Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

P53-induced GAP-43 Upregulation in Primary Cortical Neurons of Rats

Author(s): Tianxia Li, Yuexin Jia, Junxian Fu, Zhuo Fu, Zhidong Qiao, Xiaoyang Liu, Ting Lv, Rong Tang and Guanglu Yang*

Volume 31, Issue 3, 2024

Published on: 26 January, 2024

Page: [229 - 235] Pages: 7

DOI: 10.2174/0109298665263864231221071712

Price: $65

Abstract

Objectives: In this study, we employed an in vitro culturing technique to investigate the impact of p53 on the modulation of growth-associated protein-43 (GAP-43) within the primary cortical neurons of rat specimens.

Methods: (1) Within the first 24 hours after birth, the bilateral cortex was extracted from newborn Wistar rats and primary cortical neurons were cultured and identified. (2) The changes in the mRNA and protein expressions of GAP-43 induced by p53 in rat primary cortical neurons cultured in vitro were identified utilizing real-time polymerase chain reaction and western blot techniques.

Results: (1) Lentiviral transfection of p53 within primary cortical neurons of rats elicited elevated levels of both mRNA and protein expressions of GAP-43, consequently culminating in a noteworthy augmentation of p53 expression. (2) The introduction of a p53 inhibitor in rat primary cortical neurons resulted in a reduction in both mRNA and protein expressions of GAP-43.

Conclusion: Within primary rat cortical neurons, p53 has the potential to prompt an augmentation in both the transcriptional and protein expression levels of the GAP-43 protein.

Keywords: Cortical neuron, GAP-43, p53, primary cell culture, western blot techniques, protein expression.

Graphical Abstract
[1]
Wasylishen, A.R.; Lozano, G. Attenuating the p53 pathway in human cancers: Many means to the same end. Cold Spring Harb. Perspect. Med., 2016, 6(8), a026211.
[http://dx.doi.org/10.1101/cshperspect.a026211] [PMID: 27329033]
[2]
Basheer, S.; Shameena, P.M.; Sudha, S.; Varma, S.; Vidyanath, S.; Varekar, A. Expression of survivin and p53 in oral lichen planus, lichenoid reaction and lichenoid dysplasia: An immunohistochemical study. J. Oral Maxillofac. Pathol., 2017, 21(3), 456-457.
[http://dx.doi.org/10.4103/jomfp.JOMFP_39_15] [PMID: 29391729]
[3]
Zoungrana, L.I.; Didik, S.; Wang, H.; Slotabec, L.; Li, J. Activated protein C in epilepsy pathophysiology. Front. Neurosci., 2023, 17, 1251017.
[http://dx.doi.org/10.3389/fnins.2023.1251017] [PMID: 37901428]
[4]
Sterling, N.A.; Terry, B.K.; McDonnell, J.M.; Kim, S. P53 independent pathogenic mechanisms contribute to BubR1 microcephaly. Front. Cell Dev. Biol., 2023, 11, 1282182.
[http://dx.doi.org/10.3389/fcell.2023.1282182] [PMID: 37900274]
[5]
Quadrato, G.; Di Giovanni, S. Gatekeeper between quiescence and differentiation: p53 in axonal outgrowth and neurogenesis. Int. Rev. Neurobiol., 2012, 105, 71-89.
[http://dx.doi.org/10.1016/B978-0-12-398309-1.00005-6] [PMID: 23206596]
[6]
Ribeiro, J.H.; Altinisik, N.; Rajan, N.; Verslegers, M.; Baatout, S.; Gopalakrishnan, J.; Quintens, R. DNA damage and repair: Underlying mechanisms leading to microcephaly. Front. Cell Dev. Biol., 2023, 11, 1268565.
[http://dx.doi.org/10.3389/fcell.2023.1268565] [PMID: 37881689]
[7]
Liu, Y.; Chen, Y.; Lu, X.; Wang, Y.; Duan, Y.; Cheng, C.; Shen, A. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol. Biol. Cell, 2012, 23(23), 4506-4514.
[http://dx.doi.org/10.1091/mbc.e12-05-0362] [PMID: 23051735]
[8]
Nemes, A.D.; Ayasoufi, K.; Ying, Z.; Zhou, Q.G.; Suh, H.; Najm, I.M. Growth associated protein 43 (GAP-43) as a novel target for the diagnosis, treatment and prevention of epileptogenesis. Sci. Rep., 2017, 7(1), 17702.
[http://dx.doi.org/10.1038/s41598-017-17377-z] [PMID: 29255203]
[9]
Mosevitsky, M.I. Nerve ending “signal” proteins GAP-43, MARCKS, and BASP1. Int. Rev. Cytol., 2005, 245, 245-325.
[http://dx.doi.org/10.1016/S0074-7696(05)45007-X] [PMID: 16125549]
[10]
Caprara, G.A.; Morabito, C.; Perni, S.; Navarra, R.; Guarnieri, S.; Mariggiò, M.A. Evidence for altered Ca2+ handling in growth associated protein 43-knockout skeletal muscle. Front. Physiol., 2016, 7, 493.
[http://dx.doi.org/10.3389/fphys.2016.00493] [PMID: 27833566]
[11]
Tedeschi, A.; Nguyen, T.; Puttagunta, R.; Gaub, P.; Di Giovanni, S. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ., 2009, 16(4), 543-554.
[http://dx.doi.org/10.1038/cdd.2008.175] [PMID: 19057620]
[12]
Yang, G.; Qu, X.; Zhang, J.; Zhao, W.; Wang, H. Sema3F downregulates p53 expression leading to axonal growth cone collapse in primary hippocampal neurons. Int. J. Clin. Exp. Pathol., 2012, 5(7), 634-641.
[PMID: 22977659]
[13]
Nakazawa, T.; Hisatomi, T.; Nakazawa, C.; Noda, K.; Maruyama, K.; She, H.; Matsubara, A.; Miyahara, S.; Nakao, S.; Yin, Y.; Benowitz, L.; Hafezi-Moghadam, A.; Miller, J.W. Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc. Natl. Acad. Sci., 2007, 104(7), 2425-2430.
[http://dx.doi.org/10.1073/pnas.0608167104] [PMID: 17284607]
[14]
Jiang, H.; Wang, J.; Xu, B.; Yang, Q.; Liu, Y. Study on the expression of nerve growth associated protein-43 in rat model of intervertebral disc degeneration. J. Musculoskelet. Neuronal Interact., 2017, 17(2), 104-107.
[PMID: 28574417]
[15]
Wang, N.; Yang, W.; Xiao, T.; Miao, Z.; Luo, W.; You, Z.; Li, G. Possible role of miR-204 in optic nerve injury through the regulation of GAP-43. Mol. Med. Rep., 2018, 17(3), 3891-3897.
[PMID: 29286154]
[16]
Staszkiewicz, R.; Gralewski, M.; Gładysz, D.; Bryś, K.; Garczarek, M.; Gadzieliński, M.; Marcol, W.; Sobański, D.; Grabarek, B.O. Evaluation of the concentration of growth associated protein-43 and glial cell-derived neurotrophic factor in degenerated intervertebral discs of the lumbosacral region of the spine. Mol. Pain, 2023, 19
[http://dx.doi.org/10.1177/17448069231158287] [PMID: 36733259]
[17]
Lan, G.; Li, A.; Liu, Z.; Ma, S.; Guo, T. Presynaptic membrane protein dysfunction occurs prior to neurodegeneration and predicts faster cognitive decline. Alzheimers Dement., 2023, 19(6), 2408-2419.
[http://dx.doi.org/10.1002/alz.12890] [PMID: 36478661]
[18]
Donnelly, C.J.; Park, M.; Spillane, M.; Yoo, S.; Pacheco, A.; Gomes, C.; Vuppalanchi, D.; McDonald, M.; Kim, H.H.; Merianda, T.T.; Gallo, G.; Twiss, J.L. Axonally synthesized β-actin and GAP-43 proteins support distinct modes of axonal growth. J. Neurosci., 2013, 33(8), 3311-3322.
[http://dx.doi.org/10.1523/JNEUROSCI.1722-12.2013] [PMID: 23426659]
[19]
Rosskothen-Kuhl, N.; Illing, R.B. Gap43 transcription modulation in the adult brain depends on sensory activity and synaptic cooperation. PLoS One, 2014, 9(3), e92624.
[http://dx.doi.org/10.1371/journal.pone.0092624] [PMID: 24647228]
[20]
Liu, J.; Yang, X.Y.; Yang, M.G.; Jiao, J.H.; Dong, J.; Wei, W.W. Advance research on effects of GAP-43 on nerve regeneration and axon guidance after contral nervous system injury and their mechanisms. J. Jilin Univ., 2013, 39(01), 180-183.
[21]
Zhang, Q.; Zhang, Z.J.; Wang, X.H.; Ma, J.; Song, Y.H.; Liang, M.; Lin, S.X.; Zhao, J.; Zhang, A.Z.; Li, F.; Hua, Q. The prescriptions from Shenghui soup enhanced neurite growth and GAP-43 expression level in PC12 cells. BMC Complement. Altern. Med., 2016, 16(1), 369.
[http://dx.doi.org/10.1186/s12906-016-1339-y] [PMID: 27646829]
[22]
Cui, J.; Cui, C.; Cui, Y.; Li, R.; Sheng, H.; Jiang, X.; Tian, Y.; Wang, K.; Gao, J. Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt. Cell. Physiol. Biochem., 2017, 42(1), 137-144.
[http://dx.doi.org/10.1159/000477122] [PMID: 28505619]
[23]
Yuan, Z.Y.; Yang, J.; Ma, X.W.; Wang, Y.Y.; Wang, M.W. Enriched environment elevates expression of growth associated protein-43 in the substantia nigra of SAMP8 mice. Neural Regen. Res., 2018, 13(11), 1988-1994.
[http://dx.doi.org/10.4103/1673-5374.239447] [PMID: 30233074]
[24]
Lu, Y. Cerebrospinal fluid growth-associated protein 43 levels in patients with progressive and stable mild cognitive impairment. Aging Clin. Exp. Res., 2022, 34(10), 2399-2406.
[http://dx.doi.org/10.1007/s40520-022-02202-z] [PMID: 35988117]
[25]
Jyothi, A.K.; Thotakura, B.; Priyadarshini, S.C.; Patil, S.; Poojari, M.S.; Subramanian, M. Paternal stress alters synaptic density and expression of GAP-43, GRIN1, M1 and SYP genes in the hippocampus and cortex of offspring of stress-induced male rats. Morphologie, 2023, 107(356), 67-79.
[http://dx.doi.org/10.1016/j.morpho.2022.05.001] [PMID: 35715368]
[26]
Chen, B.; Yang, H.; An, J.; Tian, D.; Guo, Y.; Yan, Y. Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds. Curr. Stem Cell Res. Ther., 2022, 17(8), 756-771.
[http://dx.doi.org/10.2174/1574888X16666210907141447] [PMID: 34493197]
[27]
Ying, Z.; Najm, I.; Nemes, A.; Pinheiro-Martins, A.P.; Alexopoulos, A.; Gonzalez-Martinez, J.; Bingaman, W. Growth-associated protein 43 and progressive epilepsy in cortical dysplasia. Ann. Clin. Transl. Neurol., 2014, 1(7), 453-461.
[http://dx.doi.org/10.1002/acn3.69] [PMID: 25356416]
[28]
Bakri, A.H.; Hassan, M.H.; Ahmed, A.E.A.; Alotaibi, G.; Halim, P.R.; Abdallah, A.A.M.; Rashwan, N.I. Serum levels of growth-associated protein-43 and neurotrophin-3 in childhood epilepsy and their relation to zinc levels. Biol. Trace Elem. Res., 2023, 201(2), 689-697.
[http://dx.doi.org/10.1007/s12011-022-03213-7] [PMID: 35349008]
[29]
Zhu, H.B.; Yang, K.; Xie, Y.Q.; Lin, Y.W.; Mao, Q.Q.; Xie, L.P. Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells. World J. Surg. Oncol., 2013, 11(1), 22.
[http://dx.doi.org/10.1186/1477-7819-11-22] [PMID: 23356234]
[30]
do Amaral, L.; Caldas, G.R.; dos Santos, N.A.G.; Parreira, R.L.T.; Bastos, J.K.; dos Santos, A.C. Baccharin from Brazilian green propolis induces neurotrophic signaling pathways in PC12 cells: Potential for axonal and synaptic regeneration. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(6), 659-672.
[http://dx.doi.org/10.1007/s00210-022-02224-4] [PMID: 35246694]
[31]
De, I.; Sharma, P.; Singh, M. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials. Eur. J. Pharm. Biopharm., 2022, 173, 73-91.
[http://dx.doi.org/10.1016/j.ejpb.2022.02.016] [PMID: 35227856]
[32]
Di Giovanni, S.; Rathore, K. p53-dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res., 2012, 349(1), 87-95.
[http://dx.doi.org/10.1007/s00441-011-1292-5] [PMID: 22271139]
[33]
Miller, F.D.; Pozniak, C.D.; Walsh, G.S. Neuronal life and death: An essential role for the p53 family. Cell Death Differ., 2000, 7(10), 880-888.
[http://dx.doi.org/10.1038/sj.cdd.4400736] [PMID: 11279533]
[34]
Di Giovanni, S.; Knights, C.D.; Rao, M.; Yakovlev, A.; Beers, J.; Catania, J.; Avantaggiati, M.L.; Faden, A.I. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J., 2006, 25(17), 4084-4096.
[http://dx.doi.org/10.1038/sj.emboj.7601292] [PMID: 16946709]
[35]
Buizza, L.; Prandelli, C.; Bonini, S.A.; Delbarba, A.; Cenini, G.; Lanni, C.; Buoso, E.; Racchi, M.; Govoni, S.; Memo, M.; Uberti, D. Conformational altered p53 affects neuronal function: relevance for the response to toxic insult and growth-associated protein 43 expression. Cell Death Dis., 2013, 4(2), e484.
[http://dx.doi.org/10.1038/cddis.2013.13] [PMID: 23392172]
[36]
Yu, H-P.; Xia, L-M.; Zhang, A-P.; Zheng, Q.; Ding, J.; Jin, Z.; Yu, H.; Wong, W-H. Quercetin-3-O-β-D-glucuronide inhibits mitochondria pathway-mediated platelet apoptosis via the phosphatidylinositol-3-kinase/AKT pathway in immunological bone marrow failure. World J. Tradit. Chin. Med., 2022, 8(1), 115-122.
[http://dx.doi.org/10.4103/wjtcm.wjtcm_44_21]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy