Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

High-expression of FABP4 in Tubules is a Risk Factor for Poor Prognosis in DKD Patients

Author(s): Yao Huang, Xinyuan Cui, Zheng Li, Shuguang Yuan, Yachun Han, Xiangqing Xu, Xiao Fu, Kewen Shi, Zurong Zhang, Jinying Wei, Shiyu Xia, Yang Xiao, Song Xue, Lin Sun, Hong Liu and Xuejing Zhu*

Volume 31, Issue 22, 2024

Published on: 31 January, 2024

Page: [3436 - 3446] Pages: 11

DOI: 10.2174/0109298673268265231228125431

Abstract

Background: Lipid metabolism imbalance is involved in the mechanism of renal tubular injury in diabetic kidney disease (DKD). Fatty acid binding protein 4 (FABP4) has been reported to participate in cellular lipid toxicity. However, the expression of FABP4 in renal tissues of DKD and its correlation with clinical/ pathological parameters and prognosis have not been studied.

Methods: A retrospective cohort study was conducted in 108 hospitalized Type 2 diabetes (T2D) patients with renal injury, including 70 with DKD and 38 with NDKD (non-DKD). Clinical features, pathological findings, and follow-up parameters were collected. Serum and urine FABP4 were detected by ELISA. An immunohistochemistry stain was used to determine FABP4 in renal tubulointerstitium. A double immunofluorescence stain was employed to assess FABP4- and CD68-positive macrophages. Correlation analysis, logistic regression models, receiver operating characteristic (ROC), and Kaplan-Meier survival curve were performed for statistical analysis.

Results: DKD patients had increased expression of FABP4 and ectopic fat deposition in tubules. As shown by correlation analyses, FABP4 expression in renal tubules was positively correlated with UNAG (r=0.589, p=0.044) and ESRD (r=0.740, p=0.004). Multivariate regression analysis revealed that UNAG level was correlated with FABP4 expression level above median value (odds ratio:1.154, 95% confidence interval:1.009-1.321, p=0.037). High-expression of FABP4 in renal tubules of DKD was at an increased risk of ESRD. Increased FABP4 expression in inflammatory cells was also associated with ESRD in DKD.

Conclusion: High-expression of FABP4 is involved in the pathogenesis of renal tubular lipid injury and is a risk factor for poor prognosis in DKD patients.

Keywords: Diabetic kidney disease, renal tubular injury, fatty acid binding protein 4, endoplasmic reticulum, obesity, renal tubules.

« Previous
[1]
Hirano, T. Pathophysiology of diabetic dyslipidemia. J. Atheroscler. Thromb., 2018, 25(9), 771-782.
[http://dx.doi.org/10.5551/jat.RV17023] [PMID: 29998913]
[2]
Yao, F.; Li, Z.; Ehara, T.; Yang, L.; Wang, D.; Feng, L.; Zhang, Y.; Wang, K.; Shi, Y.; Duan, H.; Zhang, L. Fatty Acid-Binding Protein 4 mediates apoptosis via endoplasmic reticulum stress in mesangial cells of diabetic nephropathy. Mol. Cell. Endocrinol., 2015, 411, 232-242.
[http://dx.doi.org/10.1016/j.mce.2015.05.003] [PMID: 25958041]
[3]
Chen, Y.; Dai, Y.; Song, K.; Huang, Y.; Zhang, L.; Zhang, C.; Yan, Q.; Gao, H. Pre-emptive pharmacological inhibition of fatty acid–binding protein 4 attenuates kidney fibrosis by reprogramming tubular lipid metabolism. Cell Death Dis., 2021, 12(6), 572.
[http://dx.doi.org/10.1038/s41419-021-03850-1] [PMID: 34083513]
[4]
Reese-Wagoner, A.; Thompson, J.; Banaszak, L. Structural properties of the adipocyte lipid binding protein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1999, 1441(2-3), 106-116.
[http://dx.doi.org/10.1016/S1388-1981(99)00154-7] [PMID: 10570239]
[5]
Furuhashi, M.; Fucho, R.; Görgün, C.Z.; Tuncman, G.; Cao, H.; Hotamisligil, G.S. Adipocyte/macrophage fatty acid–binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J. Clin. Invest., 2008, 118(7), 2640-2650.
[http://dx.doi.org/10.1172/JCI34750] [PMID: 18551191]
[6]
Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 2008, 7(6), 489-503.
[http://dx.doi.org/10.1038/nrd2589] [PMID: 18511927]
[7]
Amiri, M.; Yousefnia, S.; Seyed Forootan, F.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene, 2018, 676, 171-183.
[http://dx.doi.org/10.1016/j.gene.2018.07.035] [PMID: 30021130]
[8]
Xiao, Y.; Shu, L.; Wu, X.; Liu, Y.; Cheong, L.Y.; Liao, B.; Xiao, X.; Hoo, R.L.C.; Zhou, Z.; Xu, A. Fatty acid binding protein 4 promotes autoimmune diabetes by recruitment and activation of pancreatic islet macrophages. JCI Insight, 2021, 6(7), e141814.
[http://dx.doi.org/10.1172/jci.insight.141814] [PMID: 33690220]
[9]
Toruner, F.; Altinova, A.E.; Akturk, M.; Kaya, M.; Arslan, E.; Bukan, N.; Kan, E.; Yetkin, I.; Arslan, M. The relationship between adipocyte fatty acid binding protein-4, retinol binding protein-4 levels and early diabetic nephropathy in patients with type 2 diabetes. Diabetes Res. Clin. Pract., 2011, 91(2), 203-207.
[http://dx.doi.org/10.1016/j.diabres.2010.11.011] [PMID: 21176857]
[10]
Elmasri, H.; Karaaslan, C.; Teper, Y.; Ghelfi, E.; Weng, M.; Ince, T.A.; Kozakewich, H.; Bischoff, J.; Cataltepe, S. Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J., 2009, 23(11), 3865-3873.
[http://dx.doi.org/10.1096/fj.09-134882] [PMID: 19625659]
[11]
Iso, T.; Maeda, K.; Hanaoka, H.; Suga, T.; Goto, K.; Syamsunarno, M.R.A.A.; Hishiki, T.; Nagahata, Y.; Matsui, H.; Arai, M.; Yamaguchi, A.; Abumrad, N.A.; Sano, M.; Suematsu, M.; Endo, K.; Hotamisligil, G.S.; Kurabayashi, M. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler. Thromb. Vasc. Biol., 2013, 33(11), 2549-2557.
[http://dx.doi.org/10.1161/ATVBAHA.113.301588] [PMID: 23968980]
[12]
Yuan, S.; Wang, Y.; Li, Z.; Chen, X.; Song, P.; Chen, A.; Qu, Z.; Wen, S.; Liu, H.; Zhu, X. Gasdermin D is involved in switching from apoptosis to pyroptosis in TLR4-mediated renal tubular epithelial cells injury in diabetic kidney disease. Arch. Biochem. Biophys., 2022, 727, 109347.
[http://dx.doi.org/10.1016/j.abb.2022.109347] [PMID: 35809639]
[13]
Hotamisligil, G.S.; Bernlohr, D.A. Metabolic functions of FABPs—mechanisms and therapeutic implications. Nat. Rev. Endocrinol., 2015, 11(10), 592-605.
[http://dx.doi.org/10.1038/nrendo.2015.122] [PMID: 26260145]
[14]
Furuhashi, M.; Ishimura, S.; Ota, H.; Hayashi, M.; Nishitani, T.; Tanaka, M.; Yoshida, H.; Shimamoto, K.; Hotamisligil, G.S.; Miura, T. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS One, 2011, 6(11), e27356.
[http://dx.doi.org/10.1371/journal.pone.0027356] [PMID: 22102888]
[15]
Yeung, D.C.Y.; Xu, A.; Tso, A.W.K.; Chow, W.S.; Wat, N.M.S.; Fong, C.H.Y.; Tam, S.; Sham, P.C.; Lam, K.S.L. Circulating levels of adipocyte and epidermal fatty acid-binding proteins in relation to nephropathy staging and macrovascular complications in type 2 diabetic patients. Diabetes Care, 2009, 32(1), 132-134.
[http://dx.doi.org/10.2337/dc08-1333] [PMID: 18931100]
[16]
Ni, X.; Gu, Y.; Yu, H.; Wang, S.; Chen, Y.; Wang, X.; Yuan, X.; Jia, W. Serum adipocyte fatty acid-binding protein 4 levels are independently associated with radioisotope glomerular filtration rate in type 2 diabetic patients with early diabetic nephropathy. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/4578140] [PMID: 29992142]
[17]
Seo, D.H.; Nam, M.; Jung, M.; Suh, Y.J.; Ahn, S.H.; Hong, S.; Kim, S.H. Serum levels of adipocyte fatty acid-binding protein are associated with rapid renal function decline in patients with type 2 diabetes mellitus and preserved renal function. Diabetes Metab. J., 2020, 44(6), 875-886.
[http://dx.doi.org/10.4093/dmj.2019.0221] [PMID: 32662255]
[18]
Tan, Z.; Guo, F.; Huang, Z.; Xia, Z.; Liu, J.; Tao, S.; Li, L.; Feng, Y.; Du, X.; Ma, L.; Fu, P. Pharmacological and genetic inhibition of fatty acid binding protein 4 alleviated cisplatin induced acute kidney injury. J. Cell. Mol. Med., 2019, 23(9), 6260-6270.
[http://dx.doi.org/10.1111/jcmm.14512] [PMID: 31286669]
[19]
Shrestha, S.; Sunaga, H.; Hanaoka, H.; Yamaguchi, A.; Kuwahara, S.; Umbarawan, Y.; Nakajima, K.; Machida, T.; Murakami, M.; Saito, A.; Tsushima, Y.; Kurabayashi, M.; Iso, T. Circulating FABP4 is eliminated by the kidney via glomerular filtration followed by megalin-mediated reabsorption. Sci. Rep., 2018, 8(1), 16451.
[http://dx.doi.org/10.1038/s41598-018-34902-w] [PMID: 30401801]
[20]
Jiang, W.; Xu, C.; Du, C.; Dong, J.; Xu, S.; Hu, B.; Feng, R.; Zang, D.; Meng, X.; Huang, C.; Li, J.; Ma, T. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics, 2022, 12(1), 324-339.
[http://dx.doi.org/10.7150/thno.63735] [PMID: 34987648]
[21]
Feng, Y.; Guo, F.; Xia, Z.; Liu, J.; Mai, H.; Liang, Y.; Zhu, G.; Li, Y.; Bai, L.; Li, L.; Huang, R.; Shi, M.; Ma, L.; Fu, P. Inhibition of fatty acid–binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition. Front. Immunol., 2020, 11, 566535.
[http://dx.doi.org/10.3389/fimmu.2020.566535] [PMID: 33101287]

© 2024 Bentham Science Publishers | Privacy Policy