Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

A Review on Role of Inflammation in Coronavirus Disease

Author(s): Arezoo Lotfi, Pouran Hajian, Laleh Abbasi, Morad Kohandel Gargari, Najmeh Nameh Goshay Fard and Delaram Naderi*

Volume 24, Issue 13, 2024

Published on: 01 February, 2024

Page: [1488 - 1505] Pages: 18

DOI: 10.2174/0118715303265274231204075802

Price: $65

Open Access Journals Promotions 2
Abstract

The respiratory illness known as COVID-19 is caused by the novel coronavirus, SARS-CoV-2. While the precise pathogenic mechanism of COVID-19 remains unclear, the occurrence of a cytokine storm subsequent to viral infection plays a pivotal role in the initiation and advancement of the disease. The infection of SARS-CoV-2 induces a state of immune system hyperactivity, leading to an excessive production of inflammatory cytokines. Consequently, the identification of the various signaling pathways implicated in the inflammation induced by COVID-19 will enable researchers to investigate new targets for therapeutic intervention.

Keywords: COVID-19, cytokine storm, inflammation, immune response, coronavirus disease, SARS-CoV-2.

[1]
Weston, S.; Frieman, M.B. COVID-19: Knowns, unknowns, and questions. MSphere, 2020, 5(2), e00203-e00220.
[http://dx.doi.org/10.1128/mSphere.00203-20] [PMID: 32188753]
[2]
Lake, M.A. What we know so far: COVID-19 current clinical knowledge and research. Clin. Med., 2020, 20(2), 124-127.
[http://dx.doi.org/10.7861/clinmed.2019-coron] [PMID: 32139372]
[3]
Kochi, A.N.; Tagliari, A.P.; Forleo, G.B.; Fassini, G.M.; Tondo, C. Cardiac and arrhythmic complications in patients with COVID‐19. J. Cardiovasc. Electrophysiol., 2020, 31(5), 1003-1008.
[http://dx.doi.org/10.1111/jce.14479] [PMID: 32270559]
[4]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[5]
Xie, P.; Ma, W.; Tang, H.; Liu, D. Severe COVID-19: A review of recent progress with a look toward the future. Front. Public Health, 2020, 8, 189.
[http://dx.doi.org/10.3389/fpubh.2020.00189] [PMID: 32574292]
[6]
Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev., 2020, 53, 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[7]
Darif, D.; Hammi, I.; Kihel, A.; El Idrissi Saik, I.; Guessous, F.; Akarid, K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb. Pathog., 2021, 153, 104799.
[http://dx.doi.org/10.1016/j.micpath.2021.104799] [PMID: 33609650]
[8]
Huang, Q.; Wu, X.; Zheng, X.; Luo, S.; Xu, S.; Weng, J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol. Res., 2020, 159, 105051.
[http://dx.doi.org/10.1016/j.phrs.2020.105051] [PMID: 32603772]
[9]
Medzhitov, R. Origin and physiological roles of inflammation. Nature. J. Inflamm. (Lond), 1(1), 1.
[http://dx.doi.org/10.1186/1476-9255-1-1] [http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[10]
Punchard, N.A.; Whelan, C.J.; Adcock, I. The journal of inflammation; BioMed Central, 2004, pp. 1-4.
[11]
Ueha, S.; Shand, F.H.W.; Matsushima, K. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front. Immunol., 2012, 3, 71.
[http://dx.doi.org/10.3389/fimmu.2012.00071] [PMID: 22566952]
[12]
Gupta, S.C.; Kunnumakkara, A.B.; Aggarwal, S.; Aggarwal, B.B. Inflammation, a double-edge sword for cancer and other age-related diseases. Front. Immunol., 2018, 9, 2160.
[http://dx.doi.org/10.3389/fimmu.2018.02160] [PMID: 30319623]
[13]
Kubo, M. Mast cells and basophils in allergic inflammation. Curr. Opin. Immunol., 2018, 54, 74-79.
[http://dx.doi.org/10.1016/j.coi.2018.06.006] [PMID: 29960953]
[14]
Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity, 2019, 51(1), 27-41.
[http://dx.doi.org/10.1016/j.immuni.2019.06.025] [PMID: 31315034]
[15]
Ahmed, A.U. An overview of inflammation: Mechanism and consequences. Front. Biol., 2011, 6(4), 274-281.
[http://dx.doi.org/10.1007/s11515-011-1123-9]
[16]
García, L.F. Immune response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol., 2020, 11, 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[17]
Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget, 2018, 9(6), 7204-7218.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[18]
Pahwa, R. Chronic inflammation. In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2018.
[19]
Aghasafari, P.; George, U.; Pidaparti, R. A review of inflammatory mechanism in airway diseases. Inflamm. Res., 2019, 68(1), 59-74.
[http://dx.doi.org/10.1007/s00011-018-1191-2] [PMID: 30306206]
[20]
Ginhoux, F.; Jung, S. Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat. Rev. Immunol., 2014, 14(6), 392-404.
[http://dx.doi.org/10.1038/nri3671] [PMID: 24854589]
[21]
Chen, I.Y.; Ichinohe, T. Response of host inflammasomes to viral infection. Trends Microbiol., 2015, 23(1), 55-63.
[http://dx.doi.org/10.1016/j.tim.2014.09.007] [PMID: 25456015]
[22]
Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol., 2014, 32(1), 513-545.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120231] [PMID: 24555472]
[23]
Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183(2), 787-791.
[http://dx.doi.org/10.4049/jimmunol.0901363] [PMID: 19570822]
[24]
Aarreberg, L.D.; Wilkins, C.; Ramos, H.J.; Green, R.; Davis, M.A.; Chow, K.; Gale, M., Jr Interleukin-1β signaling in dendritic cells induces antiviral interferon responses. MBio, 2018, 9(2), e00342-e18.
[http://dx.doi.org/10.1128/mBio.00342-18] [PMID: 29559569]
[25]
Sokol, C.L.; Luster, A.D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol., 2015, 7(5), a016303.
[http://dx.doi.org/10.1101/cshperspect.a016303] [PMID: 25635046]
[26]
Henry, C.J.; Ornelles, D.A.; Mitchell, L.M.; Brzoza-Lewis, K.L.; Hiltbold, E.M. IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J. Immunol., 2008, 181(12), 8576-8584.
[http://dx.doi.org/10.4049/jimmunol.181.12.8576] [PMID: 19050277]
[27]
Wang, K.S.; Frank, D.A.; Ritz, J. Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood, 2000, 95(10), 3183-3190.
[http://dx.doi.org/10.1182/blood.V95.10.3183] [PMID: 10807786]
[28]
Waffarn, E.E.; Baumgarth, N. Protective B cell responses to flu-no fluke! J. Immunol., 2011, 186(7), 3823-3829.
[http://dx.doi.org/10.4049/jimmunol.1002090] [PMID: 21422252]
[29]
Sun, J.; Madan, R.; Karp, C.L.; Braciale, T.J. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nat. Med., 2009, 15(3), 277-284.
[http://dx.doi.org/10.1038/nm.1929] [PMID: 19234462]
[30]
Sridhar, S.; Begom, S.; Bermingham, A.; Hoschler, K.; Adamson, W.; Carman, W.; Bean, T.; Barclay, W.; Deeks, J.J.; Lalvani, A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med., 2013, 19(10), 1305-1312.
[http://dx.doi.org/10.1038/nm.3350] [PMID: 24056771]
[31]
Moser, E.K.; Hufford, M.M.; Braciale, T.J. Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3+ regulatory T cell dependent manner. PLoS Pathog., 2014, 10(8), e1004315.
[http://dx.doi.org/10.1371/journal.ppat.1004315] [PMID: 25144228]
[32]
Sun, K.; Metzger, D.W. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat. Med., 2008, 14(5), 558-564.
[http://dx.doi.org/10.1038/nm1765] [PMID: 18438414]
[33]
Antunes, I.; Kassiotis, G. Suppression of innate immune pathology by regulatory T cells during Influenza A virus infection of immunodeficient mice. J. Virol., 2010, 84(24), 12564-12575.
[http://dx.doi.org/10.1128/JVI.01559-10] [PMID: 20943986]
[34]
Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J. Infect. Dis., 2008, 198(7), 962-970.
[http://dx.doi.org/10.1086/591708] [PMID: 18710327]
[35]
Park, S.H.; Rehermann, B. Immune responses to HCV and other hepatitis viruses. Immunity, 2014, 40(1), 13-24.
[http://dx.doi.org/10.1016/j.immuni.2013.12.010] [PMID: 24439265]
[36]
Vescovo, T.; Refolo, G.; Vitagliano, G.; Fimia, G.M.; Piacentini, M. Molecular mechanisms of hepatitis C virus–induced hepatocellular carcinoma. Clin. Microbiol. Infect., 2016, 22(10), 853-861.
[http://dx.doi.org/10.1016/j.cmi.2016.07.019] [PMID: 27476823]
[37]
Ricci, D.; Etna, M.P.; Rizzo, F.; Sandini, S.; Severa, M.; Coccia, E.M. Innate immune response to SARS-CoV-2 infection: From cells to soluble mediators. Int. J. Mol. Sci., 2021, 22(13), 7017.
[http://dx.doi.org/10.3390/ijms22137017] [PMID: 34209845]
[38]
Newton, A.H.; Cardani, A.; Braciale, T.J. The host immune response in respiratory virus infection: balancing virus clearance and immunopathology. Seminars in immunopathology; Springer, 2016.
[http://dx.doi.org/10.1007/s00281-016-0558-0]
[39]
Thorne, L.G.; Reuschl, A.K.; Zuliani-Alvarez, L.; Whelan, M.V.X.; Turner, J.; Noursadeghi, M.; Jolly, C.; Towers, G.J. SARS‐CoV‐2 sensing by RIG‐I and MDA5 links epithelial infection to macrophage inflammation. EMBO J., 2021, 40(15), e107826.
[http://dx.doi.org/10.15252/embj.2021107826] [PMID: 34101213]
[40]
Zhang, D. COVID‐19 infection induces readily detectable morphologic and inflammation‐related phenotypic changes in peripheral blood monocytes. J. Leukoc. Biol., 2021, 109(1), 13-22.
[PMID: 33040384]
[41]
Barton, L.M.; Duval, E.J.; Stroberg, E.; Ghosh, S.; Mukhopadhyay, S. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol., 2020, 153(6), 725-733.
[http://dx.doi.org/10.1093/ajcp/aqaa062] [PMID: 32275742]
[42]
Park, M.D. Macrophages: A Trojan horse in COVID-19? Nat. Rev. Immunol., 2020, 20(6), 351-351.
[http://dx.doi.org/10.1038/s41577-020-0317-2] [PMID: 32303696]
[43]
Chua, R.L.; Lukassen, S.; Trump, S.; Hennig, B.P.; Wendisch, D.; Pott, F.; Debnath, O.; Thürmann, L.; Kurth, F.; Völker, M.T.; Kazmierski, J.; Timmermann, B.; Twardziok, S.; Schneider, S.; Machleidt, F.; Müller-Redetzky, H.; Maier, M.; Krannich, A.; Schmidt, S.; Balzer, F.; Liebig, J.; Loske, J.; Suttorp, N.; Eils, J.; Ishaque, N.; Liebert, U.G.; von Kalle, C.; Hocke, A.; Witzenrath, M.; Goffinet, C.; Drosten, C.; Laudi, S.; Lehmann, I.; Conrad, C.; Sander, L.E.; Eils, R. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol., 2020, 38(8), 970-979.
[http://dx.doi.org/10.1038/s41587-020-0602-4] [PMID: 32591762]
[44]
Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; Liu, L.; Amit, I.; Zhang, S.; Zhang, Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med., 2020, 26(6), 842-844.
[http://dx.doi.org/10.1038/s41591-020-0901-9] [PMID: 32398875]
[45]
Parackova, Z.; Zentsova, I.; Bloomfield, M.; Vrabcova, P.; Smetanova, J.; Klocperk, A.; Mesežnikov, G.; Casas Mendez, L.F.; Vymazal, T.; Sediva, A. Disharmonic inflammatory signatures in COVID-19: Augmented neutrophils’ but impaired monocytes’ and dendritic cells’ responsiveness. Cells, 2020, 9(10), 2206.
[http://dx.doi.org/10.3390/cells9102206] [PMID: 33003471]
[46]
Zhou, Z. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host & Microbe, 2020, 27(6), 883-890.
[47]
Zhang, D.; Guo, R.; Lei, L.; Liu, H.; Wang, Y.; Wang, Y.; Qian, H.; Dai, T.; Zhang, T.; Lai, Y.; Wang, J.; Liu, Z.; Chen, T.; He, A.; O’Dwyer, M.; Hu, J. Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes. J. Leukoc. Biol., 2021, 109(1), 13-22.
[http://dx.doi.org/10.1002/JLB.4HI0720-470R] [PMID: 33040384]
[48]
Feng, Z. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.27.20045427]
[49]
Zhou, R. Acute SARS-CoV-2 infection impairs dendritic cell and T cell responses. Immunity, 2020, 53(4), 864-877.
[50]
Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.P.M.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tak-Yin Tsang, O.; Wagh, D.; Coller, J.; Pellegrini, K.L.; Kazmin, D.; Alaaeddine, G.; Leung, W.S.; Chan, J.M.C.; Chik, T.S.H.; Choi, C.Y.C.; Huerta, C.; Paine McCullough, M.; Lv, H.; Anderson, E.; Edupuganti, S.; Upadhyay, A.A.; Bosinger, S.E.; Maecker, H.T.; Khatri, P.; Rouphael, N.; Peiris, M.; Pulendran, B. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science, 2020, 369(6508), 1210-1220.
[http://dx.doi.org/10.1126/science.abc6261] [PMID: 32788292]
[51]
Xu, G.; Qi, F.; Li, H.; Yang, Q.; Wang, H.; Wang, X.; Liu, X.; Zhao, J.; Liao, X.; Liu, Y.; Liu, L.; Zhang, S.; Zhang, Z. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing. Cell Discov., 2020, 6(1), 73.
[http://dx.doi.org/10.1038/s41421-020-00225-2] [PMID: 33101705]
[52]
Severa, M.; Diotti, R.A.; Etna, M.P.; Rizzo, F.; Fiore, S.; Ricci, D.; Iannetta, M.; Sinigaglia, A.; Lodi, A.; Mancini, N.; Criscuolo, E.; Clementi, M.; Andreoni, M.; Balducci, S.; Barzon, L.; Stefanelli, P.; Clementi, N.; Coccia, E.M. Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection. PLoS Pathog., 2021, 17(9), e1009878.
[http://dx.doi.org/10.1371/journal.ppat.1009878] [PMID: 34473805]
[53]
Maloir, Q.; Ghysen, K.; von Frenckell, C.; Louis, R.; Guiot, J. Acute respiratory distress revealing antisynthetase syndrome. Rev. Med. Liege, 2018, 73(7-8), 370-375.
[PMID: 30113776]
[54]
Peng, Y.; Mentzer, A.J.; Liu, G.; Yao, X.; Yin, Z.; Dong, D.; Dejnirattisai, W.; Rostron, T.; Supasa, P.; Liu, C.; López-Camacho, C.; Slon-Campos, J.; Zhao, Y.; Stuart, D.I.; Paesen, G.C.; Grimes, J.M.; Antson, A.A.; Bayfield, O.W.; Hawkins, D.E.D.P.; Ker, D.S.; Wang, B.; Turtle, L.; Subramaniam, K.; Thomson, P.; Zhang, P.; Dold, C.; Ratcliff, J.; Simmonds, P.; de Silva, T.; Sopp, P.; Wellington, D.; Rajapaksa, U.; Chen, Y.L.; Salio, M.; Napolitani, G.; Paes, W.; Borrow, P.; Kessler, B.M.; Fry, J.W.; Schwabe, N.F.; Semple, M.G.; Baillie, J.K.; Moore, S.C.; Openshaw, P.J.M.; Ansari, M.A.; Dunachie, S.; Barnes, E.; Frater, J.; Kerr, G.; Goulder, P.; Lockett, T.; Levin, R.; Zhang, Y.; Jing, R.; Ho, L.P.; Barnes, E.; Dong, D.; Dong, T.; Dunachie, S.; Frater, J.; Goulder, P.; Kerr, G.; Klenerman, P.; Liu, G.; McMichael, A.; Napolitani, G.; Ogg, G.; Peng, Y.; Salio, M.; Yao, X.; Yin, Z.; Kenneth Baillie, J.; Klenerman, P.; Mentzer, A.J.; Moore, S.C.; Openshaw, P.J.M.; Semple, M.G.; Stuart, D.I.; Turtle, L.; Cornall, R.J.; Conlon, C.P.; Klenerman, P.; Screaton, G.R.; Mongkolsapaya, J.; McMichael, A.; Knight, J.C.; Ogg, G.; Dong, T. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol., 2020, 21(11), 1336-1345.
[http://dx.doi.org/10.1038/s41590-020-0782-6] [PMID: 32887977]
[55]
Laing, A.G.; Lorenc, A.; del Molino del Barrio, I.; Das, A.; Fish, M.; Monin, L.; Muñoz-Ruiz, M.; McKenzie, D.R.; Hayday, T.S.; Francos-Quijorna, I.; Kamdar, S.; Joseph, M.; Davies, D.; Davis, R.; Jennings, A.; Zlatareva, I.; Vantourout, P.; Wu, Y.; Sofra, V.; Cano, F.; Greco, M.; Theodoridis, E.; Freedman, J.D.; Gee, S.; Chan, J.N.E.; Ryan, S.; Bugallo-Blanco, E.; Peterson, P.; Kisand, K.; Haljasmägi, L.; Chadli, L.; Moingeon, P.; Martinez, L.; Merrick, B.; Bisnauthsing, K.; Brooks, K.; Ibrahim, M.A.A.; Mason, J.; Lopez Gomez, F.; Babalola, K.; Abdul-Jawad, S.; Cason, J.; Mant, C.; Seow, J.; Graham, C.; Doores, K.J.; Di Rosa, F.; Edgeworth, J.; Shankar-Hari, M.; Hayday, A.C. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med., 2020, 26(10), 1623-1635.
[http://dx.doi.org/10.1038/s41591-020-1038-6] [PMID: 32807934]
[56]
Oja, A.E.; Saris, A.; Ghandour, C.A.; Kragten, N.A.M.; Hogema, B.M.; Nossent, E.J.; Heunks, L.M.A.; Cuvalay, S.; Slot, E.; Linty, F.; Swaneveld, F.H.; Vrielink, H.; Vidarsson, G.; Rispens, T.; van der Schoot, E.; van Lier, R.A.W.; Ten Brinke, A.; Hombrink, P. Divergent SARS‐CoV‐2‐specific T‐ and B‐cell responses in severe but not mild COVID‐19 patients. Eur. J. Immunol., 2020, 50(12), 1998-2012.
[http://dx.doi.org/10.1002/eji.202048908] [PMID: 33073359]
[57]
Kusnadi, A. Severely ill COVID-19 patients display augmented functional properties in SARS-CoV-2-reactive CD8+ T cells. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.07.09.194027]
[58]
Mazzoni, A.; Salvati, L.; Maggi, L.; Capone, M.; Vanni, A.; Spinicci, M.; Mencarini, J.; Caporale, R.; Peruzzi, B.; Antonelli, A.; Trotta, M.; Zammarchi, L.; Ciani, L.; Gori, L.; Lazzeri, C.; Matucci, A.; Vultaggio, A.; Rossi, O.; Almerigogna, F.; Parronchi, P.; Fontanari, P.; Lavorini, F.; Peris, A.; Rossolini, G.M.; Bartoloni, A.; Romagnani, S.; Liotta, F.; Annunziato, F.; Cosmi, L. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Invest., 2020, 130(9), 4694-4703.
[http://dx.doi.org/10.1172/JCI138554] [PMID: 32463803]
[59]
Mathew, D.; Giles, J.R.; Baxter, A.E.; Oldridge, D.A.; Greenplate, A.R.; Wu, J.E.; Alanio, C.; Kuri-Cervantes, L.; Pampena, M.B.; D’Andrea, K.; Manne, S.; Chen, Z.; Huang, Y.J.; Reilly, J.P.; Weisman, A.R.; Ittner, C.A.G.; Kuthuru, O.; Dougherty, J.; Nzingha, K.; Han, N.; Kim, J.; Pattekar, A.; Goodwin, E.C.; Anderson, E.M.; Weirick, M.E.; Gouma, S.; Arevalo, C.P.; Bolton, M.J.; Chen, F.; Lacey, S.F.; Ramage, H.; Cherry, S.; Hensley, S.E.; Apostolidis, S.A.; Huang, A.C.; Vella, L.A.; Betts, M.R.; Meyer, N.J.; Wherry, E.J.; Alam, Z.; Addison, M.M.; Byrne, K.T.; Chandra, A.; Descamps, H.C.; Kaminskiy, Y.; Hamilton, J.T.; Noll, J.H.; Omran, D.K.; Perkey, E.; Prager, E.M.; Pueschl, D.; Shah, J.B.; Shilan, J.S.; Vanderbeck, A.N. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369(6508), eabc8511.
[http://dx.doi.org/10.1126/science.abc8511] [PMID: 32669297]
[60]
Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; Zhang, X.; Zhang, M.; Wu, S.; Song, J.; Chen, T.; Han, M.; Li, S.; Luo, X.; Zhao, J.; Ning, Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[61]
Zhang, F.; Gan, R.; Zhen, Z.; Hu, X.; Li, X.; Zhou, F.; Liu, Y.; Chen, C.; Xie, S.; Zhang, B.; Wu, X.; Huang, Z. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct. Target. Ther., 2020, 5(1), 156.
[http://dx.doi.org/10.1038/s41392-020-00263-y] [PMID: 32796814]
[62]
Gong, F.; Dai, Y.; Zheng, T.; Cheng, L.; Zhao, D.; Wang, H.; Liu, M.; Pei, H.; Jin, T.; Yu, D.; Zhou, P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J. Clin. Invest., 2020, 130(12), 6588-6599.
[http://dx.doi.org/10.1172/JCI141054] [PMID: 32841212]
[63]
Meckiff, B.J. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19. Cell, 2020, 183(5), 1340-1353.
[64]
Juno, J.A.; Tan, H.X.; Lee, W.S.; Reynaldi, A.; Kelly, H.G.; Wragg, K.; Esterbauer, R.; Kent, H.E.; Batten, C.J.; Mordant, F.L.; Gherardin, N.A.; Pymm, P.; Dietrich, M.H.; Scott, N.E.; Tham, W.H.; Godfrey, D.I.; Subbarao, K.; Davenport, M.P.; Kent, S.J.; Wheatley, A.K. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med., 2020, 26(9), 1428-1434.
[http://dx.doi.org/10.1038/s41591-020-0995-0] [PMID: 32661393]
[65]
Shuwa, H.A. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med, 2021, 2(6), 720-735.
[66]
Sokal, A. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell, 2021, 184(5), 1201-1213.
[http://dx.doi.org/10.1016/j.cell.2021.01.050]
[67]
Larsson, S.C.; Burgess, S.; Gill, D. Genetically proxied interleukin-6 receptor inhibition: opposing associations with COVID-19 and pneumonia. Eur. Respir. J., 2021, 57(1), 2003545.
[http://dx.doi.org/10.1183/13993003.03545-2020] [PMID: 33214204]
[68]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10), a016295.
[http://dx.doi.org/10.1101/cshperspect.a016295] [PMID: 25190079]
[69]
Scheller, J.; Rose-John, S. Interleukin-6 and its receptor: from bench to bedside. Med. Microbiol. Immunol., 2006, 195(4), 173-183.
[http://dx.doi.org/10.1007/s00430-006-0019-9] [PMID: 16741736]
[70]
Weissenbach, J.; Chernajovsky, Y.; Zeevi, M.; Shulman, L.; Soreq, H.; Nir, U.; Wallach, D.; Perricaudet, M.; Tiollais, P.; Revel, M. Two interferon mRNAs in human fibroblasts: in vitro translation and Escherichia coli cloning studies. Proc. Natl. Acad. Sci. USA, 1980, 77(12), 7152-7156.
[http://dx.doi.org/10.1073/pnas.77.12.7152] [PMID: 6164058]
[71]
Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457.
[http://dx.doi.org/10.1038/ni.3153] [PMID: 25898198]
[72]
Jones, S.A.; Jenkins, B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol., 2018, 18(12), 773-789.
[http://dx.doi.org/10.1038/s41577-018-0066-7] [PMID: 30254251]
[73]
Briso, E.M.; Dienz, O.; Rincon, M. Cutting edge: Soluble IL-6R is produced by IL-6R ectodomain shedding in activated CD4 T cells. J. Immunol., 2008, 180(11), 7102-7106.
[http://dx.doi.org/10.4049/jimmunol.180.11.7102] [PMID: 18490707]
[74]
Campbell, I.L.; Erta, M.; Lim, S.L.; Frausto, R.; May, U.; Rose-John, S.; Scheller, J.; Hidalgo, J. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J. Neurosci., 2014, 34(7), 2503-2513.
[http://dx.doi.org/10.1523/JNEUROSCI.2830-13.2014] [PMID: 24523541]
[75]
Zegeye, M.M.; Lindkvist, M.; Fälker, K.; Kumawat, A.K.; Paramel, G.; Grenegård, M.; Sirsjö, A.; Ljungberg, L.U. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun. Signal., 2018, 16(1), 55.
[http://dx.doi.org/10.1186/s12964-018-0268-4] [PMID: 30185178]
[76]
Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis., 2020, 221(11), 1762-1769.
[http://dx.doi.org/10.1093/infdis/jiaa150] [PMID: 32227123]
[77]
Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 2016, 8(8), 959-970.
[http://dx.doi.org/10.2217/imt-2016-0020] [PMID: 27381687]
[78]
Zhao, M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int. J. Antimicrob. Agents, 2020, 55(6), 105982.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105982] [PMID: 32305588]
[79]
Atal, S.; Fatima, Z. IL-6 inhibitors in the treatment of serious COVID-19: A promising therapy? Pharmaceut. Med., 2020, 34(4), 223-231.
[http://dx.doi.org/10.1007/s40290-020-00342-z] [PMID: 32535732]
[80]
Farrar, M.A.; Schreiber, R.D. The molecular cell biology of interferon-gamma and its receptor. Annu. Rev. Immunol., 1993, 11(1), 571-611.
[http://dx.doi.org/10.1146/annurev.iy.11.040193.003035] [PMID: 8476573]
[81]
Bach, E.A.; Aguet, M.; Schreiber, R.D. The IFN γ receptor: A paradigm for cytokine receptor signaling. Annu. Rev. Immunol., 1997, 15(1), 563-591.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.563] [PMID: 9143700]
[82]
Shtrichman, R.; Samuel, C.E. The role of gamma interferon in antimicrobial immunity. Curr. Opin. Microbiol., 2001, 4(3), 251-259.
[http://dx.doi.org/10.1016/S1369-5274(00)00199-5] [PMID: 11378475]
[83]
Borden, E.C.; Sen, G.C.; Uze, G.; Silverman, R.H.; Ransohoff, R.M.; Foster, G.R.; Stark, G.R. Interferons at age 50: Past, current and future impact on biomedicine. Nat. Rev. Drug Discov., 2007, 6(12), 975-990.
[http://dx.doi.org/10.1038/nrd2422] [PMID: 18049472]
[84]
Farin, H.F.; Karthaus, W.R.; Kujala, P.; Rakhshandehroo, M.; Schwank, G.; Vries, R.G.J.; Kalkhoven, E.; Nieuwenhuis, E.E.S.; Clevers, H. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ. J. Exp. Med., 2014, 211(7), 1393-1405.
[http://dx.doi.org/10.1084/jem.20130753] [PMID: 24980747]
[85]
Walrath, T.; Malizia, R.A.; Zhu, X.; Sharp, S.P.; D’Souza, S.S.; Lopez-Soler, R.; Parr, B.; Kartchner, B.; Lee, E.C.; Stain, S.C.; Iwakura, Y.; O’Connor, W., Jr IFN-γ and IL-17A regulate intestinal crypt production of CXCL10 in the healthy and inflamed colon. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 318(3), G479-G489.
[http://dx.doi.org/10.1152/ajpgi.00208.2019] [PMID: 31790273]
[86]
Ziegler, C.G. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.
[87]
Biondillo, D.E.; Konicek, S.A.; Iwamoto, G.K. Interferon-gamma regulation of interleukin 6 in monocytic cells. Am. J. Physiol., 1994, 267(5 Pt 1), L564-L568.
[PMID: 7526705]
[88]
Huang, K.J.; Su, I.J.; Theron, M.; Wu, Y.C.; Lai, S.K.; Liu, C.C.; Lei, H.Y. An interferon-related cytokine storm in SARS patients. J. Med. Virol., 2005, 75(2), 185-194.
[http://dx.doi.org/10.1002/jmv.20255] [PMID: 15602737]
[89]
Liu, B.; Bao, L.; Wang, L.; Li, F.; Wen, M.; Li, H.; Deng, W.; Zhang, X.; Cao, B. Anti-IFN-γ therapy alleviates acute lung injury induced by severe influenza A (H1N1) pdm09 infection in mice. J. Microbiol. Immunol. Infect., 2021, 54(3), 396-403.
[http://dx.doi.org/10.1016/j.jmii.2019.07.009] [PMID: 31780358]
[90]
McLoughlin, R.M.; Witowski, J.; Robson, R.L.; Wilkinson, T.S.; Hurst, S.M.; Williams, A.S.; Williams, J.D.; Rose-John, S.; Jones, S.A.; Topley, N. Interplay between IFN-γ and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation. J. Clin. Invest., 2003, 112(4), 598-607.
[http://dx.doi.org/10.1172/JCI17129] [PMID: 12925700]
[91]
Lagunas-Rangel, F.A.; Chávez-Valencia, V. High IL‐6/IFN‐γ ratio could be associated with severe disease in COVID‐19 patients. J. Med. Virol., 2020, 92(10), 1789-1790.
[http://dx.doi.org/10.1002/jmv.25900] [PMID: 32297995]
[92]
Baud, V.; Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol., 2001, 11(9), 372-377.
[http://dx.doi.org/10.1016/S0962-8924(01)02064-5] [PMID: 11514191]
[93]
Aderka, D.; Engelmann, H.; Maor, Y.; Brakebusch, C.; Wallach, D. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J. Exp. Med., 1992, 175(2), 323-329.
[http://dx.doi.org/10.1084/jem.175.2.323] [PMID: 1310100]
[94]
Ware, C.F.; Crowe, P.D.; Vanarsdale, T.L.; Andrews, J.L.; Grayson, M.H.; Jerzy, R.; Smith, C.A.; Goodwin, R.G. Tumor necrosis factor (TNF) receptor expression in T lymphocytes. Differential regulation of the type I TNF receptor during activation of resting and effector T cells. J. Immunol., 1991, 147(12), 4229-4238.
[http://dx.doi.org/10.4049/jimmunol.147.12.4229] [PMID: 1661312]
[95]
Pimentel-Muiños, F.X.; Seed, B. Regulated commitment of TNF receptor signaling: A molecular switch for death or activation. Immunity, 1999, 11(6), 783-793.
[http://dx.doi.org/10.1016/S1074-7613(00)80152-1] [PMID: 10626900]
[96]
Levine, S.J. Molecular mechanisms of soluble cytokine receptor generation. J. Biol. Chem., 2008, 283(21), 14177-14181.
[http://dx.doi.org/10.1074/jbc.R700052200] [PMID: 18385130]
[97]
Aderka, D.; Engelmann, H.; Shemer-Avni, Y.; Hornik, V.; Galil, A.; Sarov, B.; Wallach, D. Variation in serum levels of the soluble TNF receptors among healthy individuals. Lymphokine Cytokine Res., 1992, 11(3), 157-159.
[PMID: 1327192]
[98]
Marti, C.N.; Khan, H.; Mann, D.L.; Georgiopoulou, V.V.; Bibbins-Domingo, K.; Harris, T.; Koster, A.; Newman, A.; Kritchevsky, S.B.; Kalogeropoulos, A.P.; Butler, J. Soluble tumor necrosis factor receptors and heart failure risk in older adults: Health, Aging, and Body Composition (Health ABC) Study. Circ. Heart Fail., 2014, 7(1), 5-11.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000344] [PMID: 24323631]
[99]
Gong, J. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. BMC Infect. Dis., 2020, 20(1), 963.
[http://dx.doi.org/10.1186/s12879-020-05681-5] [PMID: 33349241]
[100]
Haga, S.; Nagata, N.; Okamura, T.; Yamamoto, N.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res., 2010, 85(3), 551-555.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.001] [PMID: 19995578]
[101]
Rajaei, S.; Dabbagh, A. The immunologic basis of COVID-19: A clinical approach. J Cellu Mol Anesthesia, 2020, 5(1), 37-42.
[102]
Mortaz, E.; Tabarsi, P.; Jamaati, H.; Dalil Roofchayee, N.; Dezfuli, N.K.; Hashemian, S.M.; Moniri, A.; Marjani, M.; Malekmohammad, M.; Mansouri, D.; Varahram, M.; Folkerts, G.; Adcock, I.M. Increased serum levels of soluble TNF-α receptor is associated with ICU mortality in COVID-19 patients. Front. Immunol., 2021, 12, 592727.
[http://dx.doi.org/10.3389/fimmu.2021.592727] [PMID: 33968010]
[103]
Jeong, E.; Lee, J.Y. Intrinsic and extrinsic regulation of innate immune receptors. Yonsei Med. J., 2011, 52(3), 379-392.
[http://dx.doi.org/10.3349/ymj.2011.52.3.379] [PMID: 21488180]
[104]
Goulopoulou, S.; McCarthy, C.G.; Webb, R.C. Toll-like receptors in the vascular system: Sensing the dangers within. Pharmacol. Rev., 2016, 68(1), 142-167.
[http://dx.doi.org/10.1124/pr.114.010090] [PMID: 26721702]
[105]
Moreno-Eutimio, M.A.; López-Macías, C.; Pastelin-Palacios, R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect., 2020, 22(4-5), 226-229.
[http://dx.doi.org/10.1016/j.micinf.2020.04.009] [PMID: 32361001]
[106]
El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent., 2019, 43(1), 187.
[http://dx.doi.org/10.1186/s42269-019-0227-2]
[107]
Magro, G. SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the ‘culprit lesion’ of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine X, 2020, 2(2), 100029.
[http://dx.doi.org/10.1016/j.cytox.2020.100029] [PMID: 32421092]
[108]
Choudhury, A.; Mukherjee, S. In silico studies on the comparative characterization of the interactions of SARS‐CoV‐2 spike glycoprotein with ACE‐2 receptor homologs and human TLRs. J. Med. Virol., 2020, 92(10), 2105-2113.
[http://dx.doi.org/10.1002/jmv.25987] [PMID: 32383269]
[109]
Seif, F.; Aazami, H.; Khoshmirsafa, M.; Kamali, M.; Mohsenzadegan, M.; Pornour, M.; Mansouri, D. JAK inhibition as a new treatment strategy for patients with COVID-19. Int. Arch. Allergy Immunol., 2020, 181(6), 467-475.
[http://dx.doi.org/10.1159/000508247] [PMID: 32392562]
[110]
Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs, 2017, 77(5), 521-546.
[http://dx.doi.org/10.1007/s40265-017-0701-9] [PMID: 28255960]
[111]
Billing, U.; Jetka, T.; Nortmann, L.; Wundrack, N.; Komorowski, M.; Waldherr, S.; Schaper, F.; Dittrich, A. Robustness and information transfer within IL-6-induced JAK/STAT signalling. Commun. Biol., 2019, 2(1), 27.
[http://dx.doi.org/10.1038/s42003-018-0259-4] [PMID: 30675525]
[112]
Stancioiu, F.; Papadakis, G.; Kteniadakis, S.; Izotov, B.; Coleman, M.; Spandidos, D.; Tsatsakis, A. A dissection of SARS CoV2 with clinical implications (Review). Int. J. Mol. Med., 2020, 46(2), 489-508.
[http://dx.doi.org/10.3892/ijmm.2020.4636] [PMID: 32626922]
[113]
Xia, H.; Cao, Z.; Xie, X.; Zhang, X.; Chen, J.Y.C.; Wang, H.; Menachery, V.D.; Rajsbaum, R.; Shi, P.Y. Evasion of type I interferon by SARS-CoV-2. Cell Rep., 2020, 33(1), 108234.
[http://dx.doi.org/10.1016/j.celrep.2020.108234] [PMID: 32979938]
[114]
Astuti, I.; Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[115]
Wu, Y.; Ma, L.; Zhuang, Z.; Cai, S.; Zhao, Z.; Zhou, L.; Zhang, J.; Wang, P.H.; Zhao, J.; Cui, J. Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduct. Target. Ther., 2020, 5(1), 221.
[http://dx.doi.org/10.1038/s41392-020-00332-2] [PMID: 33024073]
[116]
Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.; Tascher, G.; Geurink, P.P.; Wilhelm, A.; van der Heden van Noort, G.J.; Ovaa, H.; Müller, S.; Knobeloch, K.P.; Rajalingam, K.; Schulman, B.A.; Cinatl, J.; Hummer, G.; Ciesek, S.; Dikic, I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587(7835), 657-662.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[117]
Wang, J.; Schreiber, R.D.; Campbell, I.L. STAT1 deficiency unexpectedly and markedly exacerbates the pathophysiological actions of IFN-α in the central nervous system. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16209-16214.
[http://dx.doi.org/10.1073/pnas.252454799] [PMID: 12461178]
[118]
Tsai, M.H.; Pai, L.M.; Lee, C.K. Fine-tuning of type I interferon response by STAT3. Front. Immunol., 2019, 10, 1448.
[http://dx.doi.org/10.3389/fimmu.2019.01448] [PMID: 31293595]
[119]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[120]
Rochman, Y.; Spolski, R.; Leonard, W.J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol., 2009, 9(7), 480-490.
[http://dx.doi.org/10.1038/nri2580] [PMID: 19543225]
[121]
Marrack, P.; Kappler, J. Control of T cell viability. Annu. Rev. Immunol., 2004, 22(1), 765-787.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104554] [PMID: 15032596]
[122]
López-Herrera, G.; Vargas-Hernández, A.; González-Serrano, M.E.; Berrón-Ruiz, L.; Rodríguez-Alba, J.C.; Espinosa-Rosales, F.; Santos-Argumedo, L. Bruton’s tyrosine kinase-an integral protein of B cell development that also has an essential role in the innate immune system. J. Leukoc. Biol., 2013, 95(2), 243-250.
[http://dx.doi.org/10.1189/jlb.0513307] [PMID: 24249742]
[123]
Kurosaki, T. Regulation of BCR signaling. Mol. Immunol., 2011, 48(11), 1287-1291.
[http://dx.doi.org/10.1016/j.molimm.2010.12.007] [PMID: 21195477]
[124]
Stadler, N.; Hasibeder, A.; Lopez, P.A.; Teschner, D.; Desuki, A.; Kriege, O.; Weber, A.N.R.; Schulz, C.; Michel, C.; Heβ, G.; Radsak, M.P. The Bruton tyrosine kinase inhibitor ibrutinib abrogates triggering receptor on myeloid cells 1-mediated neutrophil activation. Haematologica, 2017, 102(5), e191-e194.
[http://dx.doi.org/10.3324/haematol.2016.152017] [PMID: 28126969]
[125]
Rezaei, M.; Barati, S.; Babamahmoodi, A.; Dastan, F.; Marjani, M. The possible role of bruton tyrosine kinase inhibitors in the treatment of COVID-19: A review. Curr. Ther. Res. Clin. Exp., 2022, 96, 100658.
[http://dx.doi.org/10.1016/j.curtheres.2021.100658] [PMID: 34931090]
[126]
Didangelos, A. COVID-19 hyperinflammation: What about neutrophils? MSphere, 2020, 5(3), e00367-e20.
[http://dx.doi.org/10.1128/mSphere.00367-20] [PMID: 32581077]
[127]
Dorward, D.A.; Russell, C.D.; Um, I.H.; Elshani, M.; Armstrong, S.D.; Penrice-Randal, R.; Millar, T.; Lerpiniere, C.E.B.; Tagliavini, G.; Hartley, C.S.; Randle, N.P.; Gachanja, N.N.; Potey, P.M.D.; Dong, X.; Anderson, A.M.; Campbell, V.L.; Duguid, A.J.; Al Qsous, W.; BouHaidar, R.; Baillie, J.K.; Dhaliwal, K.; Wallace, W.A.; Bellamy, C.O.C.; Prost, S.; Smith, C.; Hiscox, J.A.; Harrison, D.J.; Lucas, C.D. Tissue-specific immunopathology in fatal COVID-19. Am. J. Respir. Crit. Care Med., 2021, 203(2), 192-201.
[http://dx.doi.org/10.1164/rccm.202008-3265OC] [PMID: 33217246]
[128]
Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[129]
Florence, J.; Krupa, A.; Booshehri, L.; Gajewski, A.; Kurdowska, A. Disrupting the Btk pathway suppresses COPD-like lung alterations in atherosclerosis prone ApoE−/− mice following regular exposure to cigarette smoke. Int. J. Mol. Sci., 2018, 19(2), 343.
[http://dx.doi.org/10.3390/ijms19020343] [PMID: 29364178]
[130]
Lionakis, M.S. Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma. Cancer Cell, 2017, 31(6), 833-843.
[http://dx.doi.org/10.1016/j.ccell.2017.04.012]
[131]
Ye, B.; Zhou, C.; Guo, H.; Zheng, M. Effects of BTK signalling in pathogenic microorganism infections. J. Cell. Mol. Med., 2019, 23(10), 6522-6529.
[http://dx.doi.org/10.1111/jcmm.14548] [PMID: 31397086]
[132]
Yao, X. A pathological report of three COVID-19 cases by minimal invasive autopsies. Chinese J. Pathol., 2020, 49(5), 411-417.
[133]
de Groot, N.G.; Bontrop, R.E. COVID-19 pandemic: Is a gender-defined dosage effect responsible for the high mortality rate among males? Immunogenetics, 2020, 72(5), 275-277.
[http://dx.doi.org/10.1007/s00251-020-01165-7] [PMID: 32342146]
[134]
Page, T.H.; Urbaniak, A.M.; Espirito Santo, A.I.; Danks, L.; Smallie, T.; Williams, L.M.; Horwood, N.J. Bruton’s tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-κB recruitment. Biochem. Biophys. Res. Commun., 2018, 499(2), 260-266.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.140] [PMID: 29567473]
[135]
Byrne, J.C.; Ní Gabhann, J.; Stacey, K.B.; Coffey, B.M.; McCarthy, E.; Thomas, W.; Jefferies, C.A. Bruton’s tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin. J. Immunol., 2013, 190(10), 5207-5215.
[http://dx.doi.org/10.4049/jimmunol.1300057] [PMID: 23596312]
[136]
Chong, E.A.; Roeker, L.E.; Shadman, M.; Davids, M.S.; Schuster, S.J.; Mato, A.R. BTK inhibitors in cancer patients with COVID-19:“The winner will be the one who controls that chaos”(Napoleon Bonaparte). Clin. Cancer Res., 2020, 26(14), 3514-3516.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1427] [PMID: 32345646]
[137]
Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol., 2020, 877, 173090.
[http://dx.doi.org/10.1016/j.ejphar.2020.173090] [PMID: 32234529]
[138]
Ní Gabhann, J.; Hams, E.; Smith, S.; Wynne, C.; Byrne, J.C.; Brennan, K.; Spence, S.; Kissenpfennig, A.; Johnston, J.A.; Fallon, P.G.; Jefferies, C.A. Btk regulates macrophage polarization in response to lipopolysaccharide. PLoS One, 2014, 9(1), e85834.
[http://dx.doi.org/10.1371/journal.pone.0085834] [PMID: 24465735]
[139]
Papin, A.; Tessoulin, B.; Bellanger, C.; Moreau, A.; Le Bris, Y.; Maisonneuve, H.; Moreau, P.; Touzeau, C.; Amiot, M.; Pellat-Deceunynck, C.; Le Gouill, S.; Chiron, D. CSF1R and BTK inhibitions as novel strategies to disrupt the dialog between mantle cell lymphoma and macrophages. Leukemia, 2019, 33(10), 2442-2453.
[http://dx.doi.org/10.1038/s41375-019-0463-3] [PMID: 30940906]
[140]
Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care, 2020, 8(1), 36.
[http://dx.doi.org/10.1186/s40560-020-00453-4] [PMID: 32483488]
[141]
Tavakolpour, S.; Rakhshandehroo, T.; Wei, E.X.; Rashidian, M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol. Lett., 2020, 225, 31-32.
[http://dx.doi.org/10.1016/j.imlet.2020.06.013] [PMID: 32569607]
[142]
Kuppalli, K.; Rasmussen, A.L. A glimpse into the eye of the COVID-19 cytokine storm. EBioMedicine, 2020, 55, 102789.
[http://dx.doi.org/10.1016/j.ebiom.2020.102789] [PMID: 32388462]
[143]
Rossi, D.; Gaidano, G. Lymphocytosis and ibrutinib treatment of CLL. Blood, 2014, 123(12), 1772-1774.
[http://dx.doi.org/10.1182/blood-2014-01-549493] [PMID: 24652958]
[144]
Woyach, J.A.; Smucker, K.; Smith, L.L.; Lozanski, A.; Zhong, Y.; Ruppert, A.S.; Lucas, D.; Williams, K.; Zhao, W.; Rassenti, L.; Ghia, E.; Kipps, T.J.; Mantel, R.; Jones, J.; Flynn, J.; Maddocks, K.; O’Brien, S.; Furman, R.R.; James, D.F.; Clow, F.; Lozanski, G.; Johnson, A.J.; Byrd, J.C. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood, 2014, 123(12), 1810-1817.
[http://dx.doi.org/10.1182/blood-2013-09-527853] [PMID: 24415539]
[145]
Yang, T.; Xu, C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: An update. J. Am. Soc. Nephrol., 2017, 28(4), 1040-1049.
[http://dx.doi.org/10.1681/ASN.2016070734] [PMID: 28255001]
[146]
Paz Ocaranza, M.; Riquelme, J.A.; García, L.; Jalil, J.E.; Chiong, M.; Santos, R.A.S.; Lavandero, S. Counter-regulatory renin–angiotensin system in cardiovascular disease. Nat. Rev. Cardiol., 2020, 17(2), 116-129.
[http://dx.doi.org/10.1038/s41569-019-0244-8] [PMID: 31427727]
[147]
Hoffmann, M. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. cell, 2020, 181(2), 271-280.
[148]
Arentz, M.; Yim, E.; Klaff, L.; Lokhandwala, S.; Riedo, F.X.; Chong, M.; Lee, M. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA, 2020, 323(16), 1612-1614.
[http://dx.doi.org/10.1001/jama.2020.4326] [PMID: 32191259]
[149]
Unger, T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol., 2002, 89(2), 3-9.
[http://dx.doi.org/10.1016/S0002-9149(01)02321-9] [PMID: 11835903]
[150]
Karamyan, V.T.; Arsenault, J.; Escher, E.; Speth, R.C. Preliminary biochemical characterization of the novel, non-AT1, non-AT2 angiotensin binding site from the rat brain. Endocrine, 2010, 37(3), 442-448.
[http://dx.doi.org/10.1007/s12020-010-9328-2] [PMID: 20960166]
[151]
Mascolo, A.; Sessa, M.; Scavone, C.; De Angelis, A.; Vitale, C.; Berrino, L.; Rossi, F.; Rosano, G.; Capuano, A. New and old roles of the peripheral and brain renin–angiotensin–aldosterone system (RAAS): Focus on cardiovascular and neurological diseases. Int. J. Cardiol., 2017, 227, 734-742.
[http://dx.doi.org/10.1016/j.ijcard.2016.10.069] [PMID: 27823897]
[152]
Mascolo, A.; Urbanek, K.; De Angelis, A.; Sessa, M.; Scavone, C.; Berrino, L.; Rosano, G.M.C.; Capuano, A.; Rossi, F. Angiotensin II and angiotensin 1–7: Which is their role in atrial fibrillation? Heart Fail. Rev., 2020, 25(2), 367-380.
[http://dx.doi.org/10.1007/s10741-019-09837-7] [PMID: 31375968]
[153]
Marchesi, C.; Paradis, P.; Schiffrin, E.L. Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol. Sci., 2008, 29(7), 367-374.
[http://dx.doi.org/10.1016/j.tips.2008.05.003] [PMID: 18579222]
[154]
Dandona, P.; Dhindsa, S.; Ghanim, H.; Chaudhuri, A. Angiotensin II and inflammation: The effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J. Hum. Hypertens., 2007, 21(1), 20-27.
[http://dx.doi.org/10.1038/sj.jhh.1002101] [PMID: 17096009]
[155]
Yamamoto, S.; Yancey, P.G.; Zuo, Y.; Ma, L.J.; Kaseda, R.; Fogo, A.B.; Ichikawa, I.; Linton, M.F.; Fazio, S.; Kon, V. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2011, 31(12), 2856-2864.
[http://dx.doi.org/10.1161/ATVBAHA.111.237198] [PMID: 21979434]
[156]
Marshall, R. The pulmonary renin-angiotensin system. Curr. Pharm. Des., 2003, 9(9), 715-722.
[http://dx.doi.org/10.2174/1381612033455431] [PMID: 12570789]
[157]
Cheng, H.; Wang, Y.; Wang, G.Q. Organ‐protective effect of angiotensin‐converting enzyme 2 and its effect on the prognosis of COVID‐19. J. Med. Virol., 2020, 92(7), 726-730.
[http://dx.doi.org/10.1002/jmv.25785] [PMID: 32221983]
[158]
Borges do Nascimento, I.J.; Cacic, N.; Abdulazeem, H.M.; von Groote, T.C.; Jayarajah, U.; Weerasekara, I.; Esfahani, M.A.; Civile, V.T.; Marusic, A.; Jeroncic, A.; Carvas, Junior, N.; Pericic, T.P.; Zakarija-Grkovic, I.; Guimarães, S.M.; Luigi Bragazzi, N.; Bjorklund, M.; Sofi-Mahmudi, A.; Altujjar, M.; Tian, M.; Arcani, D.M.C.; O’Mathúna, D.P.; Marcolino, M.S. Novel coronavirus infection (COVID-19) in humans: A scoping review and meta-analysis. J. Clin. Med., 2020, 9(4), 941.
[http://dx.doi.org/10.3390/jcm9040941] [PMID: 32235486]
[159]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[160]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[161]
Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; Paniz-Mondolfi, A.; Lagos-Grisales, G.J.; Ramírez-Vallejo, E.; Suárez, J.A.; Zambrano, L.I.; Villamil-Gómez, W.E.; Balbin-Ramon, G.J.; Rabaan, A.A.; Harapan, H.; Dhama, K.; Nishiura, H.; Kataoka, H.; Ahmad, T.; Sah, R. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34, 101623.
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[162]
Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S.Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 2020, 15(5), 700-704.
[http://dx.doi.org/10.1016/j.jtho.2020.02.010] [PMID: 32114094]
[163]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[164]
Franks, T.J.; Chong, P.Y.; Chui, P.; Galvin, J.R.; Lourens, R.M.; Reid, A.H.; Selbs, E.; Mcevoy, C.P.L.; Hayden, C.D.L.; Fukuoka, J.; Taubenberger, J.K.; Travis, W.D. Lung pathology of severe acute respiratory syndrome (SARS): A study of 8 autopsy cases from Singapore. Hum. Pathol., 2003, 34(8), 743-748.
[http://dx.doi.org/10.1016/S0046-8177(03)00367-8] [PMID: 14506633]
[165]
Prete, M.; Favoino, E.; Catacchio, G.; Racanelli, V.; Perosa, F. SARS-CoV-2 inflammatory syndrome. Clinical features and rationale for immunological treatment. Int. J. Mol. Sci., 2020, 21(9), 3377.
[http://dx.doi.org/10.3390/ijms21093377] [PMID: 32397684]
[166]
Carmi, O.; Berla, M.; Shoenfeld, Y.; Levy, Y. Diagnosis and management of catastrophic antiphospholipid syndrome. Expert Rev. Hematol., 2017, 10(4), 365-374.
[http://dx.doi.org/10.1080/17474086.2017.1300522] [PMID: 28277850]
[167]
Prete, M.; Urso, L.; Fatone, M.C.; Pinto, V.; Perosa, F. Antiphospholipids syndrome complicated by a systemic capillary leak-like syndrome treated with steroids and intravenous immunoglobulins. Case Rep. Med., 2016, 95(5), e2648.
[http://dx.doi.org/10.1097/MD.0000000000002648] [PMID: 26844485]
[168]
Bakker, A.B.H.; Marissen, W.E.; Kramer, R.A.; Rice, A.B.; Weldon, W.C.; Niezgoda, M.; Hanlon, C.A.; Thijsse, S.; Backus, H.H.J.; de Kruif, J.; Dietzschold, B.; Rupprecht, C.E.; Goudsmit, J. Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants. J. Virol., 2005, 79(14), 9062-9068.
[http://dx.doi.org/10.1128/JVI.79.14.9062-9068.2005] [PMID: 15994800]
[169]
Jin, Y.; Lei, C.; Hu, D.; Dimitrov, D.S.; Ying, T. Human monoclonal antibodies as candidate therapeutics against emerging viruses. Front. Med., 2017, 11(4), 462-470.
[http://dx.doi.org/10.1007/s11684-017-0596-6] [PMID: 29159596]
[170]
Traggiai, E.; Becker, S.; Subbarao, K.; Kolesnikova, L.; Uematsu, Y.; Gismondo, M.R.; Murphy, B.R.; Rappuoli, R.; Lanzavecchia, A. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med., 2004, 10(8), 871-875.
[http://dx.doi.org/10.1038/nm1080] [PMID: 15247913]
[171]
Sui, J.; Li, W.; Murakami, A.; Tamin, A.; Matthews, L.J.; Wong, S.K.; Moore, M.J.; Tallarico, A.S.C.; Olurinde, M.; Choe, H.; Anderson, L.J.; Bellini, W.J.; Farzan, M.; Marasco, W.A. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2536-2541.
[http://dx.doi.org/10.1073/pnas.0307140101] [PMID: 14983044]
[172]
van Doremalen, N.; Falzarano, D.; Ying, T.; de Wit, E.; Bushmaker, T.; Feldmann, F.; Okumura, A.; Wang, Y.; Scott, D.P.; Hanley, P.W.; Feldmann, H.; Dimitrov, D.S.; Munster, V.J. Efficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosets. Antiviral Res., 2017, 143, 30-37.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.025] [PMID: 28389142]
[173]
Corti, D.; Zhao, J.; Pedotti, M.; Simonelli, L.; Agnihothram, S.; Fett, C.; Fernandez-Rodriguez, B.; Foglierini, M.; Agatic, G.; Vanzetta, F.; Gopal, R.; Langrish, C.J.; Barrett, N.A.; Sallusto, F.; Baric, R.S.; Varani, L.; Zambon, M.; Perlman, S.; Lanzavecchia, A. Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus. Proc. Natl. Acad. Sci. USA, 2015, 112(33), 10473-10478.
[http://dx.doi.org/10.1073/pnas.1510199112] [PMID: 26216974]
[174]
Luke, T. Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci. Transl. Med., 2016, 8(326), 326ra21-326ra21.
[175]
Zumla, A.; Hui, D.S.; Azhar, E.I.; Memish, Z.A.; Maeurer, M. Reducing mortality from 2019-nCoV: Host-directed therapies should be an option. Lancet, 2020, 395(10224), e35-e36.
[http://dx.doi.org/10.1016/S0140-6736(20)30305-6] [PMID: 32035018]
[176]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[177]
McCreary, E.K.; Pogue, J.M. Coronavirus disease 2019 treatment: A review of early and emerging options. In open forum infectious diseases. Open Forum Infect. Dis., 2020, 7(4), ofaa105.
[http://dx.doi.org/10.1093/ofid/ofaa105] [PMID: 32284951]
[178]
Fu, B.; Xu, X.; Wei, H. Why tocilizumab could be an effective treatment for severe COVID-19? J. Transl. Med., 2020, 18(1), 164.
[http://dx.doi.org/10.1186/s12967-020-02339-3] [PMID: 32290839]
[179]
Yarmohammadi, A.; Yarmohammadi, M.; Fakhri, S.; Khan, H. Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review. Eur. J. Pharmacol., 2021, 890, 173620.
[http://dx.doi.org/10.1016/j.ejphar.2020.173620] [PMID: 33038418]
[180]
Wu, D.; Yang, X.O. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J. Microbiol. Immunol. Infect., 2020, 53(3), 368-370.
[http://dx.doi.org/10.1016/j.jmii.2020.03.005] [PMID: 32205092]
[181]
Gasparello, J.; Finotti, A.; Gambari, R. Tackling the COVID-19 “cytokine storm” with microRNA mimics directly targeting the 3’UTR of pro-inflammatory mRNAs. Med. Hypotheses, 2021, 146, 110415.
[http://dx.doi.org/10.1016/j.mehy.2020.110415] [PMID: 33422363]
[182]
Fabbri, E.; Borgatti, M.; Montagner, G.; Bianchi, N.; Finotti, A.; Lampronti, I.; Bezzerri, V.; Dechecchi, M.C.; Cabrini, G.; Gambari, R. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am. J. Respir. Cell Mol. Biol., 2014, 50(6), 1144-1155.
[http://dx.doi.org/10.1165/rcmb.2013-0160OC] [PMID: 24433094]
[183]
Oglesby, I.K.; Vencken, S.F.; Agrawal, R.; Gaughan, K.; Molloy, K.; Higgins, G.; McNally, P.; McElvaney, N.G.; Mall, M.A.; Greene, C.M. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur. Respir. J., 2015, 46(5), 1350-1360.
[http://dx.doi.org/10.1183/09031936.00163414] [PMID: 26160865]
[184]
Hong, L.; Sharp, T.; Khorsand, B.; Fischer, C.; Eliason, S.; Salem, A.; Akkouch, A.; Brogden, K.; Amendt, B.A. MicroRNA-200c represses IL-6, IL-8, and CCL-5 expression and enhances osteogenic differentiation. PLoS One, 2016, 11(8), e0160915.
[http://dx.doi.org/10.1371/journal.pone.0160915] [PMID: 27529418]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy