Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Bioactive Constituents and the Molecular Mechanism of Melastoma dodecandrum Lour. in the Treatment of Inflammation Based on Network Pharmacology and Molecular Docking

Author(s): Liu Shuang, Qiu Weiwen, Yin Qizhao, Zhao Meilu, Mei Mingrong, Lei Houxing* and Zhang Xiaoqin*

Volume 14, Issue 9, 2024

Published on: 30 January, 2024

Article ID: e300124226547 Pages: 18

DOI: 10.2174/0122103155274363231221112226

Price: $65

Abstract

Background: Melastoma dodecandrum Lour. (MD) is a component used in traditional Chinese medicine that is widely distributed in southern China. MD has long been used clinically to treat various diseases, such as inflammation. However, the potential anti-inflammatory mechanism of MD remains to be elucidated.

Objective: In this study, network pharmacology and experimental validation have been used to explore the underlying mechanism of MD in inflammation.

Methods: The chemical composition of MD was determined using ultra-high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (UHPLC-ESI-HRMS). The effects of MD on pro-inflammatory cytokines, such as NO, i-NOS, IL-1β, and TNF-α, in RAW264.7 cells stimulated by lipopolysaccharide (LPS) were determined by ELISA and QRT-PCR. Through the analysis of multiple databases, targets for the treatment of inflammation with MD were identified. Other extensive analyses included PPI, GO, and KEGG pathway enrichment, which were completed through the use of the STRING database, Cytoscape software, and the DAVID database. Key targets and key components have been selected for molecular docking.

Results: A total of 33 active components were identified in MD, and 134 common targets were obtained and used to construct the networks. Of these, 10 core components and 10 core targets of MD in the treatment of inflammation were identified. The GO and KEGG enrichment analyses revealed that the common targets were involved in multiple signaling pathways, including the PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, chemokine signaling pathway, and IL-17 signaling pathway. The molecular docking methods confirmed the high affinity between bioactive molecules of MD and their targets in inflammation. Two core targets (PIK3CA and AKT) and three core components (asiatic acid, apigenin, and kaempferol) were found to be closely related to MD in the treatment of inflammation. In vitro, MD exerted a significant effect on LPS-stimulated NO, IL- 1β, and TNF-α secretion, and iNOS, IL-1β, and TNF-α expressions in macrophages.

Conclusion: This study has demonstrated the bioactive constituents and mechanisms of MD in inhibiting the secretion of inflammatory factors and the multicomponent, multitarget, and multipathway treatment characteristics involved in inflammation, but this still needs further in vivo/in vitro experiments.

Keywords: Melastoma dodecandrum Lour., inflammation, network pharmacology, multiple targets, mechanism, PIK3CA and AKT.

Graphical Abstract
[1]
Wang, J.; Jia, Z.; Zhang, Z.; Wang, Y.; Liu, X.; Wang, L.; Lin, R. Analysis of chemical constituents of melastoma dodecandrum lour. by UPLC-ESI-Q-Exactive Focus-MS/MS. Molecules, 2017, 22(3), 476.
[http://dx.doi.org/10.3390/molecules22030476] [PMID: 28304342]
[2]
Wang, J.; Zhang, N.; Lan, J.; Xu, R.; Deng, L.; Chen, K.; Yan, L.; Lei, H. Biological effects of Melastoma dodecandrum Lour on coagulation function in rats with limb ischemiareperfusion injury. Zhejiang J Integr Tradit Chin West Med, 2017, 27, 562-564.
[3]
Yu, Z.; Lin, X.; Su, J.; Lin, Q.; Chen, Z. Advance in Melastoma dodecandrum Lour. researches. Med. Plant, 2011, 12, 67-71.
[4]
Ishii, R.; Saito, K.; Horie, M.; Shibano, T.; Kitanaka, S.; Amano, F. Inhibitory effects of hydrolyzable tannins from Melastoma dodecandrum Lour. on nitric oxide production by a murine macrophage-like cell line, RAW264.7, activated with lipopolysaccharide and interferon-gamma. Biol. Pharm. Bull., 1999, 22(6), 647-653.
[http://dx.doi.org/10.1248/bpb.22.647] [PMID: 10408242]
[5]
Zhang, C. Studies on the chemical constituents and pharmacological activities of Melastoma dodecandrum Lour; Guangzhou University Technology, 2003.
[6]
Cheng, M. Studies on the Chemical Constituents of Melastoma dodecandrum L; Jinan University, 2015.
[7]
Zhang, C.; Chen, Z.; Yao, H.; Lin, Y.; Fang, Y. Isolation, pur ification and structural analysis of polysacharide MD1 from Melastoma dodecandrum Lour. Acad J Guangzhou Med Coll, 2002, 30, 21-24.
[8]
Zhang, R.Z. Studies on the Chemical Constituents of Melastoma dodecandrum L. and Achillea alpine; Fudan University, 2013.
[9]
Yang, G.X.; Zhang, R.Z.; Lou, B.; Cheng, K.J.; Xiong, J.; Hu, J.F. Chemical constituents from Melastoma dodecandrum and their inhibitory activity on interleukin-8 production in HT-29 cells. Nat. Prod. Res., 2014, 28(17), 1383-1387.
[http://dx.doi.org/10.1080/14786419.2014.903480] [PMID: 24697659]
[10]
Huang, G.; Ge, Y.; Gui, Z.; Zhu, M.; Liu, J.; Wang, H. Toxicity of Melastoma dodecandrum Lour. and its effects on lipopolysaccharide induced inflammation and oxidative stress. Exp. Ther. Med., 2021, 22(2), 807.
[http://dx.doi.org/10.3892/etm.2021.10239] [PMID: 34093763]
[11]
Xu, Y.; Rashwan, A.K.; Ge, Z.; Li, Y.; Ge, H.; Li, J.; Xie, J.; Liu, S.; Fang, J.; Cheng, K.; Chen, W. Identification of a novel α-glucosidase inhibitor from Melastoma dodecandrum Lour. fruits and its effect on regulating postprandial blood glucose. Food Chem., 2023, 399, 133999.
[http://dx.doi.org/10.1016/j.foodchem.2022.133999] [PMID: 36037688]
[12]
Rashwan, A.K.; Karim, N.; Xu, Y.; Cui, H.; Fang, J.; Cheng, K.; Mo, J.; Chen, W. Chemical composition, quality attributes and antioxidant activity of stirred-type yogurt enriched with Melastoma dodecandrum Lour fruit powder. Food Funct., 2022, 13(3), 1579-1592.
[http://dx.doi.org/10.1039/D1FO03448K] [PMID: 35073395]
[13]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[14]
Kirsch-Volders, M.; Fenech, M. Aneuploidy, inflammation and diseases. Mutat. Res., 2022, 824, 111777.
[http://dx.doi.org/10.1016/j.mrfmmm.2022.111777] [PMID: 35358789]
[15]
Hellenbrand, D.J.; Quinn, C.M.; Piper, Z.J.; Morehouse, C.N.; Fixel, J.A.; Hanna, A.S. Inflammation after spinal cord injury: A review of the critical timeline of signaling cues and cellular infiltration. J. Neuroinflammation, 2021, 18(1), 284.
[http://dx.doi.org/10.1186/s12974-021-02337-2] [PMID: 34876174]
[16]
Starace, V.; Battista, M.; Brambati, M.; Cavalleri, M.; Bertuzzi, F.; Amato, A.; Lattanzio, R.; Bandello, F.; Cicinelli, M.V. The role of inflammation and neurodegeneration in diabetic macular edema. Ther. Adv. Ophthalmol., 2021, 13.
[http://dx.doi.org/10.1177/25158414211055963] [PMID: 34901746]
[17]
Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; de Courten, B. The dietary inflammatory index, obesity, type 2 diabetes, and cardiovascular risk factors and diseases. Obes. Rev., 2022, 23(1), e13349.
[http://dx.doi.org/10.1111/obr.13349] [PMID: 34708499]
[18]
Fan, L.; Liu, Z.; Zhang, Z.; Li, T.; Zong, X.; Bai, H. Kangfuxiaoyanshuan alleviates uterine inflammation and adhesion via inhibiting NF-κB p65 and TGF-β/MMP-2 signaling pathway in pelvic inflammatory disease rats. Front. Pharmacol., 2022, 13, 894149.
[http://dx.doi.org/10.3389/fphar.2022.894149] [PMID: 35924054]
[19]
Duarte, R.; Fuhrich, D.; Ross, J.D.C. A review of antibiotic therapy for pelvic inflammatory disease. Int. J. Antimicrob. Agents, 2015, 46(3), 272-277.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.05.004] [PMID: 26126798]
[20]
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150.
[http://dx.doi.org/10.1016/j.tips.2021.11.004] [PMID: 34895945]
[21]
Tong, H.; Yu, M.; Fei, C.; Ji, D.; Dong, J.; Su, L.; Gu, W.; Mao, C.; Li, L.; Bian, Z.; Lu, T.; Hao, M.; Zeng, B. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine, 2021, 86, 153558.
[http://dx.doi.org/10.1016/j.phymed.2021.153558] [PMID: 33866197]
[22]
Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144, 105389.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105389] [PMID: 35303581]
[23]
Che, Y.H.; Xu, Z.R.; Ni, L.L.; Dong, X.X.; Yang, Z.Z.; Yang, Z.B. Isolation and identification of the components in Cybister chinensis Motschulsky against inflammation and their mechanisms of action based on network pharmacology and molecular docking. J. Ethnopharmacol., 2022, 285, 114851.
[http://dx.doi.org/10.1016/j.jep.2021.114851] [PMID: 34808299]
[24]
He, Y.M.; Zhu, S.; Ge, Y.W.; Cai, S.Q.; Komatsu, K. Secoiridoid glycosides from the root of Gentiana crassicaulis with inhibitory effects against LPS-induced NO and IL-6 production in RAW264 macrophages. J. Nat. Med., 2015, 69(3), 366-374.
[http://dx.doi.org/10.1007/s11418-015-0903-y] [PMID: 25894073]
[25]
Gutierrez, R.P.; Hoyo-Vadillo, C.; Hoyo-Vadillo, C. Anti-inflammatory potential of Petiveria alliacea on activated RAW264.7 murine macrophages. Pharmacogn. Mag., 2017, 13(50), 174.
[http://dx.doi.org/10.4103/pm.pm_479_16] [PMID: 28808377]
[26]
Wang, Y.; Li, M.; Chen, L.; Bian, H.; Chen, X.; Zheng, H.; Yang, P.; Chen, Q.; Xu, H. Natural killer cell-derived exosomal miR-1249-3p attenuates insulin resistance and inflammation in mouse models of type 2 diabetes. Signal Transduct. Target. Ther., 2021, 6(1), 409.
[http://dx.doi.org/10.1038/s41392-021-00805-y] [PMID: 34848693]
[27]
Hulander, E.; Bärebring, L.; Wadell, A.T.; Gjertsson, I.; Calder, P.C.; Winkvist, A.; Lindqvist, H.M. Proposed anti-inflammatory diet reduces inflammation in compliant, weight-stable patients with rheumatoid arthritis in a randomized controlled crossover trial. J. Nutr., 2021, 151(12), 3856-3864.
[http://dx.doi.org/10.1093/jn/nxab313] [PMID: 34587253]
[28]
Wu, Z.; Zheng, Y.; Sheng, J.; Han, Y.; Yang, Y.; Pan, H.; Yao, J. CD3+CD4-CD8- (Double-Negative) T cells in inflammation, immune disorders and cancer. Front. Immunol., 2022, 13, 816005.
[http://dx.doi.org/10.3389/fimmu.2022.816005] [PMID: 35222392]
[29]
To, K.I.; Zhu, Z.X.; Wang, Y.N.; Li, G.A.; Sun, Y.M.; Li, Y.; Jin, Y.H. Integrative network pharmacology and experimental verification to reveal the anti-inflammatory mechanism of ginsenoside Rh4. Front. Pharmacol., 2022, 13, 953871.
[http://dx.doi.org/10.3389/fphar.2022.953871] [PMID: 36120306]
[30]
Zhou, B.; Liu, H.; Jia, X. The role and mechanisms of traditional chinese medicine for airway inflammation and remodeling in asthma: Overview and progress. Front. Pharmacol., 2022, 13, 917256.
[http://dx.doi.org/10.3389/fphar.2022.917256] [PMID: 35910345]
[31]
Nagoor Meeran, M.F.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S.K. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front. Pharmacol., 2018, 9, 892.
[http://dx.doi.org/10.3389/fphar.2018.00892] [PMID: 30233358]
[32]
Hu, L.; Wang, J.; Wu, N.; Zhao, X.; Cai, D. Utilizing network pharmacology and experimental validation to investigate the underlying mechanism of phellodendrine on inflammation. PeerJ, 2022, 10, e13852.
[http://dx.doi.org/10.7717/peerj.13852] [PMID: 36172495]
[33]
Abid, R.; Ghazanfar, S.; Farid, A.; Sulaman, S.M.; Idrees, M.; Amen, R.A.; Muzammal, M.; Shahzad, M.K.; Mohamed, M.O.; Khaled, A.A.; Safir, W.; Ghori, I.; Elasbali, A.M.; Alharbi, B. Pharmacological properties of 4′ 5, 7-trihydroxyflavone (Apigenin) and its impact on cell signaling pathways. Molecules, 2022, 27(13), 4304.
[http://dx.doi.org/10.3390/molecules27134304] [PMID: 35807549]
[34]
Chen, S.; Yin, R.; Mutze, K.; Yu, Y.; Takenaka, S.; Königshoff, M.; Stoeger, T. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part. Fibre Toxicol., 2015, 13(1), 33.
[http://dx.doi.org/10.1186/s12989-016-0144-6] [PMID: 27328634]
[35]
Oshima, H.; Hioki, K.; Popivanova, B.K.; Oguma, K.; Van Rooijen, N.; Ishikawa, T.O.; Oshima, M. Prostaglandin E₂ signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology, 2011, 140(2), 596-607.e7.
[http://dx.doi.org/10.1053/j.gastro.2010.11.007] [PMID: 21070778]
[36]
Yu, C.; Wang, D.; Yang, Z.; Wang, T. Pharmacological effects of polyphenol phytochemicals on the intestinal inflammation via targeting TLR4/NF-κB signaling pathway. Int. J. Mol. Sci., 2022, 23(13), 6939.
[http://dx.doi.org/10.3390/ijms23136939] [PMID: 35805952]
[37]
Dan, H.C.; Cooper, M.J.; Cogswell, P.C.; Duncan, J.A.; Ting, J.P.Y.; Baldwin, A.S. Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK. Genes Dev., 2008, 22(11), 1490-1500.
[http://dx.doi.org/10.1101/gad.1662308] [PMID: 18519641]
[38]
Venkatesan, B.; Valente, A.J.; Prabhu, S.D.; Shanmugam, P.; Delafontaine, P.; Chandrasekar, B. EMMPRIN activates multiple transcription factors in cardiomyocytes, and induces interleukin-18 expression via Rac1-dependent PI3K/Akt/IKK/NF-κB andMKK7/JNK/AP-1 signaling. J. Mol. Cell. Cardiol., 2010, 49(4), 655-663.
[http://dx.doi.org/10.1016/j.yjmcc.2010.05.007] [PMID: 20538003]
[39]
Dagia, N.M.; Agarwal, G.; Kamath, D.V.; Chetrapal-Kunwar, A.; Gupte, R.D.; Jadhav, M.G.; Dadarkar, S.S.; Trivedi, J.; Kulkarni-Almeida, A.A.; Kharas, F.; Fonseca, L.C.; Kumar, S.; Bhonde, M.R. A preferential p110α/γ PI3K inhibitor attenuates experimental inflammation by suppressing the production of proinflammatory mediators in a NF-κB-dependent manner. Am. J. Physiol. Cell Physiol., 2010, 298(4), C929-C941.
[http://dx.doi.org/10.1152/ajpcell.00461.2009] [PMID: 20089935]
[40]
Wang, S.; Yan, Y.; Cheng, Z.; Hu, Y.; Liu, T. Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer A549 cells by reversing EMT via the TNF-α/NF-κB and PI3K/AKT signaling pathway. Cell Death Discov., 2018, 4(1), 26.
[http://dx.doi.org/10.1038/s41420-018-0026-9] [PMID: 29531823]
[41]
Gambhir, S.; Vyas, D.; Hollis, M.; Aekka, A.; Vyas, A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J. Gastroenterol., 2015, 21(11), 3174-3183.
[http://dx.doi.org/10.3748/wjg.v21.i11.3174] [PMID: 25805923]
[42]
Kalantary-Charvadeh, A.; Sanajou, D.; Hemmati-Dinarvand, M.; Marandi, Y.; Khojastehfard, M.; Hajipour, H.; Mesgari-Abbasi, M.; Roshangar, L.; Ahmad, N.S.S. Micheliolide protects against doxorubicin-induced cardiotoxicity in mice by regulating PI3K/Akt/NF-kB signaling pathway. Cardiovasc. Toxicol., 2019, 19(4), 297-305.
[http://dx.doi.org/10.1007/s12012-019-09511-2] [PMID: 30835049]
[43]
Wang, S.; Wang, L.; Wu, C.; Sun, S.; Pan, J. E2F2 directly regulates the STAT1 and PI3K/AKT/NF-κB pathways to exacerbate the inflammatory phenotype in rheumatoid arthritis synovial fibroblasts and mouse embryonic fibroblasts. Arthritis Res. Ther., 2018, 20(1), 225-239.
[http://dx.doi.org/10.1186/s13075-018-1713-x] [PMID: 30286793]
[44]
Liu, W.; Huang, S.; Li, Y.; Li, Y.; Li, D.; Wu, P.; Wang, Q.; Zheng, X.; Zhang, K. Glycyrrhizic acid from licorice down-regulates inflammatory responses via blocking MAPK and PI3K/Akt-dependent NF-κB signalling pathways in TPA-induced skin inflammation. MedChemComm, 2018, 9(9), 1502-1510.
[http://dx.doi.org/10.1039/C8MD00288F] [PMID: 30288224]
[45]
Lee, J.Y.; Kim, G.J.; Choi, J.K.; Choi, Y.A.; Jeong, N.H.; Park, P.H.; Choi, H.; Kim, S.H. 4-(Hydroxymethyl)catechol extracted from fungi in marine sponges attenuates rheumatoid arthritis by inhibiting PI3K/Akt/NF-κB signaling. Front. Pharmacol., 2018, 9, 726-738.
[http://dx.doi.org/10.3389/fphar.2018.00726] [PMID: 30079020]
[46]
Maho, S.; Kimura, Y. Effects of eleutherococcus senticosus cortex on recovery from the forced swimming test and fatty acid β-oxidation in the liver and skeletal muscle of mice. Nat. Prod. J., 2016, 6(1), 49-55.
[http://dx.doi.org/10.2174/2210315506999151207145020] [PMID: 28553575]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy