Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Therapeutic Effect of Resveratrol and its Novel Formulations on Lung Cancer: Focus on Biological Aspects and Underlying Pathways

Author(s): Hamidreza Poortalebi, Mahta ZareDini, Sima Foroughi-Nematollahi, Tahereh Farkhondeh, Saeed Samarghandian* and Mohammad Hossein Pourhanifeh*

Volume 31, Issue 27, 2024

Published on: 31 January, 2024

Page: [4340 - 4361] Pages: 22

DOI: 10.2174/0109298673266259231229050937

Price: $65

Open Access Journals Promotions 2
Abstract

Lung cancer is a leading cause of mortality and morbidity worldwide. Due to significant advances in therapeutic strategies, patients' survival and life quality have been improved, however there is still an urgent requirement for developing more effective therapeutic methods. Resveratrol, a natural polyphenol with numerous biological potentials, has been widely studied. It has shown therapeutic potetial in various diseases including neurodegenerative diseases, cardiovascular disorders, and cancers through the regulation of key cellular signaling such as apoptosis, as well as molecular pathways such as microRNA modulation. It has been reported that resveratrol acts as an anticancer agent against lung cancer in vivo and in vitro. Resveratrol could combat against lung cancer by modulating various molecular targets and signaling pathways involved in oxidative stress, inflammation, apoptosis and autoghagy and also microRNAs expression. Moreover, novel delivery systems and analogs have recently been introduced to promote the anticancer impacts of resveratrol. In this article, we review current evidence on the anticancer effects of resveratrol and its novel formulations in the treatment of lung cancer with a focus on underlying mechanisms.

Keywords: Resveratrol, microRNA, lung cancer, apoptosis, autophagy, oxidative stress.

[1]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[3]
Wang, T.T.Y.; Hudson, T.S.; Wang, T.C.; Remsberg, C.M.; Davies, N.M.; Takahashi, Y.; Kim, Y.S.; Seifried, H.; Vinyard, B.T.; Perkins, S.N.; Hursting, S.D. Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis, 2008, 29(10), 2001-2010.
[http://dx.doi.org/10.1093/carcin/bgn131] [PMID: 18586690]
[4]
Shamshoum, H.; Vlavcheski, F.; Tsiani, E. Anticancer effects of oleuropein. Biofactors, 2017, 43(4), 517-528.
[http://dx.doi.org/10.1002/biof.1366] [PMID: 28612982]
[5]
Yousef, M.; Tsiani, E. Metformin in lung cancer: Review of in vitro and in vivo animal studies. Cancers, 2017, 9(12), 45.
[http://dx.doi.org/10.3390/cancers9050045] [PMID: 28481268]
[6]
Bae, I.; Yi, Y.W.; Kang, H.J.; Kim, H.J. Boronic acid derivatives of resveratrol for activating deacetylase enzymes. US Patent 10478445B2, 2017.
[7]
Lee, YJ; Lee, GJ; Yi, SS; Heo, SH; Park, CR; Nam, HS Cisplatin and resveratrol induce apoptosis and autophagy following oxidative stress in malignant mesothelioma cells. Food Chem Toxicol., 2016, 97, 96-107.
[http://dx.doi.org/10.1016/j.fct.2016.08.033]
[8]
Mondal, A; Bennett, LL Resveratrol enhances the efficacy of sorafenib mediated apoptosis in human breast cancer MCF7 cells through ROS, cell cycle inhibition, caspase 3 and PARP cleavage. Biomed. Pharmacother., 2016, 84, 1906-1914.
[http://dx.doi.org/10.1016/j.biopha.2016.10.096]
[9]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[10]
Stagos, D.; Amoutzias, G.D.; Matakos, A.; Spyrou, A.; Tsatsakis, A.M.; Kouretas, D. Chemoprevention of liver cancer by plant polyphenols. Food Chem. Toxicol., 2012, 50(6), 2155-2170.
[http://dx.doi.org/10.1016/j.fct.2012.04.002]
[11]
Huminiecki, L.; Horbańczuk, J. The functional genomic studies of resveratrol in respect to its anti-cancer effects. Biotechnol. Adv., 2018, 36(6), 1699-1708.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.011] [PMID: 29476886]
[12]
Yousef, M.; Vlachogiannis, I.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients, 2017, 9(11), 1231.
[http://dx.doi.org/10.3390/nu9111231] [PMID: 29125563]
[13]
Pannu, N.; Bhatnagar, A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacother., 2019, 109, 2237-2251.
[http://dx.doi.org/10.1016/j.biopha.2018.11.075] [PMID: 30551481]
[14]
Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol., 2015, 52(1), 383-390.
[http://dx.doi.org/10.1007/s13197-013-0993-z] [PMID: 25593373]
[15]
Weiskirchen, S.; Weiskirchen, R. Resveratrol: How much wine do you have to drink to stay healthy? Adv. Nutr., 2016, 7(4), 706-718.
[http://dx.doi.org/10.3945/an.115.011627] [PMID: 27422505]
[16]
Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic versatility of resveratrol derivatives. Nutrients, 2017, 9(11), 1188.
[http://dx.doi.org/10.3390/nu9111188] [PMID: 29109374]
[17]
Gambini, J.; Inglés, M.; Olaso, G.; Grueso, L.R.; Costa, B.V.; Mallench, G.L.; Bargues, M.C.; Abdelaziz, K.M.; Cabrera, G.M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/837042] [PMID: 26221416]
[18]
Asghari, S.; Jafarabadi, A.M.; Somi, M.H.; Ghavami, S.M.; Rafraf, M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: A randomized controlled clinical trial. J. Am. Coll. Nutr., 2018, 37(3), 223-233.
[http://dx.doi.org/10.1080/07315724.2017.1392264] [PMID: 29313746]
[19]
Maciejewska, D.; Łukomska, A.; Dec, K.; Żydecka, S.K.; Gutowska, I.; Majewicz, S.M.; Styburski, D.; Has, M.K.; Pilutin, A.; Palma, J.; Sieletycka, K.; Marlicz, W.; Stachowska, E. Diet-induced rat model of gradual development of non-alcoholic fatty liver disease (NAFLD) with Lipopolysaccharides (LPS) secretion. Diagnostics, 2019, 9(4), 205.
[http://dx.doi.org/10.3390/diagnostics9040205] [PMID: 31783667]
[20]
Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[21]
Samarghandian, S.; Samini, F.; Nezhad, A.M.; Farkhondeh, T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci. Lett., 2017, 659, 26-32.
[http://dx.doi.org/10.1016/j.neulet.2017.08.065] [PMID: 28866053]
[22]
Samarghandian, S.; Nezhad, A.M.; Farkhondeh, T. Catechin treatment ameliorates diabetes and its complications in streptozotocin-induced diabetic rats. Dose Response, 2017, 15(1), 1559325817691158.
[http://dx.doi.org/10.1177/1559325817691158] [PMID: 28228702]
[23]
Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/7591840] [PMID: 31885814]
[24]
Cong, L; Lei, MY; Liu, ZQ; Liu, ZF; Ma, Z; Liu, K Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food. Chem. Toxicol., 2021, 153, 112283.
[http://dx.doi.org/10.1016/j.fct.2021.112283]
[25]
Yu, D.; Xiong, J.; Gao, Y.; Li, J.; Zhu, D.; Shen, X.; Sun, L.; Wang, X. Resveratrol activates PI3K/AKT to reduce myocardial cell apoptosis and mitochondrial oxidative damage caused by myocardial ischemia/reperfusion injury. Acta Histochem., 2021, 123(5), 151739.
[http://dx.doi.org/10.1016/j.acthis.2021.151739] [PMID: 34107386]
[26]
Zhou, X; Ruan, Q; Ye, Z; Chu, Z; Xi, M; Li, M Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns, 2021, 47(1), 133-139.
[http://dx.doi.org/10.1016/j.burns.2020.10.016]
[27]
Kung, H.C.; Lin, K.J.; Kung, C.T.; Lin, T.K. Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines, 2021, 9(8), 918.
[http://dx.doi.org/10.3390/biomedicines9080918] [PMID: 34440122]
[28]
Jia, B.; Zheng, X.; Wu, M.L.; Tian, X.T.; Song, X.; Liu, Y.N.; Li, P.N.; Liu, J. Increased reactive oxygen species and distinct oxidative damage in resveratrol-suppressed glioblastoma cells. J. Cancer, 2021, 12(1), 141-149.
[http://dx.doi.org/10.7150/jca.45489] [PMID: 33391410]
[29]
Ashrafizadeh, M.; Ahmadi, Z.; Mohammadinejad, R.; Kaviyani, N.; Tavakol, S. Monoterpenes modulating autophagy: A review study. Basic Clin. Pharmacol. Toxicol., 2020, 126(1), 9-20.
[PMID: 31237736]
[30]
Ashrafizadeh, M.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Modulatory effects of statins on the autophagy: A therapeutic perspective. J. Cell. Physiol., 2020, 235(4), 3157-3168.
[http://dx.doi.org/10.1002/jcp.29227] [PMID: 31578730]
[31]
Mohammadinejad, R.; Ahmadi, Z.; Tavakol, S.; Ashrafizadeh, M. Berberine as a potential autophagy modulator. J. Cell. Physiol., 2019, 234(9), 14914-14926.
[http://dx.doi.org/10.1002/jcp.28325] [PMID: 30770555]
[32]
Samarghandian, S.; Borji, A.; Hidar Tabasi, S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovascular & Haematological Disorders-Drug Targets Formerly Current Drug Targets-Cardiovascular & Hematological Disorders, 2013, 13(3), 231-236.
[33]
Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Anti-tumor activity of resveratrol against gastric cancer: A review of recent advances with an emphasis on molecular pathways. Cancer Cell Int., 2021, 21(1), 66.
[http://dx.doi.org/10.1186/s12935-021-01773-7] [PMID: 33478512]
[34]
Signorelli, P.; Olaya, M.J.M.; Gagliostro, V.; Casas, J.; Ghidoni, R.; Fabriàs, G. Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Lett., 2009, 282(2), 238-243.
[http://dx.doi.org/10.1016/j.canlet.2009.03.020] [PMID: 19394759]
[35]
Wang, J; Huang, P; Pan, X; Xia, C; Zhang, H; Zhao, H Resveratrol reverses TGF-β1-mediated invasion and metastasis of breast cancer cells via the SIRT3/AMPK/autophagy signal axis. Phytother Res, 2023, 37(1), 211-230.
[36]
Yao, Y.; Zhu, J.; Qin, S.; Zhou, Z.; Zeng, Q.; Long, R.; Mao, Z.; Dong, X.; Zhao, R.; Zhang, R.; Zhang, S.; Huang, S.; Chen, L. Resveratrol induces autophagy impeding BAFF-stimulated B-cell proliferation and survival by inhibiting the Akt/mTOR pathway. Biochem. Pharmacol., 2022, 202, 115139.
[http://dx.doi.org/10.1016/j.bcp.2022.115139] [PMID: 35697119]
[37]
Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 1990, 82(1), 4-7.
[http://dx.doi.org/10.1093/jnci/82.1.4] [PMID: 1688381]
[38]
Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol., 2009, 19(5), 329-337.
[http://dx.doi.org/10.1016/j.semcancer.2009.05.003] [PMID: 19482086]
[39]
Wen, D.; Huang, X.; Zhang, M.; Zhang, L.; Chen, J.; Gu, Y.; Hao, C.M. Resveratrol attenuates diabetic nephropathy via modulating angiogenesis. PLoS One, 2013, 8(12), e82336.
[http://dx.doi.org/10.1371/journal.pone.0082336] [PMID: 24312656]
[40]
Uvez, A.; Aydinlik, S.; Esener, O.B.B.; Erkisa, M.; Karakus, D.; Armutak, E.I. Synergistic interactions between resveratrol and doxorubicin inhibit angiogenesis both in vitro and in vivo. Pol. J. Vet. Sci., 2020, 23(4), 571-580.
[http://dx.doi.org/10.24425/pjvs.2020.135803] [PMID: 33480492]
[41]
Fan, D.; Liu, C.; Guo, Z.; Huang, K.; Peng, M.; Li, N.; Luo, H.; Wang, T.; Cen, Z.; Cai, W.; Gu, L.; Chen, S.; Li, Z. Resveratrol promotes angiogenesis in a foxo1-dependent manner in hind limb ischemia in mice. Molecules, 2021, 26(24), 7528.
[http://dx.doi.org/10.3390/molecules26247528] [PMID: 34946610]
[42]
Khazaei, M.R.; Rashidi, Z.; Chobsaz, F.; Niromand, E.; Khazaei, M. Inhibitory effect of resveratrol on the growth and angiogenesis of human endometrial tissue in an in vitro three-dimensional model of endometriosis. Reprod. Biol., 2020, 20(4), 484-490.
[http://dx.doi.org/10.1016/j.repbio.2020.07.012] [PMID: 32896495]
[43]
Pradhan, R.; Chatterjee, S.; Hembram, K.C.; Sethy, C.; Mandal, M.; Kundu, C.N. Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J. Nutr. Biochem., 2021, 92, 108624.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108624] [PMID: 33705943]
[44]
Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem., 2014, 395(2), 203-230.
[http://dx.doi.org/10.1515/hsz-2013-0241] [PMID: 24127541]
[45]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[46]
Aggarwal, B.B. Nuclear factor-κB. Cancer Cell, 2004, 6(3), 203-208.
[http://dx.doi.org/10.1016/j.ccr.2004.09.003] [PMID: 15380510]
[47]
Fuggetta, M.P.; Bordignon, V.; Cottarelli, A.; Macchi, B.; Frezza, C.; Fei, C.P.; Ensoli, F.; Ciafrè, S.; Merlo, M.F.; Mastino, A.; Ravagnan, G. Downregulation of proinflammatory cytokines in HTLV-1-infected T cells by Resveratrol. J. Exp. Clin. Cancer Res., 2016, 35(1), 118.
[http://dx.doi.org/10.1186/s13046-016-0398-8] [PMID: 27448598]
[48]
Xian, Y.; Gao, Y.; Lv, W.; Ma, X.; Hu, J.; Chi, J.; Wang, W.; Wang, Y. Resveratrol prevents diabetic nephropathy by reducing chronic inflammation and improving the blood glucose memory effect in non-obese diabetic mice. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(10), 2009-2017.
[http://dx.doi.org/10.1007/s00210-019-01777-1] [PMID: 31970441]
[49]
Zou, M.; Yang, W.; Niu, L.; Sun, Y.; Luo, R.; Wang, Y.; Peng, X. Polydatin attenuates Mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway. Microb. Pathog., 2020, 149, 104552.
[http://dx.doi.org/10.1016/j.micpath.2020.104552] [PMID: 33010363]
[50]
Hou, Y.; Zhang, Y.; Mi, Y.; Wang, J.; Zhang, H.; Xu, J.; Yang, Y.; Liu, J.; Ding, L.; Yang, J.; Chen, G.; Wu, C. A novel quinolyl-substituted analogue of resveratrol inhibits LPS-induced inflammatory responses in microglial cells by blocking the NF-κB/MAPK signaling pathways. Mol. Nutr. Food Res., 2019, 63(20), 1801380.
[http://dx.doi.org/10.1002/mnfr.201801380] [PMID: 31378007]
[51]
Jiang, H.; Duan, J.; Xu, K.; Zhang, W. Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-κB pathway. Exp. Ther. Med., 2019, 18(1), 459-466.
[http://dx.doi.org/10.3892/etm.2019.7594] [PMID: 31258683]
[52]
Alrafas, H.R.; Busbee, P.B.; Chitrala, K.N.; Nagarkatti, M.; Nagarkatti, P. Alterations in the gut microbiome and suppression of histone deacetylases by resveratrol are associated with attenuation of colonic inflammation and protection against colorectal cancer. J. Clin. Med., 2020, 9(6), 1796.
[http://dx.doi.org/10.3390/jcm9061796] [PMID: 32526927]
[53]
McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a008656.
[http://dx.doi.org/10.1101/cshperspect.a008656] [PMID: 23545416]
[54]
Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. APJCP, 2015, 16(6), 2129-2144.
[PMID: 25824729]
[55]
Chowdhury, D.; Lieberman, J. Death by a thousand cuts: Granzyme pathways of programmed cell death. Annu. Rev. Immunol., 2008, 26(1), 389-420.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090404] [PMID: 18304003]
[56]
Pourhanifeh, M.H.; Shafabakhsh, R.; Reiter, R.J.; Asemi, Z. The effect of resveratrol on neurodegenerative disorders: Possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Curr. Pharm. Des., 2019, 25(19), 2178-2191.
[http://dx.doi.org/10.2174/1381612825666190717110932] [PMID: 31333112]
[57]
Li, T.; Chen, Z.; Zhou, Y.; Li, H.; Xie, J.; Li, L. Resveratrol pretreatment inhibits myocardial apoptosis in rats following coronary microembolization via inducing the PI3K/Akt/GSK-3β signaling cascade. Drug Des. Devel. Ther., 2021, 15, 3821-3834.
[http://dx.doi.org/10.2147/DDDT.S323555] [PMID: 34522086]
[58]
Ashrafizadeh, M.; Taeb, S.; Aminjan, H.H.; Afrashi, S.; Moloudi, K.; Musa, A.E.; Najafi, M.; Farhood, B. Resveratrol as an enhancer of apoptosis in cancer: A mechanistic review. Anticancer. Agents Med. Chem., 2021, 21(17), 2327-2336.
[http://dx.doi.org/10.2174/1871520620666201020160348] [PMID: 33081687]
[59]
Pourhanifeh, M.H.; Abbaszadeh-Goudarzi, K.; Goodarzi, M.; Piccirillo, S.G.M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Asemi, Z.; Mirzaei, H. Resveratrol: A new potential therapeutic agent for melanoma? Curr. Med. Chem., 2021, 28(4), 687-711.
[http://dx.doi.org/10.2174/1875533XMTAyAOTQy1] [PMID: 31830881]
[60]
Liu, Z.; Li, Y.; She, G.; Zheng, X.; Shao, L.; Wang, P.; Pang, M.; Xie, S.; Sun, Y. Resveratrol induces cervical cancer HeLa cell apoptosis through the activation and nuclear translocation promotion of FOXO3a. Pharmazie, 2020, 75(6), 250-254.
[PMID: 32539920]
[61]
Fu, Y.; Ye, Y.; Zhu, G.; Xu, Y.; Sun, J.; Wu, H.; Feng, F.; Wen, Z.; Jiang, S.; Li, Y.; Zhang, Q. Resveratrol induces human colorectal cancer cell apoptosis by activating the mitochondrial pathway via increasing reactive oxygen species. Mol. Med. Rep., 2020, 23(3), 170.
[http://dx.doi.org/10.3892/mmr.2020.11809] [PMID: 33398363]
[62]
Komorowska, J.; Wątroba, M.; Szukiewicz, D. Review of beneficial effects of resveratrol in neurodegenerative diseases such as Alzheimer’s disease. Adv. Med. Sci., 2020, 65(2), 415-423.
[http://dx.doi.org/10.1016/j.advms.2020.08.002] [PMID: 32871321]
[63]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement., 2016, 12(4), 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[64]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[65]
Tomàs, C.M.; Senserrich, J.; Planas, A.M.; Alquézar, C.; Pallàs, M.; Requero, M.Á.; Suñol, C.; Kaliman, P.; Sanfeliu, C. Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from Alzheimer’s disease patients. Nutrients, 2019, 11(8), 1764.
[http://dx.doi.org/10.3390/nu11081764] [PMID: 31370365]
[66]
Fonseca-Santos, B.; Cazarin, C.A.; da Silva, P.B.; dos Santos, K.P.; da Rocha, M.C.O.; Báo, S.N.; De-Souza, M.M.; Chorilli, M. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer’s disease. Nanomedicine, 2023, 51, 102689.
[http://dx.doi.org/10.1016/j.nano.2023.102689] [PMID: 37156330]
[67]
Choi, J.; Choi, S.Y.; Hong, Y.; Han, Y.E.; Oh, S.J.; Lee, B.; Choi, C.W.; Kim, M.S. The central administration of vitisin a, extracted from Vitis vinifera, improves cognitive function and related signaling pathways in a scopolamine-induced dementia model. Biomed. Pharmacother., 2023, 163, 114812.
[http://dx.doi.org/10.1016/j.biopha.2023.114812] [PMID: 37148861]
[68]
Dong, Y.T.; Cao, K.; Tan, L.C.; Wang, X.L.; Qi, X.L.; Xiao, Y.; Guan, Z.Z. Stimulation of SIRT1 attenuates the level of oxidative stress in the brains of APP/PS1 double transgenic mice and in primary neurons exposed to oligomers of the amyloid-β peptide. J. Alzheimers Dis., 2018, 63(1), 283-301.
[http://dx.doi.org/10.3233/JAD-171020] [PMID: 29614660]
[69]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[70]
Zheng, C.Q.; Fan, H.X.; Li, X.X.; Li, J.J.; Sheng, S.; Zhang, F. Resveratrol alleviates levodopa-induced dyskinesia in rats. Front. Immunol., 2021, 12, 683577.
[http://dx.doi.org/10.3389/fimmu.2021.683577] [PMID: 34248967]
[71]
Chen, J.; Liu, Q.; Wang, Y.; Guo, Y.; Xu, X.; Huang, P.; Lian, B.; Zhang, R.; Chen, Y.; Ha, Y. Protective effects of resveratrol liposomes on mitochondria in Substantia nigra cells of parkinsonized rats. Ann. Palliat. Med., 2021, 10(3), 2458-2468.
[http://dx.doi.org/10.21037/apm-19-426] [PMID: 33549012]
[72]
Zamanian, M.Y.; Parra, R.M.R.; Soltani, A.; Kujawska, M.; Mustafa, Y.F.; Raheem, G.; Al-Awsi, L.; Lafta, H.A.; Taheri, N.; Heidari, M.; Golmohammadi, M.; Bazmandegan, G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson’s disease: An overview and update on new developments. Mol. Biol. Rep., 2023, 50(6), 5455-5464.
[http://dx.doi.org/10.1007/s11033-023-08409-1] [PMID: 37155008]
[73]
Tao, J.; An, Y.; Xu, L.; Wang, Y.; Wang, C.; Li, P.; Li, M.; Yan, D.; Wang, M.; Zhong, G.; Wu, M. The protective role of microbiota in the prevention of MPTP/P-induced Parkinson’s disease by resveratrol. Food Funct., 2023, 14(10), 4647-4661.
[http://dx.doi.org/10.1039/D2FO03379H] [PMID: 37102320]
[74]
Gligorijević, N.; Vučinić, S.D.; Radomirović, M.; Stojadinović, M.; Khulal, U.; Nedić, O.; Veličković, C.T. Role of resveratrol in prevention and control of cardiovascular disorders and cardiovascular complications related to COVID-19 disease: Mode of action and approaches explored to increase its bioavailability. Molecules, 2021, 26(10), 2834.
[http://dx.doi.org/10.3390/molecules26102834] [PMID: 34064568]
[75]
Abe, J.; Yamada, Y.; Takeda, A.; Harashima, H. Cardiac progenitor cells activated by mitochondrial delivery of resveratrol enhance the survival of a doxorubicin-induced cardiomyopathy mouse model via the mitochondrial activation of a damaged myocardium. J. Control. Release, 2018, 269, 177-188.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.024] [PMID: 29146241]
[76]
Raj, P.; Thandapilly, S.J.; Wigle, J.; Zieroth, S.; Netticadan, T. A comprehensive analysis of the efficacy of resveratrol in atherosclerotic cardiovascular disease, myocardial infarction and heart failure. Molecules, 2021, 26(21), 6600.
[http://dx.doi.org/10.3390/molecules26216600] [PMID: 34771008]
[77]
Zhou, L.; Long, J.; Sun, Y.; Chen, W.; Qiu, R.; Yuan, D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE−/− mice and inhibits the activation of CD4+ T cells. Nutr. Metab., 2020, 17(1), 41.
[http://dx.doi.org/10.1186/s12986-020-00461-z] [PMID: 32508962]
[78]
Penumathsa, S.V.; Thirunavukkarasu, M.; Koneru, S.; Juhasz, B.; Zhan, L.; Pant, R.; Menon, V.P.; Otani, H.; Maulik, N. Statin and resveratrol in combination induces cardioprotection against myocardial infarction in hypercholesterolemic rat. J. Mol. Cell. Cardiol., 2007, 42(3), 508-516.
[http://dx.doi.org/10.1016/j.yjmcc.2006.10.018] [PMID: 17188708]
[79]
Zhang, W.; Qian, S.; Tang, B.; Kang, P.; Zhang, H.; Shi, C. Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation. J. Cell. Mol. Med., 2023, 27(20), 3075-3089.
[http://dx.doi.org/10.1111/jcmm.17874] [PMID: 37487007]
[80]
Matsumura, N.; Takahara, S.; Maayah, Z.H.; Parajuli, N.; Byrne, N.J.; Shoieb, S.M.; Soltys, C.L.M.; Beker, D.L.; Masson, G.; El-Kadi, A.O.S.; Dyck, J.R.B. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J. Mol. Cell. Cardiol., 2018, 125, 162-173.
[http://dx.doi.org/10.1016/j.yjmcc.2018.10.023] [PMID: 30381233]
[81]
Ma, E.; Wu, C.; Chen, J.; Wo, D.; Ren, D.; Yan, H.; Peng, L.; Zhu, W. Resveratrol prevents Ang II-induced cardiac hypertrophy by inhibition of NF-κB signaling. Biomed. Pharmacother., 2023, 165, 115275.
[http://dx.doi.org/10.1016/j.biopha.2023.115275] [PMID: 37541173]
[82]
Kazemirad, H.; Kazerani, H.R. Cardioprotective effects of resveratrol following myocardial ischemia and reperfusion. Mol. Biol. Rep., 2020, 47(8), 5843-5850.
[http://dx.doi.org/10.1007/s11033-020-05653-7] [PMID: 32712855]
[83]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[84]
Ashrafizadeh, M.; Ahmadi, Z.; Kotla, N.G.; Afshar, E.G.; Samarghandian, S.; Mandegary, A.; Pardakhty, A.; Mohammadinejad, R.; Sethi, G. Nanoparticles targeting STATs in cancer therapy. Cells, 2019, 8(10), 1158.
[http://dx.doi.org/10.3390/cells8101158] [PMID: 31569687]
[85]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[86]
Berretta, M.; Bignucolo, A.; Di Francia, R.; Comello, F.; Facchini, G.; Ceccarelli, M.; Iaffaioli, R.V.; Quagliariello, V.; Maurea, N. Resveratrol in cancer patients: From bench to bedside. Int. J. Mol. Sci., 2020, 21(8), 2945.
[http://dx.doi.org/10.3390/ijms21082945] [PMID: 32331450]
[87]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[88]
Lin, J.N.; Lin, V.C.H.; Rau, K.M.; Shieh, P.C.; Kuo, D.H.; Shieh, J.C.; Chen, W.J.; Tsai, S.C.; Way, T.D. Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. J. Agric. Food Chem., 2010, 58(3), 1584-1592.
[http://dx.doi.org/10.1021/jf9035782] [PMID: 19928762]
[89]
Fasseur, V.D.; Latruffe, N. The potential use of resveratrol for cancer prevention. Molecules, 2019, 24(24), 4506.
[http://dx.doi.org/10.3390/molecules24244506] [PMID: 31835371]
[90]
Albuquerque, R.V.; Malcher, N.S.; Amado, L.L.; Coleman, M.D.; dos Santos, D.C.; Borges, R.S.; Valente, S.A.S.; Valente, V.C.; Monteiro, M.C. In vitro protective effect and antioxidant mechanism of resveratrol induced by dapsone hydroxylamine in human cells. PLoS One, 2015, 10(8), e0134768.
[http://dx.doi.org/10.1371/journal.pone.0134768] [PMID: 26284371]
[91]
Zhang, Q.; Tang, X.; Lu, Q.Y.; Zhang, Z.F.; Brown, J.; Le, A.D. Resveratrol inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1α and VEGF expression in human tongue squamous cell carcinoma and hepatoma cells. Mol. Cancer Ther., 2005, 4(10), 1465-1474.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0198] [PMID: 16227395]
[92]
Li, W.; Cao, L.; Chen, X.; Lei, J.; Ma, Q. Resveratrol inhibits hypoxia-driven ROS-induced invasive and migratory ability of pancreatic cancer cells via suppression of the Hedgehog signaling pathway. Oncol. Rep., 2016, 35(3), 1718-1726.
[http://dx.doi.org/10.3892/or.2015.4504] [PMID: 26707376]
[93]
Gołąbek-Grenda, A.; Kaczmarek, M.; Juzwa, W.; Olejnik, A. Natural resveratrol analogs differentially target endometriotic cells into apoptosis pathways. Sci. Rep., 2023, 13(1), 11468.
[http://dx.doi.org/10.1038/s41598-023-38692-8] [PMID: 37454164]
[94]
Zhang, B.; Wang, X.Q.; Chen, H.Y.; Liu, B.H. Involvement of the Nrf2 pathway in the regulation of pterostilbene-induced apoptosis in HeLa cells via ER stress. J. Pharmacol. Sci., 2014, 126(3), 216-229.
[http://dx.doi.org/10.1254/jphs.14028FP] [PMID: 25341683]
[95]
Chatterjee, K.; AlSharif, D.; Mazza, C.; Syar, P.; Al Sharif, M.; Fata, J. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of hpv oncoprotein e6 in cervical cancer cells. Nutrients, 2018, 10(2), 243.
[http://dx.doi.org/10.3390/nu10020243] [PMID: 29485619]
[96]
Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol., 2013, 53(1), 401-426.
[http://dx.doi.org/10.1146/annurev-pharmtox-011112-140320] [PMID: 23294312]
[97]
Ashrafizadeh, M.; Fekri, H.S.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. J. Cell. Biochem, 2020, 121(2), 1575-1585.
[98]
Baek, S.H.; Ko, J.H.; Lee, H.; Jung, J.; Kong, M.; Lee, J.; Lee, J.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Lee, S.G.; Shim, B.S.; Sethi, G.; Kim, S.H.; Yang, W.M.; Um, J.Y.; Ahn, K.S. Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine, 2016, 23(5), 566-577.
[http://dx.doi.org/10.1016/j.phymed.2016.02.011] [PMID: 27064016]
[99]
Li, W.; Ma, J.; Ma, Q.; Li, B.; Han, L.; Liu, J.; Xu, Q.; Duan, W.; Yu, S.; Wang, F.; Wu, E. Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr. Med. Chem., 2013, 20(33), 4185-4194.
[http://dx.doi.org/10.2174/09298673113209990251] [PMID: 23992306]
[100]
Zhao, X.; Yang, Z.; Zhang, H.; Yao, G.; Liu, J.; Wei, Q.; Ma, B. Resveratrol promotes osteogenic differentiation of canine bone marrow mesenchymal stem cells through Wnt/beta-catenin signaling pathway. Cell. Reprogram., 2018, 20(6), 371-381.
[http://dx.doi.org/10.1089/cell.2018.0032] [PMID: 31251673]
[101]
Gao, Z.; Xu, M.S.; Barnett, T.L.; Xu, C.W. Resveratrol induces cellular senescence with attenuated mono-ubiquitination of histone H2B in glioma cells. Biochem. Biophys. Res. Commun., 2011, 407(2), 271-276.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.008] [PMID: 21481687]
[102]
Roshani, M; Jafari, A; Loghman, A; Sheida, AH; Taghavi, T; Zadeh, TSS Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed. Pharmacother., 2022, 153, 113274.
[http://dx.doi.org/10.1016/j.biopha.2022.113274]
[103]
Jiang, B.; Tian, Q.; Shu, C.; Zhao, J.; Xue, M.; Zhu, S. Resveratrol enhances the anti-cancer effects of cis-platinum on human cervical cancer cell lines by activating the SIRT3 relative anti-oxidative pathway. Front. Pharmacol., 2022, 13, 916876.
[http://dx.doi.org/10.3389/fphar.2022.916876] [PMID: 35865961]
[104]
Li, Y.; Guo, Y.; Feng, Z.; Bergan, R.; Li, B.; Qin, Y.; Zhao, L.; Zhang, Z.; Shi, M. Involvement of the PI3K/Akt/Nrf2 signaling pathway in resveratrol-mediated reversal of drug resistance in HL-60/ADR cells. Nutr. Cancer, 2019, 71(6), 1007-1018.
[http://dx.doi.org/10.1080/01635581.2019.1578387] [PMID: 31032633]
[105]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[106]
Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. Rev. Mutat. Res., 2008, 658(1-2), 68-94.
[http://dx.doi.org/10.1016/j.mrrev.2007.08.004] [PMID: 17890139]
[107]
Kundu, J.K.; Surh, Y.J. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett., 2008, 269(2), 243-261.
[http://dx.doi.org/10.1016/j.canlet.2008.03.057] [PMID: 18550275]
[108]
Shankar, S.; Singh, G.; Srivastava, R.K. Chemoprevention by resveratrol: Molecular mechanisms and therapeutic potential. Front. Biosci., 2007, 12(12), 4839-4854.
[http://dx.doi.org/10.2741/2432] [PMID: 17569614]
[109]
Singh, C.K.; George, J.; Ahmad, N. Resveratrol-based combinatorial strategies for cancer management. Ann. N. Y. Acad. Sci., 2013, 1290(1), 113-121.
[http://dx.doi.org/10.1111/nyas.12160] [PMID: 23855473]
[110]
Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 8(2), 2465.
[111]
Xie, C.; Liang, C.; Wang, R.; Yi, K.; Zhou, X.; Li, X.; Chen, Y.; Miao, D.; Zhong, C.; Zhu, J. Resveratrol suppresses lung cancer by targeting cancer stem-like cells and regulating tumor microenvironment. J. Nutr. Biochem., 2023, 112, 109211.
[http://dx.doi.org/10.1016/j.jnutbio.2022.109211] [PMID: 36370924]
[112]
Zhang, L.; Martin, G.; Mohankumar, K.; Hampton, J.T.; Liu, W.R.; Safe, S. Resveratrol binds nuclear receptor 4A1 (NR4A1) and acts as an NR4A1 antagonist in lung cancer cells. Mol. Pharmacol., 2022, 102(2), 80-91.
[http://dx.doi.org/10.1124/molpharm.121.000481] [PMID: 35680166]
[113]
Hou, C.; Lu, L.; Liu, Z.; Lian, Y.; Xiao, J. Resveratrol reduces drug resistance of SCLC cells by suppressing the inflammatory microenvironment and the STAT3/VEGF pathway. FEBS Open Bio, 2021, 11(8), 2256-2265.
[http://dx.doi.org/10.1002/2211-5463.13230] [PMID: 34129726]
[114]
Yang, M.; Li, Z.; Tao, J.; Hu, H.; Li, Z.; Zhang, Z.; Cheng, F.; Sun, Y.; Zhang, Y.; Yang, J.; Wei, H.; Wu, Z. Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells. J. Cancer Res. Clin. Oncol., 2021, 147(4), 1101-1113.
[http://dx.doi.org/10.1007/s00432-021-03510-z] [PMID: 33471184]
[115]
Zhang, J.; Ma, K.; Qi, T.; Wei, X.; Zhang, Q.; Li, G.; Chiu, J.F. P62 Regulates resveratrol-mediated Fas/Cav-1 complex formation and transition from autophagy to apoptosis. Oncotarget, 2015, 6(2), 789-801.
[http://dx.doi.org/10.18632/oncotarget.2733] [PMID: 25596736]
[116]
Luo, H.; Yang, A.; Schulte, B.A.; Wargovich, M.J.; Wang, G.Y. Resveratrol induces premature senescence in lung cancer cells via ROS-mediated DNA damage. PLoS One, 2013, 8(3), e60065.
[http://dx.doi.org/10.1371/journal.pone.0060065] [PMID: 23533664]
[117]
Shan, G.; Minchao, K.; Jizhao, W.; Rui, Z.; Guangjian, Z.; Jin, Z.; Meihe, L. Resveratrol improves the cytotoxic effect of CD8+ T cells in the tumor microenvironment by regulating HMMR/Ferroptosis in lung squamous cell carcinoma. J. Pharm. Biomed. Anal., 2023, 229, 115346.
[http://dx.doi.org/10.1016/j.jpba.2023.115346] [PMID: 37001272]
[118]
Lakshmanan, I.; Rachagani, S.; Hauke, R.; Krishn, S.R.; Paknikar, S.; Seshacharyulu, P.; Karmakar, S.; Nimmakayala, R.K.; Kaushik, G.; Johansson, S.L.; Carey, G.B.; Ponnusamy, M.P.; Kaur, S.; Batra, S.K.; Ganti, A.K. MUC5AC interactions with integrin β4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 2016, 35(31), 4112-4121.
[http://dx.doi.org/10.1038/onc.2015.478] [PMID: 26751774]
[119]
Guo, M.; Tomoshige, K.; Meister, M.; Muley, T.; Fukazawa, T.; Tsuchiya, T.; Karns, R.; Warth, A.; Fink-Baldauf, I.M.; Nagayasu, T.; Naomoto, Y.; Xu, Y.; Mall, M.A.; Maeda, Y. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol. Med., 2017, 9(4), 462-481.
[http://dx.doi.org/10.15252/emmm.201606711] [PMID: 28255028]
[120]
Mahajan, N. Signatures of prostate-derived Ets factor (PDEF) in cancer. Tumour Biol., 2016, 37(11), 14335-14340.
[http://dx.doi.org/10.1007/s13277-016-5326-1] [PMID: 27612480]
[121]
Lin, Y.; Zhu, L.; Yang, Y.; Zhang, Z.; Chen, Q.; Sun, Y.; Bi, J.; Luo, X.; Ni, Z.; Wang, X. Resveratrol inhibits MUC5AC expression by regulating SPDEF in lung cancer cells. Phytomedicine, 2021, 89, 153601.
[http://dx.doi.org/10.1016/j.phymed.2021.153601] [PMID: 34139546]
[122]
Chudzińska, M.; Rogowicz, D.; Wołowiec, Ł.; Banach, J.; Sielski, S.; Bujak, R.; Sinkiewicz, A.; Grześk, G. Resveratrol and cardiovascular system-the unfulfilled hopes. Ir. J. Med. Sci., 2021, 190(3), 981-986.
[http://dx.doi.org/10.1007/s11845-020-02441-x] [PMID: 33219913]
[123]
Ogas, T.; Kondratyuk, T.P.; Pezzuto, J.M. Resveratrol analogs: Promising chemopreventive agents. Ann. N. Y. Acad. Sci., 2013, 1290(1), 21-29.
[http://dx.doi.org/10.1111/nyas.12196] [PMID: 23855462]
[124]
Ndiaye, M.; Kumar, R.; Ahmad, N. Resveratrol in cancer management: Where are we and where we go from here? Ann. N. Y. Acad. Sci., 2011, 1215(1), 144-149.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05851.x] [PMID: 21261653]
[125]
Lee, E.J.; Min, H.Y.; Joo Park, H.; Chung, H.J.; Kim, S.; Nam Han, Y.; Lee, S.K. G2/M cell cycle arrest and induction of apoptosis by a stilbenoid, 3,4,5-trimethoxy-4′-bromo-cis-stilbene, in human lung cancer cells. Life Sci., 2004, 75(23), 2829-2839.
[http://dx.doi.org/10.1016/j.lfs.2004.07.002] [PMID: 15464834]
[126]
Maccario, C.; Savio, M.; Ferraro, D.; Bianchi, L.; Pizzala, R.; Pretali, L.; Forti, L.; Stivala, L.A. The resveratrol analog 4,4′-dihydroxy-trans-stilbene suppresses transformation in normal mouse fibroblasts and inhibits proliferation and invasion of human breast cancer cells. Carcinogenesis, 2012, 33(11), 2172-2180.
[http://dx.doi.org/10.1093/carcin/bgs244] [PMID: 22828135]
[127]
Aldawsari, F.S.; Martínez, V.C.A. 3,4′,5-trans-Trimethoxystilbene; a natural analogue of resveratrol with enhanced anticancer potency. Invest. New Drugs, 2015, 33(3), 775-786.
[http://dx.doi.org/10.1007/s10637-015-0222-x] [PMID: 25720605]
[128]
Kosuru, R.; Rai, U.; Prakash, S.; Singh, A.; Singh, S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur. J. Pharmacol., 2016, 789, 229-243.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.046] [PMID: 27475678]
[129]
Savio, M.; Ferraresi, A.; Corpina, C.; Vandenberghe, S.; Scarlata, C.; Sottile, V.; Morini, L.; Garavaglia, B.; Isidoro, C.; Stivala, L.A. Resveratrol and its analogue 4,4′-Dihydroxy-trans-stilbene inhibit lewis lung carcinoma growth in vivo through apoptosis, autophagy and modulation of the tumour microenvironment in a murine model. Biomedicines, 2022, 10(8), 1784.
[http://dx.doi.org/10.3390/biomedicines10081784] [PMID: 35892684]
[130]
Yang, Y.T.; Weng, C.J.; Ho, C.T.; Yen, G.C. Resveratrol analog-3,5,4′-trimethoxy- trans -stilbene inhibits invasion of human lung adenocarcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression. Mol. Nutr. Food Res., 2009, 53(3), 407-416.
[http://dx.doi.org/10.1002/mnfr.200800123] [PMID: 19072741]
[131]
Weng, C.J.; Yang, Y.T.; Ho, C.T.; Yen, G.C. Mechanisms of apoptotic effects induced by resveratrol, dibenzoylmethane, and their analogues on human lung carcinoma cells. J. Agric. Food Chem., 2009, 57(12), 5235-5243.
[http://dx.doi.org/10.1021/jf900531m] [PMID: 19441815]
[132]
Huang, C.; Lin, Z.J.; Chen, J.C.; Zheng, H.J.; Lai, Y.H.; Huang, H.C. α-Viniferin-induced apoptosis through downregulation of SIRT1 in non-small cell lung cancer cells. Pharmaceuticals, 2023, 16(5), 727.
[http://dx.doi.org/10.3390/ph16050727] [PMID: 37242510]
[133]
Zhao, X.P.; Zheng, X.L.; Huang, M.; Xie, Y.J.; Nie, X.W.; Nasim, A.A.; Yao, X.J.; Fan, X.X. DMU-212 against EGFR-mutant non-small cell lung cancer via AMPK/PI3K/Erk signaling pathway. Heliyon, 2023, 9(5), e15812.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15812] [PMID: 37305501]
[134]
Zhang, L.; Dai, F.; Sheng, P.; Chen, Z.; Xu, Q.; Guo, Y. Resveratrol analogue 3,4,4′-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol. Sin., 2015, 36(10), 1256-1265.
[http://dx.doi.org/10.1038/aps.2015.46] [PMID: 26190500]
[135]
Lim, C.; Lee, P.; Shim, S.; Jang, S.W. HS-1793 inhibits cell proliferation in lung cancer by interfering with the interaction between p53 and MDM2. Oncol. Lett., 2022, 24(2), 290.
[http://dx.doi.org/10.3892/ol.2022.13410] [PMID: 35928802]
[136]
Verma, N.; Tiku, A.B. Polydatin-induced direct and bystander effects in a549 lung cancer cell line. Nutr. Cancer, 2022, 74(1), 237-249.
[http://dx.doi.org/10.1080/01635581.2020.1870705] [PMID: 33445975]
[137]
Chen, R.J.; Wu, P.H.; Ho, C.T.; Way, T.D.; Pan, M.H.; Chen, H.M.; Ho, Y.S.; Wang, Y.J. P53-dependent downregulation of hTERT protein expression and telomerase activity induces senescence in lung cancer cells as a result of pterostilbene treatment. Cell Death Dis., 2017, 8(8), e2985.
[http://dx.doi.org/10.1038/cddis.2017.333] [PMID: 28796247]
[138]
Thongsom, S; Racha, S; Petsri, K; Ei, ZZ; Visuttijai, K; Moriue, S Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway. BMC Complement. Med. Ther., 2023, 23(1), 183.
[http://dx.doi.org/10.1186/s12906-023-04016-6]
[139]
Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release, 2012, 158(2), 182-193.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.083] [PMID: 21978644]
[140]
Davidov-Pardo, G.; McClements, D.J. Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem., 2015, 167, 205-212.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.082] [PMID: 25148980]
[141]
Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J. Control. Release, 2012, 164(1), 17-25.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.018] [PMID: 23041542]
[142]
Paolino, D.; Cosco, D.; Muzzalupo, R.; Trapasso, E.; Picci, N.; Fresta, M. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer. Int. J. Pharm., 2008, 353(1-2), 233-242.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.037] [PMID: 18191509]
[143]
Sinico, C.; Fadda, A.M. Vesicular carriers for dermal drug delivery. Expert Opin. Drug Deliv., 2009, 6(8), 813-825.
[http://dx.doi.org/10.1517/17425240903071029] [PMID: 19569979]
[144]
Wang, X.X.; Li, Y.B.; Yao, H.J.; Ju, R.J.; Zhang, Y.; Li, R.J.; Yu, Y.; Zhang, L.; Lu, W.L. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials, 2011, 32(24), 5673-5687.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.029] [PMID: 21550109]
[145]
Bano, S.; Ahmed, F.; Khan, F.; Chaudhary, S.C.; Samim, M. Enhancement of the cancer inhibitory effect of the bioactive food component resveratrol by nanoparticle based delivery. Food Funct., 2020, 11(4), 3213-3226.
[http://dx.doi.org/10.1039/C9FO02445J] [PMID: 32215382]
[146]
Nassir, AM; Shahzad, N; Ibrahim, IAA; Ahmad, I; Md, S; Ain, MR Resveratrol-loaded PLGA nanoparticles mediated programmed cell death in prostate cancer cells. Saudi. Pharm. J., 2018, 26(6), 876-885.
[http://dx.doi.org/10.1016/j.jsps.2018.03.009]
[147]
Xiong, L.; Lin, X.M.; Nie, J.H.; Ye, H.S.; Liu, J. Resveratrol and its nanoparticle suppress doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in vitro and in vivo. Nanotheranostics, 2021, 5(2), 143-154.
[http://dx.doi.org/10.7150/ntno.53844] [PMID: 33457193]
[148]
Kim, J.H.; Park, E.Y.; Ha, H.K.; Jo, C.M.; Lee, W.J.; Lee, S.S.; Kim, J.W. Resveratrol-loaded nanoparticles induce antioxidant activity against oxidative stress. Asian-Australas. J. Anim. Sci., 2016, 29(2), 288-298.
[http://dx.doi.org/10.5713/ajas.15.0774] [PMID: 26732454]
[149]
Greenhalgh, J.; Dwan, K.; Boland, A.; Bates, V.; Vecchio, F.; Dundar, Y.; Jain, P.; Green, J.A. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer. Cochrane Libr., 2016, (5), CD010383.
[http://dx.doi.org/10.1002/14651858.CD010383.pub2] [PMID: 27223332]
[150]
Qiu, J; Cai, G; Liu, X; Ma, D. α(v)β(3) integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed Pharmacother., 2017, 96, 1418-1426.
[151]
Ma, P; Li, T; Xing, H; Wang, S; Sun, Y; Sheng, X Local anesthetic effects of bupivacaine loaded lipid-polymer hybrid nanoparticles: In vitro and in vivo evaluation. Biomed Pharmacother, 2017, 89, 689-695.
[152]
Song, Z.; Shi, Y.; Han, Q.; Dai, G. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2018, 105, 18-26.
[http://dx.doi.org/10.1016/j.biopha.2018.05.095] [PMID: 29843041]
[153]
Karthikeyan, S; Hoti, SL; Prasad, NR Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells. Biomed. Pharmacother., 2015, 70, 274-282.
[154]
Wang, X.; Parvathaneni, V.; Shukla, S.K.; Kulkarni, N.S.; Muth, A.; Kunda, N.K.; Gupta, V. Inhalable resveratrol-cyclodextrin complex loaded biodegradable nanoparticles for enhanced efficacy against non-small cell lung cancer. Int. J. Biol. Macromol., 2020, 164, 638-650.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.124] [PMID: 32693132]
[155]
Ambros, V.; Lee, R.C. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol. Biol., 2004, 265, 131-158.
[http://dx.doi.org/10.1385/1-59259-775-0:131] [PMID: 15103073]
[156]
Iorio, M.V.; Croce, C.M. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol. Med., 2012, 4(3), 143-159.
[http://dx.doi.org/10.1002/emmm.201100209] [PMID: 22351564]
[157]
Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics, 2015, 5(10), 1122-1143.
[http://dx.doi.org/10.7150/thno.11543] [PMID: 26199650]
[158]
Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med., 2019, 70, 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929]
[159]
Pratap, P.; Raza, S.T.; Abbas, S.; Mahdi, F. MicroRNA-associated carcinogenesis in lung carcinoma. J. Cancer Res. Ther., 2018, 14(2), 249-254.
[http://dx.doi.org/10.4103/0973-1482.187283] [PMID: 29516903]
[160]
Zarredar, H.; Ansarin, K.; Baradaran, B.; Shekari, N.; Eyvazi, S.; Safari, F.; Farajnia, S. Critical microRNAs in lung cancer: Recent advances and potential applications. Anticancer. Agents Med. Chem., 2019, 18(14), 1991-2005.
[http://dx.doi.org/10.2174/1871520618666180808125459] [PMID: 30088452]
[161]
Bae, S.; Lee, E.M.; Cha, H.J.; Kim, K.; Yoon, Y.; Lee, H.; Kim, J.; Kim, Y.J.; Lee, H.G.; Jeung, H.K.; Min, Y.H.; An, S. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol. Cells, 2011, 32(3), 243-250.
[http://dx.doi.org/10.1007/s10059-011-1037-z] [PMID: 21887509]
[162]
Han, Z.; Yang, Q.; Liu, B.; Wu, J.; Li, Y.; Yang, C.; Jiang, Y. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis, 2012, 33(1), 131-139.
[http://dx.doi.org/10.1093/carcin/bgr226] [PMID: 22016468]
[163]
Yu, Y-H.; Chen, H-A.; Chen, P-S.; Cheng, Y-J.; Hsu, W-H.; Chang, Y-W.; Chen, Y-H.; Jan, Y.; Hsiao, M.; Chang, T-Y.; Liu, Y-H.; Jeng, Y-M.; Wu, C-H.; Huang, M-T.; Su, Y-H.; Hung, M-C.; Chien, M-H.; Chen, C-Y.; Kuo, M-L.; Su, J-L. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene, 2013, 32(4), 431-443.
[http://dx.doi.org/10.1038/onc.2012.74] [PMID: 22410781]
[164]
Bai, T.; Dong, D.S.; Pei, L. Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol. Rep., 2014, 31(5), 2293-2297.
[http://dx.doi.org/10.3892/or.2014.3090] [PMID: 24647918]
[165]
Sadrkhanloo, M.; Entezari, M.; Orouei, S.; Ghollasi, M.; Rezaei, S.; Hejazi, E.S.; Kakavand, A.; Saebfar, H.; Hashemi, M.; Goharrizi, M.A.; Salimimoghadam, S. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharm. Res., 2022, 182, 106311.
[166]
Kong, F.; Xie, C.; Zhao, X.; Zong, X.; Bu, L.; Zhang, B.; Tian, H.; Ma, S. Resveratrol regulates PINK1/Parkin -mediated mitophagy via the lncRNA ZFAS1-miR-150-5p-PINK1 axis, and enhances the antitumor activity of paclitaxel against non-small cell lung cancer. Toxicol. Res., 2022, 11(6), 962-974.
[http://dx.doi.org/10.1093/toxres/tfac072] [PMID: 36569479]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy