Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

QSAR Analysis and Molecular Docking Studies of Aryl Sulfonamide Derivatives as Mcl-1 Inhibitors and the Influence of Structure and Chirality on the Inhibitory Activity

Author(s): Jia Chen, Yang Ma, Jian-Wei Zou, Sheng Hu, Meilan Huang and Guixiang Hu*

Volume 21, Issue 16, 2024

Published on: 30 January, 2024

Page: [3465 - 3478] Pages: 14

DOI: 10.2174/0115701808278918240109053316

Price: $65

Abstract

Background: Mcl-1 is a kind of antiapoptotic protein and its overexpression is closely related to the occurrence of cancer. Aryl sulfonamide derivatives are expected to become new anticancer agents due to their high inhibitory activity on the Mcl-1 protein.

Objective: The study aimed to establish the QSAR model with good prediction ability and elaborate the influence of structure and chirality on the inhibitory activity.

Methods: Multiple QSAR models were built with different types of descriptors and modeling methods. The molecular docking was performed on compounds 45, 25, 26, 24R, and 24S. The MCCV method was used to perform rigorous validations with up to 216 = 65,536 samplings for MLR, SVM, LSSVM, RF, and GP methods based on the model of 2D and 3D combined descriptors.

Results: The models based on 2D and 3D combined descriptors demonstrated non-linear LSSVM, RF, and GP methods based on the model of 2D and 3D combined descriptors. Results: The models based on 2D and 3D combined descriptors demonstrated non-linear LSSVM and GP methods to provide better results (R2>0.94, R2CV > 0.86). The predictive performances of MCCV tests have been basically coincident with the single test set’s results. The hydrogen bond acceptor at the appropriate position of the substituent on the chiral center could form the hydrogen bond interaction with residue ASN260, resulting in stronger interaction and higher inhibitory activity. The interaction differences between R and S configurations could be mainly attributed to two residues, HIS224 and ASN260. Furthermore, the steric effect of the substituent on chiral carbon atoms was crucial. A high steric effect could prevent the binding of the substituent and protein, resulting in low inhibitory activity.

Conclusion: The study may provide theoretical guidance on the design and synthesis of novel aryl sulfonamide derivatives with high inhibitory activity.

Keywords: Myeloid cell leukemia-1, aryl sulfonamide, quantitative structure-activity relationship, Monte Carlo crossvalidation, molecular docking, chirality.

Graphical Abstract
[1]
Adams, S.J.; Stone, E.; Baldwin, D.R.; Vliegenthart, R.; Lee, P.; Fintelmann, F.J. Lung cancer screening. Lancet, 2023, 401(10374), 390-408.
[http://dx.doi.org/10.1016/S0140-6736(22)01694-4] [PMID: 36563698]
[2]
Halbrook, C.J.; Lyssiotis, C.A.; Pasca di Magliano, M.; Maitra, A. Pancreatic cancer: Advances and challenges. Cell, 2023, 186(8), 1729-1754.
[http://dx.doi.org/10.1016/j.cell.2023.02.014] [PMID: 37059070]
[3]
Sedlak, J.C.; Yilmaz, Ö.H.; Roper, J. Metabolism and colorectal cancer. Annu. Rev. Pathol., 2023, 18(1), 467-492.
[http://dx.doi.org/10.1146/annurev-pathmechdis-031521-041113] [PMID: 36323004]
[4]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[5]
Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(3), 233-254.
[http://dx.doi.org/10.3322/caac.21772] [PMID: 36856579]
[6]
Speiser, D.E.; Chijioke, O.; Schaeuble, K.; Münz, C. CD4+ T cells in cancer. Nat. Can., 2023, 4(3), 317-329.
[http://dx.doi.org/10.1038/s43018-023-00521-2] [PMID: 36894637]
[7]
Sulkshane, P.; Teni, T. Myeloid cell leukemia-1: A formidable barrier to anticancer therapeutics and the quest of targeting it. Explor. Target Antitumor. Ther., 2022, 3(3), 278-296.
[8]
Choi, S.J.; Swarup, N.; Shin, J.A.; Hong, S.D.; Cho, S.D. Myeloid cell leukemia-1 expression in cancers of the oral cavity: A scoping review. Cancer Cell Int., 2022, 22(1), 182.
[http://dx.doi.org/10.1186/s12935-022-02603-0] [PMID: 35524332]
[9]
Cai, J.; Zhao, J.; Gao, P.; Xia, Y. Patchouli alcohol suppresses castration-resistant prostate cancer progression by inhibiting NF-κB signal pathways. Transl. Androl. Urol., 2022, 11(4), 528-542.
[http://dx.doi.org/10.21037/tau-22-220] [PMID: 35558260]
[10]
Yang, H.; Chen, T.; Fan, M.; Xu, W.; Wu, X. USP13 promotes proliferation and angiogenesis of diffuse large B-cell lymphoma cells by promoting MCL-1 expression. Mol. Cell. Toxicol., 2023.
[http://dx.doi.org/10.1007/s13273-023-00367-w]
[11]
Lee, T.; Christov, P.P.; Shaw, S.; Tarr, J.C.; Zhao, B.; Veerasamy, N.; Jeon, K.O.; Mills, J.J.; Bian, Z.; Sensintaffar, J.L.; Arnold, A.L.; Fogarty, S.A.; Perry, E.; Ramsey, H.E.; Cook, R.S.; Hollingshead, M.; Davis Millin, M.; Lee, K.; Koss, B.; Budhraja, A.; Opferman, J.T.; Kim, K.; Arteaga, C.L.; Moore, W.J.; Olejniczak, E.T.; Savona, M.R.; Fesik, S.W. Discovery of potent myeloid cell leukemia-1 (Mcl-1) inhibitors that demonstrate in vivo activity in mouse xenograft models of human cancer. J. Med. Chem., 2019, 62(8), 3971-3988.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01991] [PMID: 30929420]
[12]
Wang, J.; He, Y.; Yang, C.; Luo, Q.; Wang, B. Myeloid cell leukemia-1 as a candidate prognostic biomarker in cancers: A systematic review and meta-analysis. Expert Rev. Anticancer Ther., 2023, 23(9), 1017-1027.
[http://dx.doi.org/10.1080/14737140.2023.2238900] [PMID: 37467344]
[13]
Wu, K.; Woo, S.M.; Kwon, T.K. The histone lysine-specific demethylase 1 inhibitor, SP2509 exerts cytotoxic effects against renal cancer cells through downregulation of Bcl-2 and Mcl-1. J. Cancer Prev., 2020, 25(2), 79-86.
[http://dx.doi.org/10.15430/JCP.2020.25.2.79] [PMID: 32647649]
[14]
Liu, L.; Liu, R.; Yang, X.; Hou, X.; Fang, H. Design, synthesis and biological evaluation of tyrosine derivatives as Mcl-1 inhibitors. Eur. J. Med. Chem., 2020, 191, 112142.
[http://dx.doi.org/10.1016/j.ejmech.2020.112142] [PMID: 32088497]
[15]
Anonymous, ; Lee, T.; Tarr, J.C.; Jeon, K.; Salovich, J.M.; Shaw, S.; Veerasamy, N.; Kim, K.; Christov, P.P.; Olejniczak, E.T.; Zhao, B.; Fesik, S.W.; Bian, Z. Substituted indole Mcl-1 inhibitors. US11596639,
[16]
Deng, H.; Huang, M.; Liu, H.; Zhang, H.; Liu, L.; Gao, B.; Li, X.; Li, J.; Niu, Q.; Zhang, Z.; Luan, S.; Zhang, J.; Jing, Y.; Liu, D.; Zhao, L. Development of a series of novel Mcl-1 inhibitors bearing an indole carboxylic acid moiety. Bioorg. Chem., 2022, 127, 106018.
[http://dx.doi.org/10.1016/j.bioorg.2022.106018] [PMID: 35901526]
[17]
Barth, B.M. Ceramide: Improving Bcl-2 inhibitor therapy. Blood, 2022, 139(26), 3676-3678.
[http://dx.doi.org/10.1182/blood.2022016608] [PMID: 35771560]
[18]
Demin, S.; Peschiulli, A.; Velter, A.I.; Vos, A.; De Boeck, B.; Miller, B.; Rombouts, F.J.R.; Reuillon, T.; Lento, W.; Blanco, M.D.; Jouffroy, M.; Steyvers, H.; Bekkers, M.; Altrocchi, C.; Pietrak, B.; Koo, S.J.; Szewczuk, L.; Attar, R.; Philippar, U. Macrocyclic carbon-linked pyrazoles as novel inhibitors of MCL-1. ACS Med. Chem. Lett., 2023, 14(7), 955-961.
[http://dx.doi.org/10.1021/acsmedchemlett.3c00141] [PMID: 37465311]
[19]
Yu, H.J.; Shin, J.A.; Choi, S.J.; Cho, S.D. Podophyllotoxin reduces the aggressiveness of human oral squamous cell carcinoma through myeloid cell leukemia 1. Int. J. Mol. Med., 2023, 52(5), 103.
[http://dx.doi.org/10.3892/ijmm.2023.5306] [PMID: 37711052]
[20]
Liang, X.; Li, X.; Zhao, Z.; Nie, Y.; Yao, Z.; Ren, W.; Yang, X.; Hou, X.; Fang, H. Design, synthesis and biological evaluation of hydantoin derivatives as Mcl-1 selective inhibitors. Bioorg. Chem., 2022, 121, 105643.
[http://dx.doi.org/10.1016/j.bioorg.2022.105643] [PMID: 35150958]
[21]
Lu, X.; Wu, M.F.; Wu, J.L.; Zhang, H.Q.; Liang, H.; Chen, Z.F. Platinum-based Mcl-1 inhibitor targeting mitochondria achieves enhanced antitumor activity as a single agent or in combination with ABT-199. J. Med. Chem., 2023, 66(13), 8705-8716.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00355] [PMID: 37358241]
[22]
Petros, A.M.; Swann, S.L.; Song, D.; Swinger, K.; Park, C.; Zhang, H.; Wendt, M.D.; Kunzer, A.R.; Souers, A.J.; Sun, C. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg. Med. Chem. Lett., 2014, 24(6), 1484-1488.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.010] [PMID: 24582986]
[23]
Richard, D.J.; Lena, R.; Bannister, T.; Blake, N.; Pierceall, W.E.; Carlson, N.E.; Keller, C.E.; Koenig, M.; He, Y.; Minond, D.; Mishra, J.; Cameron, M.; Spicer, T.; Hodder, P.; Cardone, M.H. Hydroxyquinoline-derived compounds and analoguing of selective Mcl-1 inhibitors using a functional biomarker. Bioorg. Med. Chem., 2013, 21(21), 6642-6649.
[http://dx.doi.org/10.1016/j.bmc.2013.08.017] [PMID: 23993674]
[24]
Xi, J.; Yao, L.; Zhang, R.; Chen, K.; Li, M.; Zhang, D.; Cui, M.; Nie, H.; Wang, P.; Li, X.; Jiang, R. 2-Oxy-3-phenylacrylic acid derivatives as potent Mcl-1 inhibitors for treatment of cancer. Results. Chem, 2022, 4, 100308.
[http://dx.doi.org/10.1016/j.rechem.2022.100308]
[25]
Rescourio, G.; Gonzalez, A.Z.; Jabri, S.; Belmontes, B.; Moody, G.; Whittington, D.; Huang, X.; Caenepeel, S.; Cardozo, M.; Cheng, A.C.; Chow, D.; Dou, H.; Jones, A.; Kelly, R.C.; Li, Y.; Lizarzaburu, M.; Lo, M.C.; Mallari, R.; Meleza, C.; Rew, Y.; Simonovich, S.; Sun, D.; Turcotte, S.; Yan, X.; Wong, S.G.; Yanez, E.; Zancanella, M.; Houze, J.; Medina, J.C.; Hughes, P.E.; Brown, S.P. Discovery and in vivo evaluation of macrocyclic Mcl-1 inhibitors featuring an α-hydroxy phenylacetic acid pharmacophore or bioisostere. J. Med. Chem., 2019, 62(22), 10258-10271.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01310] [PMID: 31736296]
[26]
Acton, A.; Placzek, W.J. Myeloid cell leukemia 1 small molecule inhibitor S63845 synergizes with cisplatin in triple-negative breast cancer. Cancers, 2023, 15(18), 4481.
[http://dx.doi.org/10.3390/cancers15184481] [PMID: 37760451]
[27]
Amet, R.; Previtali, V.; Mihigo, H.B.; Sheridan, E.; Brophy, S.; Hante, N.K.; Santos-Martinez, M.J.; Hayden, P.J.; Browne, P.V.; Rozas, I.; McElligott, A.M.; Zisterer, D.M. A novel aryl-guanidinium derivative, VP79s, targets the signal transducer and activator of transcription 3 signaling pathway, downregulates myeloid cell leukaemia-1 and exhibits preclinical activity against multiple myeloma. Life Sci., 2022, 290, 120236.
[http://dx.doi.org/10.1016/j.lfs.2021.120236] [PMID: 34953891]
[28]
Liu, W.; Khalid, M.; Wahab, S.; Faizan Siddiqui, M.; Hasan Khan, S.; Sadiq, M.; Khatoon, Z. A multitier virtual screening study of phytoconstituents as Myeloid Cell Leukemias 1 inhibitors. J. Biomol. Struct. Dyn., 2023, 1-10.
[http://dx.doi.org/10.1080/07391102.2023.2226739] [PMID: 37418235]
[29]
Tabti, K.; Baammi, S.; Sbai, A.; Maghat, H.; Lakhlifi, T.; Bouachrine, M. Molecular modeling study of pyrrolidine derivatives as novel myeloid cell leukemia-1 inhibitors through combined 3D-QSAR, molecular docking, ADME/Tox and MD simulation techniques. J. Biomol. Struct. Dyn., 2023, 41(23), 13798-13814.
[http://dx.doi.org/10.1080/07391102.2023.2183032] [PMID: 36841617]
[30]
Albanese, V.; Missiroli, S.; Perrone, M.; Fabbri, M.; Boncompagni, C.; Pacifico, S.; De Ventura, T.; Ciancetta, A.; Dondio, G.; Kricek, F.; Pinton, P.; Guerrini, R.; Preti, D.; Giorgi, C. Novel aryl sulfonamide derivatives as NLRP3 inflammasome inhibitors for the potential treatment of cancer. J. Med. Chem., 2023, 66(7), 5223-5241.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00175] [PMID: 36972104]
[31]
Jadhav, R.I.; Kedar, N.A.; Chavan, K.H. Synthesis and antimicrobial activity of novel 1H-benzo[d]imidazole-aryl sulfonamide/amide derivatives. Indian J. Chem., 2022, 61, 184-191.
[32]
Lin, J.; Zhou, S.; Xu, J.X.; Yao, W.Q.; Hao, G.F.; Li, Y.T. Design, synthesis, and structure-activity relationship of economical triazole sulfonamide aryl derivatives with high fungicidal activity. J. Agric. Food Chem., 2020, 68(25), 6792-6801.
[http://dx.doi.org/10.1021/acs.jafc.9b07887] [PMID: 32442369]
[33]
Abdullahi, M.; Shallangwa, G.A.; Uzairu, A. In silico QSAR and molecular docking simulation of some novel aryl sulfonamide derivatives as inhibitors of H5N1 influenza A virus subtype. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 9(1), 2.
[http://dx.doi.org/10.1186/s43088-019-0023-y]
[34]
Hargunani, P.; Tadge, N.; Ceruso, M.; Leitans, J.; Kazaks, A.; Tars, K.; Gratteri, P.; Supuran, C.T.; Nocentini, A.; Toraskar, M.P. Aryl-4,5-dihydro-1H-pyrazole-1-carboxamide derivatives bearing a sulfonamide moiety show single-digit nanomolar-to-subnanomolar inhibition constants against the tumor-associated human carbonic anhydrases IX and XII. Int. J. Mol. Sci., 2020, 21(7), 2621.
[http://dx.doi.org/10.3390/ijms21072621] [PMID: 32283813]
[35]
Follows, B.; Fessler, S.; Baumeister, T.; Campbell, A.M.; Zablocki, M.M.; Li, H.; Gotur, D.; Wang, Z.; Zheng, X.; Molz, L.; Nguyen, C.; Herbertz, T.; Wang, L.; Bair, K. Discovery of novel biaryl sulfonamide based Mcl-1 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(16), 2375-2382.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.008] [PMID: 31235261]
[36]
Muratov, E.N.; Bajorath, J.; Sheridan, R.P.; Tetko, I.V.; Filimonov, D.; Poroikov, V.; Oprea, T.I.; Baskin, I.I.; Varnek, A.; Roitberg, A.; Isayev, O.; Curtalolo, S.; Fourches, D.; Cohen, Y.; Aspuru-Guzik, A.; Winkler, D.A.; Agrafiotis, D.; Cherkasov, A.; Tropsha, A. QSAR without borders. Chem. Soc. Rev., 2020, 49(11), 3525-3564.
[http://dx.doi.org/10.1039/D0CS00098A] [PMID: 32356548]
[37]
Ahmadi, S.; Ghanbari, H.; Lotfi, S.; Azimi, N. Predictive QSAR modeling for the antioxidant activity of natural compounds derivatives based on Monte Carlo method. Mol. Divers., 2021, 25(1), 87-97.
[http://dx.doi.org/10.1007/s11030-019-10026-9] [PMID: 31933105]
[38]
Živadinović, B.; Stamenović, J.; Živadinović, J.; Živadinović, L.; Sokolović, M.; Filipović, S.S.; Sokolović, D.; Veselinović, A.M. QSAR modelling, molecular docking studies and ADMET predictions of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK. J. Mol. Struct., 2022, 1265, 133504.
[http://dx.doi.org/10.1016/j.molstruc.2022.133504]
[39]
Akhtar, S.; Sharma, N.; Sharma, M.; Faisal, M.; Alatar, A.A.; Kumar, R.; Ahmad, S. Ligand-based pharmacophore modeling, molecular docking and simulation studies for the exploration of natural potent antiangiogenic inhibitors targeting heat shock protein 90. Lett. Drug Des. Discov., 2023, 20(1), 95-109.
[http://dx.doi.org/10.2174/1570180819666220921165802]
[40]
Turkan, F.; Cetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 86, 420-427.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.013] [PMID: 30769267]
[41]
Biancolillo, A.; D’Archivio, A.A. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases. J. Chromatogr. A, 2022, 1663, 462758.
[http://dx.doi.org/10.1016/j.chroma.2021.462758] [PMID: 34954535]
[42]
Takao, K.; Takemura, Y.; Nagai, J.; Kamauchi, H.; Hoshi, K.; Mabashi, R.; Uesawa, Y.; Sugita, Y. Synthesis and biological evaluation of 3-styrylchromone derivatives as selective monoamine oxidase B inhibitors. Bioorg. Med. Chem., 2021, 42, 116255.
[http://dx.doi.org/10.1016/j.bmc.2021.116255] [PMID: 34119696]
[43]
Liu, S.; Li, Y.; Wang, J.; Rui, X.; Tian, H.; Li, C.; Guo, C. In silico studies of piperidine derivatives as protein kinase B inhibitors through 3D-QSAR, molecular docking and molecular dynamics simulation. Lett. Drug Des. Discov., 2022, 19(7), 591-605.
[http://dx.doi.org/10.2174/1570180818666211207105516]
[44]
Gajjar, K.A.; Gajjar, A.K. CoMFA, CoMSIA and HQSAR analysis of 3-aryl-3-ethoxypropanoic acid derivatives as GPR40 modulators. Curr. Drug Discov. Technol., 2020, 17(1), 100-118.
[http://dx.doi.org/10.2174/1570163815666180829144431] [PMID: 30160214]
[45]
Fu, L.; Chen, Y.; Xu, C.; Wu, T.; Guo, H.; Lin, Z.; Wang, R.; Shu, M. 3D-QSAR, HQSAR, molecular docking, and new compound design study of 1,3,6-trisubstituted 1,4-diazepan-7-ones as human KLK7 inhibitors. Med. Chem. Res., 2020, 29(6), 1012-1029.
[http://dx.doi.org/10.1007/s00044-020-02542-3]
[46]
López, A.F.F.; Martínez, O.M.M.; Hernández, H.F.C. Evaluation of Amaryllidaceae alkaloids as inhibitors of human acetylcholinesterase by QSAR analysis and molecular docking. J. Mol. Struct., 2021, 1225, 129142.
[http://dx.doi.org/10.1016/j.molstruc.2020.129142]
[47]
Storchi, L.; Cruciani, G.; Cross, S. DeepGRID: Deep learning using GRID descriptors for BBB prediction. J. Chem. Inf. Model., 2023, 63(17), 5496-5512.
[http://dx.doi.org/10.1021/acs.jcim.3c00768] [PMID: 37639536]
[48]
Mathew, B.; Herrera-Acevedo, C.; Dev, S.; Rangarajan, T.M.; Kuruniyan, M.S.; Naseef, P.P.; Scotti, L.; Scotti, M.T. Development of 2D, 3D-QSAR and pharmacophore modeling of chalcones for the inhibition of monoamine oxidase B. Comb. Chem. High T. Scr., 2022, 25(10), 1731-1744.
[PMID: 34397324]
[49]
Jafari, M.; Isfahani, T.M.; Shafiei, F.; Senejani, M.A.; Alimoradi, M. Comparative QSAR modeling for predicting anticancer potency of imidazo[4,5-b]pyridine derivatives using GA-MLR and BP-ANN techniques. Lett. Drug Des. Discov., 2023, 20(12), 2034-2044.
[http://dx.doi.org/10.2174/1570180820666221207121031]
[50]
Moosavi, S.A.; Mohammadinasab, E.; Isfahani, T.M. Prediction of partition coefficient of carbamates using GA-MLR and GA-ANN methods, and comparison with experimental data. Lett. Org. Chem., 2023, 20(5), 481-493.
[http://dx.doi.org/10.2174/1570178620666221205095036]
[51]
Jayakumar, J.; Ebanesar, A.; Gautam, S. Predictive analysis, diagnosis of COVID-19 through computational screening and validation with spectro photometrical approach. Toxicol. Environ. Health Sci., 2023, 15(2), 109-117.
[http://dx.doi.org/10.1007/s13530-023-00172-x]
[52]
Kaboudi, N.; Alizadeh, A.A.; Shayanfar, A. In silico models to predict tubular secretion or reabsorption clearance pathway using physicochemical properties and structural characteristics. Xenobiotica, 2022, 52(4), 346-352.
[http://dx.doi.org/10.1080/00498254.2022.2076632] [PMID: 35543185]
[53]
Cruciani, G.; Crivori, P.; Carrupt, P.A.; Testa, B. Molecular fields in quantitative structure-permeation relationships: the VolSurf approach. J. Mol. Struct. Theochem, 2000, 503(1-2), 17-30.
[http://dx.doi.org/10.1016/S0166-1280(99)00360-7]
[54]
Valkenborg, D.; Rousseau, A.J.; Geubbelmans, M.; Burzykowski, T. Support vector machines. Am. J. Orthod. Dentofacial Orthop., 2023, 164(5), 754-757.
[http://dx.doi.org/10.1016/j.ajodo.2023.08.003] [PMID: 37914440]
[55]
Zhang, R.; Wang, J.; Jiang, N.; Wang, Z. Quantum support vector machine without iteration. Inf. Sci., 2023, 635, 25-41.
[http://dx.doi.org/10.1016/j.ins.2023.03.106]
[56]
Chen, Y.; Chang, Z. Intelligent forecasting method of distributed energy load based on least squares support vector machine. Int. J. Glob. Energy Issues, 2023, 45(4/5), 383-394.
[http://dx.doi.org/10.1504/IJGEI.2023.132013]
[57]
Madhavi, M.V.; Bobby, T.C. Exploration of fibro-glandular region and breast density classification of digitised mammograms using least square support vector machine. Int. J. Biomed. Eng. Technol., 2023, 43(2), 131-151.
[http://dx.doi.org/10.1504/IJBET.2023.133797]
[58]
Hu, J.; Szymczak, S. A review on longitudinal data analysis with random forest. Brief. Bioinform., 2023, 24(2), bbad002.
[http://dx.doi.org/10.1093/bib/bbad002] [PMID: 36653905]
[59]
Mahdaviara, M.; Rostami, A.; Keivanimehr, F.; Shahbazi, K. Accurate determination of permeability in carbonate reservoirs using Gaussian Process Regression. J. Petrol. Sci. Eng., 2021, 196, 107807.
[http://dx.doi.org/10.1016/j.petrol.2020.107807]
[60]
Liu, H.; Ong, Y.S.; Shen, X.; Cai, J. When Gaussian process meets big data: A review of scalable GPs. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31(11), 4405-4423.
[http://dx.doi.org/10.1109/TNNLS.2019.2957109] [PMID: 31944966]
[61]
Dong, W.; Sun, S. Multi-view deep gaussian processes for supervised learning. IEEE Trans. Pattern Anal. Mach. Intell., 2023, 45(12), 15137-15153.
[http://dx.doi.org/10.1109/TPAMI.2023.3316671] [PMID: 37725728]
[62]
Mehdizadeh Esfanjani, R.; Najarzadeh, D.; Jabbari Khamnei, H.; Hormozinejad, F.; Talebi, M. A Monte Carlo study on the ridge parameter of the seemingly unrelated ridge regression models. J. Stat. Comput. Simul., 2023, 93(13), 2176-2195.
[http://dx.doi.org/10.1080/00949655.2023.2174984]
[63]
Chang, J.X.; Zou, J.W.; Lou, C.Y.; Ye, J.X.; Feng, R.; Li, Z.Y.; Hu, G.X. Gas‐to‐ionic liquid partition: QSPR modeling and mechanistic interpretation. Mol. Inform., 2023, 42(6), 2200223.
[http://dx.doi.org/10.1002/minf.202200223] [PMID: 37040091]
[64]
Nakatsu, R.T. Validation of machine learning ridge regression models using Monte Carlo, bootstrap, and variations in cross-validation. J. Intell. Syst., 2023, 32(1), 20220224.
[http://dx.doi.org/10.1515/jisys-2022-0224]
[65]
Zhang, D.; Zhao, Z.; Ouyang, H.; Wu, Z.; Han, X. An efficient reliability analysis method based on the improved radial basis function neural network. J. Mech. Des., 2023, 145(8), 081705.
[http://dx.doi.org/10.1115/1.4062584]
[66]
Zhang, C.; Li, Z.; Yang, Z.; Huang, B.; Hou, Y.; Chen, Z. A dynamic prediction model supporting individual life expectancy prediction based on longitudinal time-dependent covariates. IEEE J. Biomed. Health Inform., 2023, 27(9), 4623-4632.
[http://dx.doi.org/10.1109/JBHI.2023.3292475] [PMID: 37471185]
[67]
Touraine, C.; Winter, A.; Castan, F.; Azria, D.; Gourgou, S. Time-dependent ROC curve analysis for assessing the capability of radiation-induced CD8 T-lymphocyte apoptosis to predict late toxicities after adjuvant radiotherapy of breast cancer patients. Cancers, 2023, 15(19), 4676.
[http://dx.doi.org/10.3390/cancers15194676] [PMID: 37835370]
[68]
Khalifa, I.; Sobhy, R.; Morsy, O.M.; Zou, X. A low-power sono-copigmentation of cyanidin 3-glucoside with geranin type-A: An underlying mechanism study with spectroscopic and Surflex docking insights. J. Mol. Liq., 2023, 384, 122248.
[http://dx.doi.org/10.1016/j.molliq.2023.122248]
[69]
Reddy, K.K.; Rathore, R.S.; Srujana, P.; Burri, R.R.; Reddy, C.R.; Sumakanth, M.; Reddanna, P.; Reddy, M.R. Performance evaluation of docking programs- Glide, GOLD, AutoDock & SurflexDock, using free energy perturbation reference data: A case study of fructose-1, 6-bisphosphatase-AMP analogs. Mini Rev. Med. Chem., 2020, 20(12), 1179-1187.
[http://dx.doi.org/10.2174/1389557520666200526183353] [PMID: 32459606]
[70]
Raikar, P.; Gurupadayya, B.; Mandal, S.P.; Narhari, R.; Subramanyam, S.; Srinivasu, G.; Rajan, S.; Saikumar, M.; Koganti, S. Bioanalytical chiral chromatographic technique and docking studies for enantioselective separation of meclizine hydrochloride: Application to pharmacokinetic study in rabbits. Chirality, 2020, 32(8), 1091-1106.
[http://dx.doi.org/10.1002/chir.23241] [PMID: 32567097]
[71]
Jiang, D.; Zhao, H.; Du, H.; Deng, Y.; Wu, Z.; Wang, J.; Zeng, Y.; Zhang, H.; Wang, X.; Wu, J.; Hsieh, C.Y.; Hou, T. How good are current docking programs at nucleic acid-ligand docking? A comprehensive evaluation. J. Chem. Theory Comput., 2023, 19(16), 5633-5647.
[http://dx.doi.org/10.1021/acs.jctc.3c00507] [PMID: 37480347]
[72]
Bouzekri, O.; Elgamouz, S.; El Khatabi, K.; Amechrouq, A.; Ajana, M.A.; Bouachrine, M.; Lakhlifi, T.; El Idrissi, M.; Choukrad, M. Chemical composition and in silico acetylcholinesterase inhibitory activity of essential oils of six apiaceae species from south-east Morocco. Biointerface Res. Appl. Chem., 2022, 13(1), 36.
[http://dx.doi.org/10.33263/BRIAC131.036]
[73]
Benali, T.; Lemhadri, A.; Harboul, K.; Chtibi, H.; Khabbach, A.; Jadouali, S.M.; Quesada-Romero, L.; Louahlia, S.; Hammani, K.; Ghaleb, A.; Lee, L.H.; Bouyahya, A.; Rusu, M.E.; Akhazzane, M. Chemical profiling and biological properties of essential oils of lavandula stoechas L. collected from three Moroccan sites: In vitro and in silico investigations. Plants, 2023, 12(6), 1413.
[http://dx.doi.org/10.3390/plants12061413] [PMID: 36987101]
[74]
Zhang, K.; Hashimoto, K. An update on ketamine and its two enantiomers as rapid-acting antidepressants. Expert Rev. Neurother., 2019, 19(1), 83-92.
[http://dx.doi.org/10.1080/14737175.2019.1554434] [PMID: 30513009]
[75]
Blaszczyk, A.; Matysiak, S.; Kula, J.; Szostakiewicz, K.; Karkusiewicz, Z. Cytotoxic and genotoxic effects of (R)‐ and (S)‐ricinoleic acid derivatives. Chirality, 2020, 32(7), 998-1007.
[http://dx.doi.org/10.1002/chir.23226] [PMID: 32250002]
[76]
Feng, Y.; Park, J.; Li, S.G.; Boutin, R.; Viereck, P.; Schilling, M.A.; Berghuis, A.M.; Tsantrizos, Y.S. Chirality-driven mode of binding of α-aminophosphonic acidbased allosteric inhibitors of the human farnesyl pyrophosphate synthase (hFPPS). J. Med. Chem., 2019, 62(21), 9691-9702.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01104] [PMID: 31577901]
[77]
Foskolou, I.P.; Cunha, P.P.; Sánchez-López, E.; Minogue, E.A.; Nicolet, B.P.; Guislain, A.; Jorgensen, C.; Kostidis, S.; Zandhuis, N.D.; Barbieri, L.; Bargiela, D.; Nathanael, D.; Tyrakis, P.A.; Palazon, A.; Giera, M.; Wolkers, M.C.; Johnson, R.S. The two enantiomers of 2-hydroxyglutarate differentially regulate cytotoxic T cell function. Cell Rep., 2023, 42(9), 113013.
[http://dx.doi.org/10.1016/j.celrep.2023.113013] [PMID: 37632752]
[78]
Jia, Q.; Yang, P.Y.; Li, Y.L.; Yao, G.D.; Song, S.J.; Huang, X.X. Two new enantiomers of phenylethanoid and their anti-inflammatory activities. Chem. Biodivers., 2023, 20(4), e202300067.
[http://dx.doi.org/10.1002/cbdv.202300067] [PMID: 36810976]

© 2024 Bentham Science Publishers | Privacy Policy