Research Article

骨代谢标志物在肾移植受者中的潜在作用

卷 31, 期 19, 2024

发表于: 07 February, 2024

页: [2809 - 2820] 页: 12

弟呕挨: 10.2174/0109298673250291231121052433

价格: $65

Open Access Journals Promotions 2
摘要

背景:治疗、抑制免疫系统、持续性甲状旁腺功能亢进和其他危险因素对肾移植后矿物质和骨骼疾病(MBD)的影响是众所周知的。然而,关于它们对骨代谢生物标志物的影响的知识有限。本研究旨在探讨肾移植对这些标志物的影响,并将其与接受血液透析的患者和健康个体进行比较。 方法:横断面研究将肾移植患者(n = 57)、血液透析患者(n = 26)和健康对照组(n = 31)分为3组。测量各种骨代谢生物标志物的血浆浓度,包括Dickkopf相关蛋白1、骨桥蛋白、骨钙素、骨桥蛋白、硬化蛋白和成纤维细胞生长因子23。评估了这些生物标志物与临床和实验室数据之间的关联。 结果:共114例患者参与。与血液透析患者相比,移植受者的Dickkopf相关蛋白1、骨保护素、骨钙素、骨桥蛋白、硬化蛋白和成纤维细胞生长因子23的水平显著降低。碱性磷酸酶水平与骨桥蛋白呈正相关(r = 0.572, p < 0.001),成纤维细胞生长因子23与25-羟基维生素D呈负相关(r = -0.531, p = 0.019)。骨生物标志物组成功预测移植受者的高钙血症(曲线下面积[AUC] = 0.852, 95%可信区间[CI] = 0.679-1.000)和血脂异常(AUC = 0.811, 95% CI 0.64 -0.982)。 结论:肾移植通过调节MBD标志物和降低骨代谢标志物,如Dickkopf相关蛋白1、骨保护素、骨钙素、骨桥蛋白和硬化蛋白,显著改善终末期肾病相关的矿物质和骨骼疾病。此外,骨生物标志物组有效预测移植受者的高钙血症和血脂异常。

关键词: 肾移植,血液透析,骨代谢,肾性骨营养不良,慢性肾脏疾病,生物标志物。

[1]
Kidney disease: Improving global outcomes (KDIGO) CKD-MBD update work group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl., 2011, 2017(7), 1-59.
[2]
Bouquegneau, A.; Salam, S.; Delanaye, P.; Eastell, R.; Khwaja, A. Bone disease after kidney transplantation. Clin. J. Am. Soc. Nephrol., 2016, 11(7), 1282-1296.
[http://dx.doi.org/10.2215/CJN.11371015] [PMID: 26912549]
[3]
Moe, S.M.; Chen, N.X. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol., 2008, 19(2), 213-216.
[http://dx.doi.org/10.1681/ASN.2007080854] [PMID: 18094365]
[4]
Mazzaferro, S.; Pasquali, M.; Taggi, F.; Baldinelli, M.; Conte, C.; Muci, M.L.; Pirozzi, N.; Carbone, I.; Francone, M.; Pugliese, F. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin. J. Am. Soc. Nephrol., 2009, 4(3), 685-690.
[http://dx.doi.org/10.2215/CJN.03930808] [PMID: 19211668]
[5]
Mazzaferro, S.; Pasquali, M.; Pugliese, F.; Barresi, G.; Carbone, I.; Francone, M.; Sardella, D.; Taggi, F. Serum levels of calcification inhibition proteins and coronary artery calcium score: Comparison between transplantation and dialysis. Am. J. Nephrol., 2007, 27(1), 75-83.
[http://dx.doi.org/10.1159/000099095] [PMID: 17259697]
[6]
Elias, R.M.; Moysés, R.M.A. Elderly patients with chronic kidney disease have higher risk of hyperparathyroidism. Int. Urol. Nephrol., 2017, 49(10), 1815-1821.
[http://dx.doi.org/10.1007/s11255-017-1650-7] [PMID: 28695313]
[7]
Evenepoel, P.; Claes, K.; Kuypers, D.; Maes, B.; Bammens, B.; Vanrenterghem, Y. Natural history of parathyroid function and calcium metabolism after kidney transplantation: A single-centre study. Nephrol. Dial. Transplant., 2004, 19(5), 1281-1287.
[http://dx.doi.org/10.1093/ndt/gfh128] [PMID: 14993493]
[8]
Reinhardt, W.; Bartelworth, H.; JockenhA vel, F.; Schmidt-Gayk, H.; Witzke, O.; Wagner, K.; Heemann, U.W.; Reinwein, D.; Philipp, T.; Mann, K. Sequential changes of biochemical bone parameters after kidney transplantation. Nephrol. Dial. Transplant., 1998, 13(2), 436-442.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a027843] [PMID: 9509459]
[9]
Julian, B.A.; Laskow, D.A.; Dubovsky, J.; Dubovsky, E.V.; Curtis, J.J.; Quarles, L.D. Rapid loss of vertebral mineral density after renal transplantation. N. Engl. J. Med., 1991, 325(8), 544-550.
[http://dx.doi.org/10.1056/NEJM199108223250804] [PMID: 1857390]
[10]
Cejka, D.; Jäger-Lansky, A.; Kieweg, H.; Weber, M.; Bieglmayer, C.; Haider, D.G.; Diarra, D.; Patsch, J.M.; Kainberger, F.; Bohle, B.; Haas, M. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol. Dial. Transplant., 2012, 27(1), 226-230.
[http://dx.doi.org/10.1093/ndt/gfr270] [PMID: 21613383]
[11]
Cejka, D.; Herberth, J.; Branscum, A.J.; Fardo, D.W.; Monier-Faugere, M.C.; Diarra, D.; Haas, M.; Malluche, H.H. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin. J. Am. Soc. Nephrol., 2011, 6(4), 877-882.
[http://dx.doi.org/10.2215/CJN.06550810] [PMID: 21164019]
[12]
Cianciolo, G.; Capelli, I.; Angelini, M.L.; Valentini, C.; Baraldi, O.; Scolari, M.P.; Stefoni, S. Importance of vascular calcification in kidney transplant recipients. Am. J. Nephrol., 2014, 39(5), 418-426.
[http://dx.doi.org/10.1159/000362492] [PMID: 24819032]
[13]
Si, J.; Wang, C.; Zhang, D.; Wang, B.; Hou, W.; Zhou, Y. Osteopontin in bone metabolism and bone diseases. Med. Sci. Monit., 2020, 26, e919159.
[http://dx.doi.org/10.12659/MSM.919159] [PMID: 31996665]
[14]
Wada, T.; McKee, M.D.; Steitz, S.; Giachelli, C.M. Calcification of vascular smooth muscle cell cultures: Inhibition by osteopontin. Circ. Res., 1999, 84(2), 166-178.
[http://dx.doi.org/10.1161/01.RES.84.2.166] [PMID: 9933248]
[15]
Rao, M.; Jain, P.; Ojo, T.; Surya, G.; Balakrishnan, V. Fibroblast growth factor and mineral metabolism parameters among prevalent kidney transplant patients. Int. J. Nephrol., 2012, 2012, 1-6.
[http://dx.doi.org/10.1155/2012/490623] [PMID: 22811905]
[16]
Strengthening the reporting of observational studies in epidemiology. Available from: https://www.strobe-statement.org/checklists/
[17]
Metz, C.E. Basic principles of ROC analysis. Semin. Nucl. Med., 1978, 8(4), 283-298.
[http://dx.doi.org/10.1016/S0001-2998(78)80014-2] [PMID: 112681]
[18]
Economidou, D.; Dovas, S.; Papagianni, A.; Pateinakis, P.; Memmos, D. FGF-23 levels before and after renal transplantation. J. Transplant., 2009, 2009, 1-5.
[http://dx.doi.org/10.1155/2009/379082] [PMID: 20107581]
[19]
Araújo, S.A.; Cordeiro, T.M.; Belisário, A.R.; Araújo, R.F.A.; Marinho, P.E.S.; Kroon, E.G.; de Oliveira, D.B.; Teixeira, M.M.; Simões e Silva, A.C. First report of collapsing variant of focal segmental glomerulosclerosis triggered by arbovirus: Dengue and Zika virus infection. Clin. Kidney J., 2019, 12(3), 355-361.
[http://dx.doi.org/10.1093/ckj/sfy104] [PMID: 31198534]
[20]
Bonani, M.; Rodriguez, D.; Fehr, T.; Mohebbi, N.; Brockmann, J.; Blum, M.; Graf, N.; Frey, D.; Wüthrich, R.P. Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press. Res., 2014, 39(4), 230-239.
[http://dx.doi.org/10.1159/000355781] [PMID: 25118597]
[21]
van Lierop, A.H.; van der Eerden, A.W.; Hamdy, N.A.T.; Hermus, A.R.; den Heijer, M.; Papapoulos, S.E. Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J. Clin. Endocrinol. Metab., 2012, 97(10), E1953-E1957.
[http://dx.doi.org/10.1210/jc.2012-2218] [PMID: 22844062]
[22]
Cejka, D.; Marculescu, R.; Kozakowski, N.; Plischke, M.; Reiter, T.; Gessl, A.; Haas, M. Renal elimination of sclerostin increases with declining kidney function. J. Clin. Endocrinol. Metab., 2014, 99(1), 248-255.
[http://dx.doi.org/10.1210/jc.2013-2786] [PMID: 24187403]
[23]
Tartaglione, L.; Pasquali, M.; Rotondi, S.; Muci, M.L.; Leonangeli, C.; Farcomeni, A.; Fassino, V.; Mazzaferro, S. Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PLoS One, 2017, 12(5), e0178637.
[http://dx.doi.org/10.1371/journal.pone.0178637] [PMID: 28558021]
[24]
Schlieper, G.; Schurgers, L.; Brandenburg, V.; Reutelingsperger, C.; Floege, J. Vascular calcification in chronic kidney disease: An update. Nephrol. Dial. Transplant., 2016, 31(1), 31-39.
[http://dx.doi.org/10.1093/ndt/gfv111] [PMID: 25916871]
[25]
Oschatz, E.; Benesch, T.; Kodras, K.; Hoffmann, U.; Haas, M. Changes of coronary calcification after kidney transplantation. Am. J. Kidney Dis., 2006, 48(2), 307-313.
[http://dx.doi.org/10.1053/j.ajkd.2006.04.066] [PMID: 16860198]
[26]
Malluche, H.H.; Monier-Faugere, M.C.; Herberth, J. Bone disease after renal transplantation. Nat. Rev. Nephrol., 2010, 6(1), 32-40.
[http://dx.doi.org/10.1038/nrneph.2009.192] [PMID: 19918255]
[27]
Morena, M.; Jaussent, I.; Dupuy, A.M.; Bargnoux, A.S.; Kuster, N.; Chenine, L.; Leray-Moragues, H.; Klouche, K.; Vernhet, H.; Canaud, B.; Cristol, J.P. Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: Potential partners in vascular calcifications. Nephrol. Dial. Transplant., 2015, 30(8), 1345-1356.
[http://dx.doi.org/10.1093/ndt/gfv081] [PMID: 25854266]
[28]
Vangala, C.; Pan, J.; Cotton, R.T.; Ramanathan, V. Mineral and bone disorders after kidney transplantation. Front. Med., 2018, 5, 211.
[http://dx.doi.org/10.3389/fmed.2018.00211] [PMID: 30109232]
[29]
Magalhães, J.; Quelhas-Santos, J.; Pereira, L.; Neto, R.; Castro-Ferreira, I.; Martins, S.; Frazão, J.M.; Carvalho, C. Could bone biomarkers predict bone turnover after kidney transplantation?—a proof-of-concept study. J. Clin. Med., 2022, 11(2), 457.
[http://dx.doi.org/10.3390/jcm11020457] [PMID: 35054152]
[30]
Trueba, D.; Sawaya, B.P.; Mawad, H.; Malluche, H.H. Bone biopsy: Indications, techniques, and complications. Semin. Dial., 2003, 16(4), 341-345.
[http://dx.doi.org/10.1046/j.1525-139X.2003.160631.x] [PMID: 12926408]
[31]
Seoane-Pillado, M.T.; Pita-Fernández, S.; Valdés-Cañedo, F.; Seijo-Bestilleiro, R.; Pértega-Díaz, S.; Fernández-Rivera, C.; Alonso-Hernández, Á.; González-Martín, C.; Balboa-Barreiro, V. Incidence of cardiovascular events and associated risk factors in kidney transplant patients: A competing risks survival analysis. BMC Cardiovasc. Disord., 2017, 17(1), 72.
[http://dx.doi.org/10.1186/s12872-017-0505-6] [PMID: 28270107]
[32]
Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renovasc. Dis., 2017, 10, 35-45.
[http://dx.doi.org/10.2147/IJNRD.S101808] [PMID: 28223836]
[33]
Maria Borges Vigil, F.; Alves Soares Vaz de Castro, P.; Gramiscelli Hasparyk, Ú.; Soares Bartolomei, V.; Cristina Simões e Silva, A. MO947: Evaluation of bone metabolism markers in kidney transplant recipients. Nephrology Dialysis Transplantation, 2022, 37, 1685-1686.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy