Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Short Communication

Do Anticancer Medicinal Compounds have DNMT1 Regulating Activity: An In silico Investigation

Author(s): Fahad Hassan Shah* and Song Ja Kim*

Volume 21, Issue 16, 2024

Published on: 09 February, 2024

Page: [3622 - 3630] Pages: 9

DOI: 10.2174/0115701808265886230921115023

Price: $65

Abstract

Background: DNA methyltransferases (DNMTs) are a group of epigenetic enzymes implicated in regulating gene expression in actively dividing cells. Among these enzymes, DNMT1 plays a leading role in causing increased DNA methylation of tumor suppressors and other genes in cancer cells. This methylation event disrupts the cell cycle regulating genes, allowing an uninterrupted proliferation of cancer cells, and stimulating the inhibition of the degradation of proteins and aberrant transcription activation. Cytosine analog drugs have been shown to reduce DNA methylation but provoke the expression of other prometastatic genes. On the other hand, medicinal compounds act similarly to cytosine analogs by reducing the expression and activity of DNMT1, as reported in some in vitro cancer studies. However, it remains a mystery what those promising medicinal compounds are that show such activity.

Objectives: The objective of this study was to screen medicinal compounds that reduce the expression and interact with the active site residues of DNMT1.

Methods: To analyze medicinal compounds against DNMT1, two in silico tools were employed: DIGEP-pred and IGEMDOCK to discover and identify 98 lead medicinal compounds having anticancer potential, capable of regulating DNMT1 expression and activity.

Results: Our results have identified twenty (20) medicinal compounds that reduced the expression of DNMT1 up to 50-77% as compared to the standard cytosine analog (91.5%). These compounds have also interacted with the reported active site residues of DNMT1, as predicted by IGEMDOCK. These compounds have adequate druglikeness, toxicity, and pharmacokinetic properties as described by Protox-II and ADMET lab 2.0.

Conclusion: Thus, our study provides an initial report of those medicinal compounds that have DNMT1 targeting ability and have a relatively safer pharmacokinetic and toxicity profile.

Keywords: Medicinal compounds, DNA methyltransferases, molecular docking, in silico gene expression, DNMT1, ADMET properties.

Graphical Abstract
[1]
Murison, K.; Michod, D. Epigenetic regulation of gene expression. In: eLS; , 2020; pp. 1-8.
[2]
Kagohara, L.T.; Stein-O’Brien, G.L.; Kelley, D.; Flam, E.; Wick, H.C.; Danilova, L.V.; Easwaran, H.; Favorov, A.V.; Qian, J.; Gaykalova, D.A.; Fertig, E.J. Epigenetic regulation of gene expression in cancer: Techniques, resources and analysis. Brief. Funct. Genomics, 2018, 17(1), 49-63.
[http://dx.doi.org/10.1093/bfgp/elx018] [PMID: 28968850]
[3]
Carey, N.; Marques, C.J.; Reik, W. DNA demethylases: A new epigenetic frontier in drug discovery. Drug Discov. Today, 2011, 16(15-16), 683-690.
[http://dx.doi.org/10.1016/j.drudis.2011.05.004] [PMID: 21601651]
[4]
Edwards, J.R.; Yarychkivska, O.; Boulard, M.; Bestor, T.H. DNA methylation and DNA methyltransferases. Epigenetics Chromatin, 2017, 10(1), 23.
[http://dx.doi.org/10.1186/s13072-017-0130-8] [PMID: 28503201]
[5]
Lyko, F. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat. Rev. Genet., 2018, 19(2), 81-92.
[http://dx.doi.org/10.1038/nrg.2017.80] [PMID: 29033456]
[6]
Dan, H.; Zhang, S.; Zhou, Y.; Guan, Q. DNA methyltransferase inhibitors: Catalysts for antitumour immune responses. OncoTargets Ther., 2019, 12, 10903-10916.
[http://dx.doi.org/10.2147/OTT.S217767] [PMID: 31849494]
[7]
Nishiyama, A.; Nakanishi, M. Navigating the DNA methylation landscape of cancer. Trends Genet., 2021, 37(11), 1012-1027.
[http://dx.doi.org/10.1016/j.tig.2021.05.002]
[8]
Yu, J.; Xie, T.; Wang, Z.; Wang, X.; Zeng, S.; Kang, Y.; Hou, T. DNA methyltransferases: Emerging targets for the discovery of inhibitors as potent anticancer drugs. Drug Discov. Today, 2019, 24(12), 2323-2331.
[http://dx.doi.org/10.1016/j.drudis.2019.08.006] [PMID: 31494187]
[9]
Christman, J.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene, 2002, 21(35), 5483-5495.
[http://dx.doi.org/10.1038/sj.onc.1205699] [PMID: 12154409]
[10]
Joeckel, T.E.; Lübbert, M. Clinical results with the DNA hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in patients with myelodysplastic syndromes: An update. Semin. Hematol., 2012, 49(4), 330-341.
[http://dx.doi.org/10.1053/j.seminhematol.2012.08.001] [PMID: 23079063]
[11]
Karahoca, M.; Momparler, R.L. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2′-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin. Epigenetics, 2013, 5(1), 3.
[http://dx.doi.org/10.1186/1868-7083-5-3] [PMID: 23369223]
[12]
Zhou, Z.; Li, H.Q.; Liu, F. DNA methyltransferase inhibitors and their therapeutic potential. Curr. Top. Med. Chem., 2019, 18(28), 2448-2457.
[http://dx.doi.org/10.2174/1568026619666181120150122] [PMID: 30465505]
[13]
Schnekenburger, M.; Losson, H.; Lernoux, M.; Florean, C.; Dicato, M.; Diederich, M. Natural compounds as epigenetic modulators in cancer. Multidiscip. Digit. Publ. Inst. Proc., 2019, 11(1), 30.
[http://dx.doi.org/10.3390/proceedings2019011030]
[14]
Shah, F.H.; Salman, S.; Idrees, J.; Idrees, F.; Shah, S.T.A.; Khan, A.A.; Ahmad, B. Current progress of phytomedicine in glioblastoma therapy. Curr. Med. Sci., 2020, 40(6), 1067-1074.
[http://dx.doi.org/10.1007/s11596-020-2288-8] [PMID: 33428134]
[15]
Lv, C.; Wu, X.; Wang, X.; Su, J.; Zeng, H.; Zhao, J.; Lin, S.; Liu, R.; Li, H.; Li, X.; Zhang, W. The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: A general template for research on TCMs. Sci. Rep., 2017, 7(1), 352.
[http://dx.doi.org/10.1038/s41598-017-00535-8] [PMID: 28336967]
[16]
Lagunin, A.; Ivanov, S.; Rudik, A.; Filimonov, D.; Poroikov, V. DIGEP-Pred: web service for in silico prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics, 2013, 29(16), 2062-2063.
[http://dx.doi.org/10.1093/bioinformatics/btt322] [PMID: 23740741]
[17]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[18]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[19]
Herrera-Acevedo, C.; Flores-Gaspar, A.; Scotti, L.; Mendonça-Junior, F.J.B.; Scotti, M.T.; Coy-Barrera, E. Identification of kaurane-type diterpenes as inhibitors of leishmania pteridine reductase I. Molecules, 2021, 26(11), 3076.
[http://dx.doi.org/10.3390/molecules26113076] [PMID: 34063939]
[20]
Kar, P.; Sharma, N.R.; Singh, B.; Sen, A.; Roy, A. Natural compounds from clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. J. Biomol. Struct. Dyn., 2020, 39(13), 1-12.
[PMID: 32552595]
[21]
Shah, F.H.; Salman, S.; Idrees, J.; Idrees, F.; Akbar, M.Y. In silico study of thymohydroquinone interaction with blood–brain barrier disrupting proteins. Future Sci. OA, 2020, 6(10), FSO632.
[http://dx.doi.org/10.2144/fsoa-2020-0115] [PMID: 33312701]
[22]
Shah, F.H.; Kim, S.J. Targeting FGL2, a molecular drug target for glioblastoma, with natural compounds through virtual screening method. Future Med. Chem., 2021, 13(9), 805-816.
[http://dx.doi.org/10.4155/fmc-2020-0331] [PMID: 33821685]
[23]
Day, J.K.; Bauer, A.M.; desBordes, C.; Zhuang, Y.; Kim, B.E.; Newton, L.G.; Nehra, V.; Forsee, K.M.; MacDonald, R.S.; Besch-Williford, C.; Huang, T.H.M.; Lubahn, D.B. Genistein alters methylation patterns in mice. J. Nutr., 2002, 132(S8), 2419S-2423S.
[http://dx.doi.org/10.1093/jn/132.8.2419S] [PMID: 12163704]
[24]
Lee, W.J.; Shim, J.Y.; Zhu, B.T. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol. Pharmacol., 2005, 68(4), 1018-1030.
[http://dx.doi.org/10.1124/mol.104.008367]
[25]
Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277.
[http://dx.doi.org/10.1080/01635581.2014.868910] [PMID: 24447120]
[26]
Kanwal, R.; Datt, M.; Liu, X.; Gupta, S. Dietary flavones as dual inhibitors of DNA methyltransferases and histone methyltransferases. PLoS One, 2016, 11(9), e0162956.
[http://dx.doi.org/10.1371/journal.pone.0162956] [PMID: 27658199]
[27]
Assumpção, J.H.M.; Takeda, A.A.S.; Sforcin, J.M.; Rainho, C.A. Effects of propolis and phenolic acids on triple-negative breast cancer cell lines: Potential involvement of epigenetic mechanisms. Molecules, 2020, 25(6), 1289.
[http://dx.doi.org/10.3390/molecules25061289] [PMID: 32178333]
[28]
Mafi, A.; Rezaee, M.; Hedayati, N.; Hogan, S.D.; Reiter, R.J.; Aarabi, M.H.; Asemi, Z. Melatonin and 5-fluorouracil combination chemo-therapy: Opportunities and efficacy in cancer therapy. Cell Commun. Signal., 2023, 21(1), 33.
[http://dx.doi.org/10.1186/s12964-023-01047-x] [PMID: 36759799]
[29]
Anderson, G.; Maes, M. Pharmaceutical and Nutritional Benefits in Alzheimer’s Disease via Convergence on the Melatoninergic Pathways; Bentham Science Publisher Amsterdam: The Netherlands, 2015, p. 4.
[30]
Chen, Z.; Wang, K.; Guo, J.; Zhou, J.; Loor, J.J.; Yang, Z.; Yang, Y. Melatonin maintains homeostasis and potentiates the anti-inflammatory response in Staphylococcus aureus -induced mastitis through microRNA-16b/YAP1. J. Agric. Food Chem., 2022, 70(48), 15255-15270.
[http://dx.doi.org/10.1021/acs.jafc.2c05904] [PMID: 36399659]
[31]
Xiang, S.; Dauchy, R.T.; Hoffman, A.E.; Pointer, D.; Frasch, T.; Blask, D.E.; Hill, S.M. Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3-driven paclitaxel resistance in breast cancer. J. Pineal Res., 2019, 67(2), e12586.
[http://dx.doi.org/10.1111/jpi.12586] [PMID: 31077613]
[32]
Zhao, X.M.; Wang, N.; Hao, H.S.; Li, C.Y.; Zhao, Y.H.; Yan, C.L.; Wang, H.Y.; Du, W.H.; Wang, D.; Liu, Y.; Pang, Y.W.; Zhu, H.B. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J. Pineal Res., 2018, 64(1), e12445.
[http://dx.doi.org/10.1111/jpi.12445] [PMID: 28833478]
[33]
He, J.; Pei, L.; Jiang, H.; Yang, W.; Chen, J.; Liang, H. Chemoresistance of colorectal cancer to 5-fluorouracil is associated with silencing of the BNIP3 gene through aberrant methylation. J. Cancer, 2017, 8(7), 1187-1196.
[http://dx.doi.org/10.7150/jca.18171] [PMID: 28607593]
[34]
Hartung, E.E.; Mukhtar, S.Z.; Shah, S.M.; Niles, L.P. 5-Azacytidine upregulates melatonin MT1 receptor expression in rat C6 glioma cells: oncostatic implications. Mol. Biol. Rep., 2020, 47(6), 4867-4873.
[http://dx.doi.org/10.1007/s11033-020-05482-8] [PMID: 32410138]

© 2024 Bentham Science Publishers | Privacy Policy