. Pharmacother., 2020, 121, 109521.
[http://dx.doi.org/10.1016/j.biopha.2019.109521] [PMID: 31689601]
[13]
Agarwal, S.; Behring, M.; Kim, H.G.; Chandrashekar, D.S.; Chakravarthi, B.V.S.K.; Gupta, N.; Bajpai, P.; Elkholy, A.; Al Diffalha, S.; Datta, P.K.; Heslin, M.J.; Varambally, S.; Manne, U. TRIP13 promotes metastasis of colorectal cancer regardless of p53 and microsatellite instability status. Mol. Oncol., 2020, 14(12), 3007-3029.
[http://dx.doi.org/10.1002/1878-0261.12821] [PMID: 33037736]
[14]
Zhang, G.; Zhu, Q.; Fu, G.; Hou, J.; Hu, X.; Cao, J.; Peng, W.; Wang, X.; Chen, F.; Cui, H. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br. J. Cancer, 2019, 121(12), 1069-1078.
[http://dx.doi.org/10.1038/s41416-019-0633-0] [PMID: 31740732]
[15]
Zhou, X.Y.; Shu, X.M. TRIP13 promotes proliferation and invasion of epithelial ovarian cancer cells through Notch signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(2), 522-529.
[PMID: 30720159]
[16]
Zhang, L.T.; Ke, L.X.; Wu, X.Y.; Tian, H.T.; Deng, H.Z.; Xu, L.Y.; Li, E.M.; Long, L. TRIP13 induces nedaplatin resistance in esophageal squamous cell carcinoma by enhancing repair of DNA damage and inhibiting apoptosis. BioMed Res. Int., 2022, 2022, 1-16.
[http://dx.doi.org/10.1155/2022/7295458] [PMID: 35601150]
[17]
Ma, S.; Yang, D.; Liu, Y.; Wang, Y.; Lin, T.; Li, Y.; Yang, S.; Zhang, W.; Zhang, R. LncRNA BANCR promotes tumorigenesis and enhances adriamycin resistance in colorectal cancer. Aging, 2018, 10(8), 2062-2078.
[http://dx.doi.org/10.18632/aging.101530] [PMID: 30144787]
[18]
Zhang, Y.; Tang, B.; Song, J.; Yu, S.; Li, Y.; Su, H.; He, S. Lnc-PDZD7 contributes to stemness properties and chemosensitivity in hepatocellular carcinoma through EZH2-mediated ATOH8 transcriptional repression. J. Exp. Clin. Cancer Res., 2019, 38(1), 92.
[http://dx.doi.org/10.1186/s13046-019-1106-2] [PMID: 30786928]
[19]
Zhao, S.J.; Shen, Y.F.; Li, Q.; He, Y.J.; Zhang, Y.K.; Hu, L.P.; Jiang, Y.Q.; Xu, N.W.; Wang, Y.J.; Li, J.; Wang, Y.H.; Liu, F.; Zhang, R.; Yin, G.Y.; Tang, J.H.; Zhou, D.; Zhang, Z.G. SLIT2/ROBO1 axis contributes to the Warburg effect in osteosarcoma through activation of SRC/ERK/c-MYC/PFKFB2 pathway. Cell Death Dis., 2018, 9(3), 390.
[http://dx.doi.org/10.1038/s41419-018-0419-y] [PMID: 29523788]
[20]
Liu, X.; Shen, X.; Zhang, J. TRIP13 exerts a cancer-promoting role in cervical cancer by enhancing Wnt/β-catenin signaling via ACTN4. Environ. Toxicol., 2021, 36(9), 1829-1840.
[http://dx.doi.org/10.1002/tox.23303] [PMID: 34061428]
[21]
Cai, W.; Ni, W.; Jin, Y.; Li, Y. TRIP13 promotes lung cancer cell growth and metastasis through AKT/mTORC1/c-Myc signaling. Cancer Biomark., 2021, 30(2), 237-248.
[http://dx.doi.org/10.3233/CBM-200039] [PMID: 33136091]
[22]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[23]
Go, G.; Lee, C.S.; Yoon, Y.M.; Lim, J.H.; Kim, T.H.; Lee, S.H. PrPC aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. Int. J. Mol. Sci., 2021, 22(4), 1976.
[http://dx.doi.org/10.3390/ijms22041976] [PMID: 33671292]
[24]
Huang, J.Q.; Li, H.F.; Zhu, J.; Song, J.W.; Zhang, X.B.; Gong, P.; Liu, Q.Y.; Zhou, C.H.; Wang, L.; Gong, L.Y. SRPK1/AKT axis promotes oxaliplatin-induced anti-apoptosis via NF-κB activation in colon cancer. J. Transl. Med., 2021, 19(1), 280.
[http://dx.doi.org/10.1186/s12967-021-02954-8] [PMID: 34193174]
[25]
Agarwal, S.; Afaq, F.; Bajpai, P.; Kim, H.G.; Elkholy, A.; Behring, M.; Chandrashekar, D.S.; Diffalha, S.A.; Khushman, M.; Sugandha, S.P.; Varambally, S.; Manne, U. DCZ0415, a small-molecule inhibitor targeting TRIP13, inhibits EMT and metastasis via inactivation of the FGFR4/STAT3 axis and the Wnt/β-catenin pathway in colorectal cancer. Mol. Oncol., 2022, 16(8), 1728-1745.
[http://dx.doi.org/10.1002/1878-0261.13201] [PMID: 35194944]
[26]
Wang, Y.; Huang, J.; Li, B.; Xue, H.; Tricot, G.; Hu, L.; Xu, Z.; Sun, X.; Chang, S.; Gao, L.; Tao, Y.; Xu, H.; Xie, Y.; Xiao, W.; Yu, D.; Kong, Y.; Chen, G.; Sun, X.; Lian, F.; Zhang, N.; Wu, X.; Mao, Z.; Zhan, F.; Zhu, W.; Shi, J. A small-molecule inhibitor targeting TRIP13 suppresses multiple myeloma progression. Cancer Res., 2020, 80(3), 536-548.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3987] [PMID: 31732653]
[27]
Lu, R.; Zhou, Q.; Ju, L.; Chen, L.; Wang, F.; Shao, J. Upregulation of TRIP13 promotes the malignant progression of lung cancer via the EMT pathway. Oncol. Rep., 2021, 46(2), 172.
[http://dx.doi.org/10.3892/or.2021.8123] [PMID: 34184074]
[28]
Chen, Y.; Chen, D.; Qin, Y.; Qiu, C.; Zhou, Y.; Dai, M.; Li, L.; Sun, Q.; Jiang, Y. TRIP13, identified as a hub gene of tumor progression, is the target of microRNA-4693-5p and a potential therapeutic target for colorectal cancer. Cell Death Discov., 2022, 8(1), 35.
[http://dx.doi.org/10.1038/s41420-022-00824-w] [PMID: 35075117]
[29]
Najafi, M.; Mortezaee, K.; Majidpoor, J. Cancer stem cell (CSC) resistance drivers. Life Sci., 2019, 234, 116781.
[http://dx.doi.org/10.1016/j.lfs.2019.116781] [PMID: 31430455]
[30]
Huang, R.; Rofstad, E.K. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget, 2017, 8(21), 35351-35367.
[http://dx.doi.org/10.18632/oncotarget.10169] [PMID: 27343550]
[31]
Bayik, D.; Lathia, J.D. Cancer stem cell–immune cell crosstalk in tumour progression. Nat. Rev. Cancer, 2021, 21(8), 526-536.
[http://dx.doi.org/10.1038/s41568-021-00366-w] [PMID: 34103704]
[32]
Hao, Z.; Avci, U.; Tan, L.; Zhu, X.; Glushka, J.; Pattathil, S.; Eberhard, S.; Sholes, T.; Rothstein, G.E.; Lukowitz, W.; Orlando, R.; Hahn, M.G.; Mohnen, D. Loss of arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Front. Plant Sci., 2014, 5, 357.
[http://dx.doi.org/10.3389/fpls.2014.00357] [PMID: 25120548]
[33]
Chi, J.; Zhang, H.; Hu, J.; Song, Y.; Li, J.; Wang, L.; Wang, Z. AGR3 promotes the stemness of colorectal cancer via modulating Wnt/β-catenin signalling. Cell. Signal., 2020, 65, 109419.
[http://dx.doi.org/10.1016/j.cellsig.2019.109419] [PMID: 31526829]
[34]
Qiu, L.; Yang, X.; Wu, J.; Huang, C.; Miao, Y.; Fu, Z. HIST2H2BF potentiates the propagation of cancer stem cells via notch signaling to promote malignancy and liver metastasis in colorectal carcinoma. Front. Oncol., 2021, 11, 677646.
[http://dx.doi.org/10.3389/fonc.2021.677646] [PMID: 34476209]
[35]
Li, H.; Chen, J.; Liu, J.; Lai, Y.; Huang, S.; Zheng, L.; Fan, N. CPT2 downregulation triggers stemness and oxaliplatin resistance in colorectal cancer via activating the ROS/Wnt/β-catenin-induced glycolytic metabolism. Exp. Cell Res., 2021, 409(1), 112892.
[http://dx.doi.org/10.1016/j.yexcr.2021.112892] [PMID: 34688609]
[36]
Shao, X.; Zheng, X.; Ma, D.; Liu, Y.; Liu, G. Inhibition of lncRNA-NEAT1 sensitizes 5-Fu resistant cervical cancer cells through de-repressing the microRNA-34a/LDHA axis. Biosci. Rep., 2021, 41(7), BSR20200533.
[http://dx.doi.org/10.1042/BSR20200533] [PMID: 33645623]
[37]
Wang, Y.; Lu, J.H.; Wu, Q.N.; Jin, Y.; Wang, D.S.; Chen, Y.X.; Liu, J.; Luo, X.J.; Meng, Q.; Pu, H.Y.; Wang, Y.N.; Hu, P.S.; Liu, Z.X.; Zeng, Z.L.; Zhao, Q.; Deng, R.; Zhu, X.F.; Ju, H.Q.; Xu, R.H. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol. Cancer, 2019, 18(1), 174.
[http://dx.doi.org/10.1186/s12943-019-1105-0] [PMID: 31791342]
[38]
Dong, S.; Liang, S.; Cheng, Z.; Zhang, X.; Luo, L.; Li, L.; Zhang, W.; Li, S.; Xu, Q.; Zhong, M.; Zhu, J.; Zhang, G.; Hu, S. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J. Exp. Clin. Cancer Res., 2022, 41(1), 15.
[http://dx.doi.org/10.1186/s13046-021-02229-6] [PMID: 34998404]
[39]
Yang, H.; Zhu, J.; Wang, G.; Liu, H.; Zhou, Y.; Qian, J. STK35 is ubiquitinated by NEDD4L and promotes glycolysis and inhibits apoptosis through regulating the AKT signaling pathway, influencing chemoresistance of colorectal cancer. Front. Cell Dev. Biol., 2020, 8, 582695.
[http://dx.doi.org/10.3389/fcell.2020.582695] [PMID: 33117809]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy