Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Enhancement of Oral Bioavailability of Protein and Peptide by Polysaccharide-based Nanoparticles

Author(s): Md. Moidul Islam and Sarjana Raikwar*

Volume 31, Issue 3, 2024

Published on: 20 March, 2024

Page: [209 - 228] Pages: 20

DOI: 10.2174/0109298665292469240228064739

Price: $65

Abstract

Oral drug delivery is a prevalent and cost-effective method due to its advantages, such as increased drug absorption surface area and improved patient compliance. However, delivering proteins and peptides orally remains a challenge due to their vulnerability to degradation by digestive enzymes, stomach acids, and limited intestinal membrane permeability, resulting in poor bioavailability. The use of nanotechnology has emerged as a promising solution to enhance the bioavailability of these vital therapeutic agents. Polymeric NPs, made from natural or synthetic polymers, are commonly used. Natural polysaccharides, such as alginate, chitosan, dextran, starch, pectin, etc., have gained preference due to their biodegradability, biocompatibility, and versatility in encapsulating various drug types. Their hydrophobic-hydrophilic properties can be tailored to suit different drug molecules.

Keywords: Polysaccharide-based nanoparticles, proteins, oral bioavailability, drug delivery, peptides, nanoparticles.

Graphical Abstract
[1]
Yun, Y.; Cho, Y.W.; Park, K. Nanoparticles for oral delivery: Targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev., 2013, 65(6), 822-832.
[http://dx.doi.org/10.1016/j.addr.2012.10.007] [PMID: 23123292]
[2]
Khan, S; Ullah, M.W; Siddique, R; Nabi, G; Manan, S; Yousaf, M Role of recombinant DNA technology to improve life. Int J Genomics., 2016, 2016, 2405954.
[http://dx.doi.org/10.1155/2016/2405954]
[3]
Cao, S.; Xu, S.; Wang, H.; Ling, Y.; Dong, J.; Xia, R.; Sun, X. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5), 190.
[http://dx.doi.org/10.1208/s12249-019-1325-z] [PMID: 31111296]
[4]
Sachdeva, S.; Lobo, S.; Goswami, T. What is the future of noninvasive routes for protein-and peptide-based drugs?; Future Science, 2016, pp. 355-357.
[5]
Agarwal, P.; Rupenthal, I.D. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov. Today, 2013, 18(7-8), 337-349.
[http://dx.doi.org/10.1016/j.drudis.2013.01.013] [PMID: 23410799]
[6]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[7]
Salatin, S.; Khosroushahi, Y.A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[8]
Tabasum, S.; Noreen, A.; Maqsood, M.F.; Umar, H.; Akram, N.; Nazli, Z.H.; Chatha, S.A.S.; Zia, K.M. A review on versatile applications of blends and composites of pullulan with natural and synthetic polymers. Int. J. Biol. Macromol., 2018, 120(Pt A), 603-632.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.154] [PMID: 30075213]
[9]
Ahuja, R.; Panwar, N.; Meena, J.; Singh, M.; Sarkar, D.P.; Panda, A.K. Natural products and polymeric nanocarriers for cancer treatment: A review. Environ. Chem. Lett., 2020, 18(6), 2021-2030.
[http://dx.doi.org/10.1007/s10311-020-01056-z]
[10]
Morato, L.Y.; Paredes, O.K.; Chamizo, L.L.; Marciello, M.; Filice, M. Recent advances in multimodal molecular imaging of cancer mediated by hybrid magnetic nanoparticles. Polymers, 2021, 13(17), 2989.
[http://dx.doi.org/10.3390/polym13172989] [PMID: 34503029]
[11]
Hu, Q.; Luo, Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int. J. Biol. Macromol., 2018, 120(Pt A), 775-782.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.152] [PMID: 30170057]
[12]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Arias, A.F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[13]
Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C., 2017, 80, 771-784.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[14]
Bhutia, Y.D.; Ganapathy, V. Protein digestion and absorption. In: Physiology of the gastrointestinal tract; Elsevier, 2018; pp. 1063-1086.
[http://dx.doi.org/10.1016/B978-0-12-809954-4.00047-5]
[15]
Carino, G.P.; Mathiowitz, E. Oral insulin delivery1Abbreviations: GI, gastrointestinal; IDDM, insulin-dependent diabetes mellitus; IU, international units; NIDDM, non-insulin-dependent diabetes mellitus; PIN, phase inversion nanoencapsulation; ZOT, zona occludens toxin.1. Adv. Drug Deliv. Rev., 1999, 35(2-3), 249-257.
[http://dx.doi.org/10.1016/S0169-409X(98)00075-1] [PMID: 10837700]
[16]
Patel, V.; Lalani, R.; Bardoliwala, D.; Ghosh, S.; Misra, A. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech, 2018, 19(8), 3609-3630.
[http://dx.doi.org/10.1208/s12249-018-1188-8] [PMID: 30255474]
[17]
Loeliger, J.; McCullough, M. Version Control with Git: Powerful tools and techniques for collaborative software development; O'Reilly Media, Inc., 2012.
[18]
Shah, A.; Malik, M.S.; Khan, G.S.; Nosheen, E.; Iftikhar, F.J.; Khan, F.A.; Shukla, S.S.; Akhter, M.S.; Kraatz, H-B.; Aminabhavi, T.M. Stimuli-responsive peptide-based biomaterials as drug delivery systems. Chem. Eng. J., 2018, 353, 559-583.
[http://dx.doi.org/10.1016/j.cej.2018.07.126]
[19]
Buckley, S.T.; Hubálek, F.; Rahbek, U.L. Chemically modified peptides and proteins - Critical considerations for oral delivery. Tissue Barriers, 2016, 4(2), e1156805.
[http://dx.doi.org/10.1080/21688370.2016.1156805] [PMID: 27358754]
[20]
Pawar, V.K.; Meher, J.G.; Singh, Y.; Chaurasia, M.; Reddy, S.B.; Chourasia, M.K. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. J. Control. Release, 2014, 196, 168-183.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.031] [PMID: 25305562]
[21]
Pavlović, N.; Kon, G.S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front. Pharmacol., 2018, 9, 1283.
[http://dx.doi.org/10.3389/fphar.2018.01283] [PMID: 30467479]
[22]
Sun, N.; Liu, Y.; Liu, K.; Wang, S.; Liu, Q.; Lin, S. Gastrointestinal fate of food allergens and its relationship with allergenicity. Compr. Rev. Food Sci. Food Saf., 2022, 21(4), 3376-3404.
[http://dx.doi.org/10.1111/1541-4337.12989] [PMID: 35751399]
[23]
Brown, T.D.; Whitehead, K.A.; Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater., 2019, 5(2), 127-148.
[http://dx.doi.org/10.1038/s41578-019-0156-6]
[24]
Sun, X.; Acquah, C.; Aluko, R.E.; Udenigwe, C.C. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J. Funct. Foods, 2020, 64, 103680.
[http://dx.doi.org/10.1016/j.jff.2019.103680]
[25]
Xu, Y.; Shrestha, N.; Préat, V.; Beloqui, A. Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J. Control. Release, 2020, 322, 486-508.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.006] [PMID: 32276004]
[26]
Guerrini, L.; Alvarez-Puebla, R.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials, 2018, 11(7), 1154.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[27]
Ejazi, S.A.; Louisthelmy, R.; Maisel, K. Mechanisms of nanoparticle transport across intestinal tissue: an oral delivery perspective. ACS Nano, 2023, 17(14), 13044-13061.
[http://dx.doi.org/10.1021/acsnano.3c02403] [PMID: 37410891]
[28]
Pedersen, A.M.L.; Sørensen, C.E.; Proctor, G.B.; Carpenter, G.H. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Dis., 2018, 24(8), 1399-1416.
[http://dx.doi.org/10.1111/odi.12867] [PMID: 29645367]
[29]
Maddu, N. Functions of saliva. In: Saliva and salivary diagnostics; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.84709]
[30]
Geibel, J. Gastric secretions; Yamada's Textbook of Gastroenterology, 2022, pp. 313-333.
[31]
Fu, Z.; Akula, S.; Thorpe, M.; Hellman, L. Marked difference in efficiency of the digestive enzymes pepsin, trypsin, chymotrypsin, and pancreatic elastase to cleave tightly folded proteins. Biol. Chem., 2021, 402(7), 861-867.
[http://dx.doi.org/10.1515/hsz-2020-0386] [PMID: 33977684]
[32]
Dolenšek, J.; Pohorec, V.; Rupnik, M.S.; Stožer, A. Pancreas physiology. In: Challenges in Pancreatic Pathology Rijeka; IntechOpen: Croatia, 2017; pp. 19-52.
[33]
McQuilken, S.A. Digestion and absorption. Anaesth. Intensive Care Med., 2021, 22(5), 336-338.
[http://dx.doi.org/10.1016/j.mpaic.2020.12.009]
[34]
Ozorio, L.; Silva, M.C.; Cabral, L.M.C.; Jardin, J.; Boudry, G.; Dupont, D. The influence of peptidases in intestinal brush border membranes on the absorption of oligopeptides from whey protein hydrolysate: An ex vivo study using an ussing chamber. Foods, 2020, 9(10), 1415.
[http://dx.doi.org/10.3390/foods9101415] [PMID: 33036372]
[35]
Wang, Y.; Pi, C.; Feng, X.; Hou, Y.; Zhao, L.; Wei, Y. The influence of nanoparticle properties on oral bioavailability of drugs. Int. J. Nanomedicine, 2020, 15, 6295-6310.
[http://dx.doi.org/10.2147/IJN.S257269] [PMID: 32943863]
[36]
Said, H.M. Physiology of the gastrointestinal tract; Academic Press, 2018.
[37]
Hansson, G.C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol., 2012, 15(1), 57-62.
[http://dx.doi.org/10.1016/j.mib.2011.11.002] [PMID: 22177113]
[38]
Johansson, M.E.V. Mucus layers in inflammatory bowel disease. Inflamm. Bowel Dis., 2014, 20(11), 2124-2131.
[http://dx.doi.org/10.1097/MIB.0000000000000117] [PMID: 25025717]
[39]
Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 256-276.
[http://dx.doi.org/10.1016/j.addr.2016.07.007] [PMID: 27496705]
[40]
Johansson, M.E.V.; Sjövall, H.; Hansson, G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(6), 352-361.
[http://dx.doi.org/10.1038/nrgastro.2013.35] [PMID: 23478383]
[41]
Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C.M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev., 2018, 124, 82-97.
[http://dx.doi.org/10.1016/j.addr.2017.10.009] [PMID: 29106910]
[42]
Lock, J.Y.; Carlson, T.L.; Carrier, R.L. Mucus models to evaluate the diffusion of drugs and particles. Adv. Drug Deliv. Rev., 2018, 124, 34-49.
[http://dx.doi.org/10.1016/j.addr.2017.11.001] [PMID: 29117512]
[43]
Soares, P.E.F.; Borges, F.O.M. Oral vaccination through peyer’s patches: Update on particle uptake. Curr. Drug Deliv., 2018, 15(3), 321-330.
[http://dx.doi.org/10.2174/1567201814666170825153955] [PMID: 28847272]
[44]
Zhou, S.; Deng, H.; Zhang, Y.; Wu, P.; He, B.; Dai, W.; Zhang, H.; Zhang, Q.; Zhao, R.; Wang, X. Thiolated nanoparticles overcome the mucus barrier and epithelial barrier for oral delivery of insulin. Mol. Pharm., 2020, 17(1), 239-250.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00971] [PMID: 31800258]
[45]
Wu, J.; Zheng, Y.; Liu, M.; Shan, W.; Zhang, Z.; Huang, Y. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl. Mater. Interfaces, 2018, 10(12), 9916-9928.
[http://dx.doi.org/10.1021/acsami.7b16524] [PMID: 29504398]
[46]
Mörbe, U.M.; Jørgensen, P.B.; Fenton, T.M.; von Burg, N.; Riis, L.B.; Spencer, J.; Agace, W.W. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol., 2021, 14(4), 793-802.
[http://dx.doi.org/10.1038/s41385-021-00389-4] [PMID: 33753873]
[47]
Ruan, H.; Wang, Y.; Zhang, J.; Huang, Y.; Yang, Y.; Wu, C.; Guo, M.; Luo, J.; Yang, M. Zearalenone-14-glucoside specifically promotes dysplasia of gut-associated lymphoid tissue: A natural product for constructing intestinal nodular lymphatic hyperplasia model. J. Adv. Res., 2023, 52, 135-150.
[http://dx.doi.org/10.1016/j.jare.2023.05.006] [PMID: 37230382]
[48]
Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B, 2021, 11(8), 2416-2448.
[http://dx.doi.org/10.1016/j.apsb.2021.04.001] [PMID: 34522593]
[49]
Nicze, M.; Borówka, M.; Dec, A.; Niemiec, A.; Bułdak, Ł.; Okopień, B. The current and promising oral delivery methods for protein- and peptide-based drugs. Int. J. Mol. Sci., 2024, 25(2), 815.
[http://dx.doi.org/10.3390/ijms25020815] [PMID: 38255888]
[50]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[51]
Han, Y.; Gao, Z.; Chen, L.; Kang, L.; Huang, W.; Jin, M.; Wang, Q.; Bae, Y.H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B., 2019, 9(5), 902-922.
[http://dx.doi.org/10.1016/j.apsb.2019.01.004] [PMID: 31649842]
[52]
Yoo, J.; Groer, M.; Dutra, S.; Sarkar, A.; McSkimming, D. Gut microbiota and immune system interactions. Microorganisms, 2020, 8(10), 1587.
[http://dx.doi.org/10.3390/microorganisms8101587] [PMID: 33076307]
[53]
Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res., 2017, 4(1), 14.
[http://dx.doi.org/10.1186/s40779-017-0122-9] [PMID: 28465831]
[54]
Wu, S.; Bekhit, A.E.D.A.; Wu, Q.; Chen, M.; Liao, X.; Wang, J.; Ding, Y. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci. Technol., 2021, 108, 164-176.
[http://dx.doi.org/10.1016/j.tifs.2020.12.019]
[55]
Sirisha, V.; D’Souza, J.S. Polysaccharide-based nanoparticles as drug delivery systems; Marine OMICS, 2016, pp. 663-702.
[56]
Salatin, S.; Jelvehgari, M. Natural polysaccharide based nanoparticles for drug/gene delivery. Ulum-i Daruyi, 2017, 23(2), 84-94.
[http://dx.doi.org/10.15171/PS.2017.14]
[57]
Qiu, L.; Shan, X.; Long, M.; Ahmed, K.S.; Zhao, L.; Mao, J.; Zhang, H.; Sun, C.; You, C.; Lv, G.; Chen, J. Elucidation of cellular uptake and intracellular trafficking of heparosan polysaccharide-based micelles in various cancer cells. Int. J. Biol. Macromol., 2019, 130, 755-764.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.133] [PMID: 30851320]
[58]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[59]
Khan, W.; Abtew, E.; Modani, S.; Domb, A.J. Polysaccharide based nanoparticles. Isr. J. Chem., 2018, 58(12), 1315-1329.
[http://dx.doi.org/10.1002/ijch.201800051]
[60]
Wu, J.; Zhu, Z.; Liu, W.; Zhang, Y.; Kang, Y.; Liu, J.; Hu, C.; Wang, R.; Zhang, M.; Chen, L.; Shao, L. How nanoparticles open the paracellular route of biological barriers: mechanisms, applications, and prospects. ACS Nano, 2022, 16(10), 15627-15652.
[http://dx.doi.org/10.1021/acsnano.2c05317] [PMID: 36121682]
[61]
Beloqui, A; Brayden, DJ; Artursson, P; Préat, V; des Rieux, A A human intestinal M-cell-like model for investigating particle, antigen and microorganism translocation. Nat. protocol., 2017, 12(7), 1387-1399.
[http://dx.doi.org/10.1038/nprot.2017.041 ]
[62]
Chenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F.H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res., 2019, 23(1), 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[63]
Guillén, G.M.C.; Montero, M.P. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll., 2021, 118, 106772.
[http://dx.doi.org/10.1016/j.foodhyd.2021.106772]
[64]
Lesniak, A.; Salvati, A.; Martinez, S.M.J.; Radomski, M.W.; Dawson, K.A.; Åberg, C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc., 2013, 135(4), 1438-1444.
[http://dx.doi.org/10.1021/ja309812z] [PMID: 23301582]
[65]
He, Y.; Cheng, M.; Yang, R.; Li, H.; Lu, Z.; Jin, Y.; Feng, J.; Tu, L. Research progress on the mechanism of nanoparticles crossing the intestinal epithelial cell membrane. Pharmaceutics, 2023, 15(7), 1816.
[http://dx.doi.org/10.3390/pharmaceutics15071816] [PMID: 37514003]
[66]
Zhang, Y.; Yang, W.X. Tight junction between endothelial cells: The interaction between nanoparticles and blood vessels. Beilstein J. Nanotechnol., 2016, 7, 675-684.
[http://dx.doi.org/10.3762/bjnano.7.60] [PMID: 27335757]
[67]
Manzanares, D.; Ceña, V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4), 371.
[http://dx.doi.org/10.3390/pharmaceutics12040371] [PMID: 32316537]
[68]
Patel, S.; Kim, J.; Herrera, M.; Mukherjee, A.; Kabanov, A.V.; Sahay, G. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev., 2019, 144, 90-111.
[http://dx.doi.org/10.1016/j.addr.2019.08.004] [PMID: 31419450]
[69]
Kuhn, D.A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Fink, P.A.; Rutishauser, R.B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol., 2014, 5(1), 1625-1636.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[70]
Martínez-Riaño, A.; Bovolenta, E.R.; Mendoza, P.; Oeste, C.L.; Bermejo, M.M.J.; Bovolenta, P.; Turner, M.; Martín, M.N.; Alarcón, B. Antigen phagocytosis by B cells is required for a potent humoral response. EMBO Rep., 2018, 19(9), e46016.
[http://dx.doi.org/10.15252/embr.201846016] [PMID: 29987136]
[71]
Chen, F.; Wang, G.; Griffin, J.I.; Brenneman, B.; Banda, N.K.; Holers, V.M.; Backos, D.S.; Wu, L.; Moghimi, S.M.; Simberg, D. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol., 2017, 12(4), 387-393.
[http://dx.doi.org/10.1038/nnano.2016.269] [PMID: 27992410]
[72]
Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10(4), 487-510.
[http://dx.doi.org/10.1016/j.nantod.2015.06.006] [PMID: 26640510]
[73]
Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[74]
Mettlen, M.; Chen, P.H.; Srinivasan, S.; Danuser, G.; Schmid, S.L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem., 2018, 87(1), 871-896.
[http://dx.doi.org/10.1146/annurev-biochem-062917-012644] [PMID: 29661000]
[75]
Sandvig, K.; Kavaliauskiene, S.; Skotland, T. Clathrin-independent endocytosis: An increasing degree of complexity. Histochem. Cell Biol., 2018, 150(2), 107-118.
[http://dx.doi.org/10.1007/s00418-018-1678-5] [PMID: 29774430]
[76]
Shafaq-Zadah, M.; Dransart, E.; Johannes, L. Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Curr. Opin. Cell Biol., 2020, 65, 112-121.
[http://dx.doi.org/10.1016/j.ceb.2020.05.009] [PMID: 32688213]
[77]
Cheng, X.; Chen, K.; Dong, B.; Yang, M.; Filbrun, S.L.; Myoung, Y.; Huang, T.X.; Gu, Y.; Wang, G.; Fang, N. Dynamin-dependent vesicle twist at the final stage of clathrin-mediated endocytosis. Nat. Cell Biol., 2021, 23(8), 859-869.
[http://dx.doi.org/10.1038/s41556-021-00713-x] [PMID: 34253896]
[78]
Wang, R.; Xu, X.; Hao, Z.; Zhang, S.; Wu, D.; Sun, H.; Mu, C.; Ren, H.; Wang, G. Poly-PR in C9ORF72-related amyotrophic lateral sclerosis/frontotemporal dementia causes neurotoxicity by clathrin-dependent endocytosis. Neurosci. Bull., 2019, 35(5), 889-900.
[http://dx.doi.org/10.1007/s12264-019-00395-4] [PMID: 31148094]
[79]
Detampel, P.; Tehranian, S.; Mukherjee, P.; Foret, M.; Fuerstenhaupt, T.; Darbandi, A.; Bogari, N.; Hlasny, M.; Jeje, A.; Olszewski, M.A.; Ganguly, A.; Amrein, M. Caveolin-initiated macropinocytosis is required for efficient silica nanoparticles’ transcytosis across the alveolar epithelial barrier. Sci. Rep., 2022, 12(1), 9474.
[http://dx.doi.org/10.1038/s41598-022-13388-7] [PMID: 35676405]
[80]
Wu, C.; Wu, Y.; Jin, Y.; Zhu, P.; Shi, W.; Li, J.; Wu, Q.; Zhang, Q.; Han, Y.; Zhao, X. Endosomal/lysosomal location of organically modified silica nanoparticles following caveolae-mediated endocytosis. RSC Advances, 2019, 9(24), 13855-13862.
[http://dx.doi.org/10.1039/C9RA00404A] [PMID: 35519602]
[81]
Mirza, I.; Haloul, M.; Hassan, C.; Masrur, M.; Mostafa, A.; Bianco, F.M.; Ali, M.M.; Minshall, R.D.; Mahmoud, A.M. Adiposomes from obese-diabetic individuals promote endothelial dysfunction and loss of surface caveolae. Cells, 2023, 12(20), 2453.
[http://dx.doi.org/10.3390/cells12202453] [PMID: 37887297]
[82]
Muriel, O.; Álvarez, S.M.; Strippoli, R.; Del Pozo, M.A. Role of the endocytosis of caveolae in intracellular signaling and metabolism. Prog. Mol. Subcell. Biol., 2018, 57, 203-234.
[http://dx.doi.org/10.1007/978-3-319-96704-2_8]
[83]
Costa Verdera, H.; Gitz-Francois, J.J.; Schiffelers, R.M.; Vader, P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release, 2017, 266, 100-108.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.019] [PMID: 28919558]
[84]
De Almeida, M.S.; Susnik, E.; Drasler, B.; Blanco, T.P.; Fink, P.A.; Rutishauser, R.B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev., 2021, 50(9), 5397-5434.
[http://dx.doi.org/10.1039/D0CS01127D] [PMID: 33666625]
[85]
Makvandi, P.; Chen, M.; Sartorius, R.; Zarrabi, A.; Ashrafizadeh, M.; Moghaddam, D.F.; Ma, J.; Mattoli, V.; Tay, F.R. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. Nano Today, 2021, 40, 101279.
[http://dx.doi.org/10.1016/j.nantod.2021.101279] [PMID: 34518771]
[86]
Kardani, K.; Milani, A.; H Shabani, S.; Bolhassani, A. Cell penetrating peptides: The potent multi-cargo intracellular carriers. Expert Opin. Drug Deliv., 2019, 16(11), 1227-1258.
[http://dx.doi.org/10.1080/17425247.2019.1676720] [PMID: 31583914]
[87]
Jiang, Y.; Tang, R.; Duncan, B.; Jiang, Z.; Yan, B.; Mout, R.; Rotello, V.M. Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. Angew. Chem. Int. Ed., 2015, 54(2), 506-510.
[http://dx.doi.org/10.1002/anie.201409161] [PMID: 25393227]
[88]
Jiang, J. Cell-penetrating peptide-mediated nanovaccine delivery. Curr. Drug Targets, 2021, 22(8), 896-912.
[http://dx.doi.org/10.2174/1389450122666210203193225] [PMID: 33538670]
[89]
Means, N.; Elechalawar, C.K.; Chen, W.R.; Bhattacharya, R.; Mukherjee, P. Revealing macropinocytosis using nanoparticles. Mol. Aspects Med., 2022, 83, 100993.
[http://dx.doi.org/10.1016/j.mam.2021.100993] [PMID: 34281720]
[90]
Kay, R.R. Macropinocytosis: Biology and mechanisms. Cells & Develo., 2021, 168, 203713.
[http://dx.doi.org/10.1016/j.cdev.2021.203713] [PMID: 34175511]
[91]
Salloum, G.; Bresnick, A.R.; Backer, J.M. Macropinocytosis: Mechanisms and regulation. Biochem. J., 2023, 480(5), 335-362.
[http://dx.doi.org/10.1042/BCJ20210584] [PMID: 36920093]
[92]
King, J.S.; Kay, R.R. The origins and evolution of macropinocytosis. Philos. Trans. R. Soc. B., 2019, 374(1765), 20180158.
[http://dx.doi.org/10.1098/rstb.2018.0158]
[93]
Li, Q.; Wang, F.; Yang, J.; Liu, D. Direct cytoplasm delivery of gold nanoparticles for real-time apoptosis detection. Nano Res., 2020, 13(3), 853-860.
[http://dx.doi.org/10.1007/s12274-020-2707-y]
[94]
He, W.; Xing, X.; Wang, X.; Wu, D.; Wu, W.; Guo, J.; Mitragotri, S. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals. Adv. Funct. Mater., 2020, 30(37), 1910566.
[http://dx.doi.org/10.1002/adfm.201910566]
[95]
Ruseska, I.; Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol., 2020, 11(1), 101-123.
[http://dx.doi.org/10.3762/bjnano.11.10] [PMID: 31976201]
[96]
Schlich, M.; Palomba, R.; Costabile, G.; Mizrahy, S.; Pannuzzo, M.; Peer, D.; Decuzzi, P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng. Transl. Med., 2021, 6(2), e10213.
[http://dx.doi.org/10.1002/btm2.10213] [PMID: 33786376]
[97]
Atukorale, P.U.; Guven, Z.P.; Bekdemir, A.; Carney, R.P.; Van Lehn, R.C.; Yun, D.S.; Silva, J.P.H.; Demurtas, D.; Yang, Y.S.; Katz, A.A.; Stellacci, F.; Irvine, D.J. Structure–property relationships of amphiphilic nanoparticles that penetrate or fuse lipid membranes. Bioconjug. Chem., 2018, 29(4), 1131-1140.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00777] [PMID: 29465986]
[98]
Kim, K.; Lee, W.G. Electroporation for nanomedicine: A review. J. Mater. Chem. B. Mater. Biol. Med., 2017, 5(15), 2726-2738.
[http://dx.doi.org/10.1039/C7TB00038C] [PMID: 32264158]
[99]
Tiefenboeck, P.; Kim, J.A.; Leroux, J.C. Intracellular delivery of colloids: Past and future contributions from microinjection. Adv. Drug Deliv. Rev., 2018, 132, 3-15.
[http://dx.doi.org/10.1016/j.addr.2018.06.013] [PMID: 29935217]
[100]
Szczęch, M.; Szczepanowicz, K. Polymeric core-shell nanoparticles prepared by spontaneous emulsification solvent evaporation and functionalized by the layer-by-layer method. Nanomaterials, 2020, 10(3), 496.
[http://dx.doi.org/10.3390/nano10030496] [PMID: 32164194]
[101]
Esmaili, Z.; Bayrami, S.; Dorkoosh, F.A.; Akbari Javar, H.; Seyedjafari, E.; Zargarian, S.S.; Haddadi-Asl, V. Development and characterization of electrosprayed nanoparticles for encapsulation of C urcumin. J. Biomed. Mater. Res. A, 2018, 106(1), 285-292.
[http://dx.doi.org/10.1002/jbm.a.36233] [PMID: 28891231]
[102]
Moeinzadeh, S.; Jabbari, E. Nanoparticles and their applications. In: Handbook of nanotechnology; Springer, 2017; pp. 335-361.
[http://dx.doi.org/10.1007/978-3-662-54357-3_11]
[103]
Lengert, E.V.; Koltsov, S.I.; Li, J.; Ermakov, A.V.; Parakhonskiy, B.V.; Skorb, E.V.; Skirtach, A.G. Nanoparticles in polyelectrolyte multilayer layer-by-layer (LbL) films and capsules—Key enabling components of hybrid coatings. Coatings, 2020, 10(11), 1131.
[http://dx.doi.org/10.3390/coatings10111131]
[104]
Padrela, L.; Rodrigues, M.A.; Duarte, A.; Dias, A.M.A.; Braga, M.E.M.; de Sousa, H.C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – A comprehensive review. Adv. Drug Deliv. Rev., 2018, 131, 22-78.
[http://dx.doi.org/10.1016/j.addr.2018.07.010] [PMID: 30026127]
[105]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[106]
Bolhassani, A.; Jafarzade, B.S.; Mardani, G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides, 2017, 87, 50-63.
[http://dx.doi.org/10.1016/j.peptides.2016.11.011] [PMID: 27887988]
[107]
Sgorla, D.; Lechanteur, A.; Almeida, A.; Sousa, F.; Melo, E.; Bunhak, É.; Mainardes, R.; Khalil, N.; Cavalcanti, O.; Sarmento, B. Development and characterization of lipid-polymeric nanoparticles for oral insulin delivery. Expert Opin. Drug Deliv., 2018, 15(3), 213-222.
[http://dx.doi.org/10.1080/17425247.2018.1420050] [PMID: 29257904]
[108]
Bashyal, S.; Seo, J.E.; Choi, Y.W.; Lee, S. Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J. Control. Release, 2021, 338, 644-661.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.060] [PMID: 34481926]
[109]
Song, F.; Hu, Y.; Wang, Y.; Smith, D.E.; Jiang, H. Functional characterization of human peptide/histidine transporter 1 in stably transfected MDCK cells. Mol. Pharm., 2018, 15(2), 385-393.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00728] [PMID: 29224352]
[110]
Reale, O.; Huguet, A.; Fessard, V. Co-culture model of Caco-2/HT29-MTX cells: A promising tool for investigation of phycotoxins toxicity on the intestinal barrier. Chemosphere, 2021, 273, 128497.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128497] [PMID: 34756374]
[111]
García-Rodríguez, A.; Vila, L.; Cortés, C.; Hernández, A.; Marcos, R. Exploring the usefulness of the complex in vitro intestinal epithelial model Caco-2/HT29/Raji-B in nanotoxicology. Food Chem. Toxicol., 2018, 113, 162-170.
[http://dx.doi.org/10.1016/j.fct.2018.01.042] [PMID: 29421767]
[112]
Akande, J.; Yeboah, K.G.; Addo, R.T.; Siddig, A.; Oettinger, C.W.; D’Souza, M.J. Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer’s patches. J. Microencapsul., 2010, 27(4), 325-336.
[http://dx.doi.org/10.3109/02652040903191834] [PMID: 20055749]
[113]
Gamboa, J.M.; Leong, K.W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliv. Rev., 2013, 65(6), 800-810.
[http://dx.doi.org/10.1016/j.addr.2013.01.003] [PMID: 23415952]
[114]
Muntoni, E.; Marini, E.; Ahmadi, N.; Milla, P.; Ghè, C.; Bargoni, A.; Capucchio, M.T.; Biasibetti, E.; Battaglia, L. Lipid nanoparticles as vehicles for oral delivery of insulin and insulin analogs: preliminary ex vivo and in vivo studies. Acta Diabetol., 2019, 56(12), 1283-1292.
[http://dx.doi.org/10.1007/s00592-019-01403-9] [PMID: 31407113]
[115]
Liu, L.; Yang, H.; Lou, Y.; Wu, J.Y.; Miao, J.; Lu, X.Y.; Gao, J.Q. Enhancement of oral bioavailability of salmon calcitonin through chitosan-modified, dual drug-loaded nanoparticles. Int. J. Pharm., 2019, 557, 170-177.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.053] [PMID: 30597264]
[116]
Hashem, L.; Swedrowska, M.; Vllasaliu, D. Intestinal uptake and transport of albumin nanoparticles: Potential for oral delivery. Nanomedicine, 2018, 13(11), 1255-1265.
[http://dx.doi.org/10.2217/nnm-2018-0029] [PMID: 29949465]
[117]
Dos Santos, M.A.; Grenha, A. Polysaccharide nanoparticles for protein and Peptide delivery: Exploring less-known materials. Adv. Protein Chem. Struct. Biol., 2015, 98, 223-261.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.003] [PMID: 25819281]
[118]
Ngwuluka, N.C. Responsive polysaccharides and polysaccharides-based nanoparticles for drug delivery. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Elsevier, 2018; Vol. 1, pp. 531-554.
[119]
Solomevich, S.O.; Oranges, C.M.; Kalbermatten, D.F.; Schwendeman, A.; Madduri, S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr. Polym., 2023, 315, 120934.
[http://dx.doi.org/10.1016/j.carbpol.2023.120934] [PMID: 37230605]
[120]
Abdelhamid, H.N. Polysaccharides for biomedical implants. In: Plant Polysaccharides as Pharmaceutical Excipients; Elsevier, 2023; pp. 533-544.
[http://dx.doi.org/10.1016/B978-0-323-90780-4.00015-2]
[121]
Guo, MQ; Hu, X; Wang, C; Ai, L Polysaccharides: Structure and solubility. Solubil. Polysacchar., 2017, 2, 8-21.
[http://dx.doi.org/10.5772/intechopen.71570]
[122]
Yuan, H.; Guo, C.; Liu, L.; Zhao, L.; Zhang, Y.; Yin, T.; He, H.; Gou, J.; Pan, B.; Tang, X. Progress and prospects of polysaccharide-based nanocarriers for oral delivery of proteins/peptides. Carbohydr. Polym., 2023, 312, 120838.
[http://dx.doi.org/10.1016/j.carbpol.2023.120838] [PMID: 37059563]
[123]
Soudry-Kochavi, L.; Naraykin, N.; Nassar, T.; Benita, S. Improved oral absorption of exenatide using an original nanoencapsulation and microencapsulation approach. J. Control. Release, 2015, 217, 202-210.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.012] [PMID: 26381898]
[124]
Raikwar, S.; Bidla, P.D.; Jain, A.; Jain, S.K. Plant polysaccharides-based nanoparticles for drug delivery. In: Plant Polysaccharides as Pharmaceutical Excipients; Elsevier, 2023; pp. 195-214.
[http://dx.doi.org/10.1016/B978-0-323-90780-4.00009-7]
[125]
George, A.; Shrivastav, P.S. Fucoidan, a brown seaweed polysaccharide in nanodrug delivery. Drug Deliv. Transl. Res., 2023, 13(10), 2427-2446.
[http://dx.doi.org/10.1007/s13346-023-01329-4] [PMID: 37010790]
[126]
Pacheco, D.; Cotas, J.; Leandro, A.; García-Poza, S.; Gonçalves, A.M.M.; Pereira, L. Brown seaweed polysaccharides: A roadmap as biomolecules. In: Seaweed biotechnology; Apple Academic Press, 2022; pp. 97-152.
[127]
Cardoso, M.; Costa, R.; Mano, J. Marine origin polysaccharides in drug delivery systems. Mar. Drugs, 2016, 14(2), 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[128]
Longo, R.; Gorrasi, G.; Guadagno, L. Electromagnetically stimuli-responsive nanoparticles-based systems for biomedical applications: Recent advances and future perspectives. Nanomaterials, 2021, 11(4), 848.
[http://dx.doi.org/10.3390/nano11040848] [PMID: 33810343]
[129]
Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-induced gelation of alginate: Mechanisms and applications. Int. J. Biol. Macromol., 2021, 177, 578-588.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.086] [PMID: 33617905]
[130]
Yang, J.; Han, S.; Zheng, H.; Dong, H.; Liu, J. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr. Polym., 2015, 123, 53-66.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.029] [PMID: 25843834]
[131]
Mukhopadhyay, P.; Chakraborty, S.; Bhattacharya, S.; Mishra, R.; Kundu, P.P. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int. J. Biol. Macromol., 2015, 72, 640-648.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.040] [PMID: 25239194]
[132]
Mawad, A.; Helmy, Y.A.; Shalkami, A.G.; Kathayat, D.; Rajashekara, G. E. coli nissle microencapsulation in alginate- chitosan nanoparticles and its effect on campylobacter jejuni in vitro. Appl. Microbiol. Biotechnol., 2018, 102(24), 10675-10690.
[http://dx.doi.org/10.1007/s00253-018-9417-3] [PMID: 30302522]
[133]
Reis, CP; Neufeld, R; Ribeiro, AJ; Veiga, F Design of insulin-loaded alginate nanoparticles: Influence of the calcium ion on polymer gel matrix properties. CI&CEQ., 2006, 12(1), 47-52.
[134]
Venkatesan, J.; Anil, S.; Kim, S.K.; Shim, M. Seaweed polysaccharide-based nanoparticles: Preparation and applications for drug delivery. Polymers, 2016, 8(2), 30.
[http://dx.doi.org/10.3390/polym8020030] [PMID: 30979124]
[135]
Sarmento, B.; Ferreira, D.; Veiga, F.; Ribeiro, A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr. Polym., 2006, 66(1), 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2006.02.008]
[136]
Severino, P.; da Silva, C.F.; Andrade, L.N.; de Oliveira, L.D.; Campos, J.; Souto, E.B. Alginate nanoparticles for drug delivery and targeting. Curr. Pharm. Des., 2019, 25(11), 1312-1334.
[http://dx.doi.org/10.2174/1381612825666190425163424] [PMID: 31465282]
[137]
Abourehab, M.A.S.; Pramanik, S.; Abdelgawad, M.A.; Abualsoud, B.M.; Kadi, A.; Ansari, M.J.; Deepak, A. Recent advances of chitosan formulations in biomedical applications. Int. J. Mol. Sci., 2022, 23(18), 10975.
[http://dx.doi.org/10.3390/ijms231810975] [PMID: 36142887]
[138]
Fan, Z.; Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Chen, X.; Li, K.; Li, P. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr. Polym., 2018, 190, 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.056] [PMID: 29628225]
[139]
Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[140]
Mikušová, V.; Mikuš, P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci., 2021, 22(17), 9652.
[http://dx.doi.org/10.3390/ijms22179652] [PMID: 34502560]
[141]
Peptu, C; Humelnicu, AC; Rotaru, R; Fortuna, ME; Patras, X; Teodorescu, M Chitosan-based drug delivery systems. In: Chitin and Chitosan: Properties and Applications; Wiley, 2019; pp. 259-289.
[http://dx.doi.org/10.1002/9781119450467.ch11]
[142]
Brunner, J.; Ragupathy, S.; Borchard, G. Target specific tight junction modulators. Adv. Drug Deliv. Rev., 2021, 171, 266-288.
[http://dx.doi.org/10.1016/j.addr.2021.02.008] [PMID: 33617902]
[143]
Huh, M.S.; Lee, E.J.; Koo, H.; Yhee, J.Y.; Oh, K.S.; Son, S.; Lee, S.; Kim, S.H.; Kwon, I.C.; Kim, K. Polysaccharide-based nanoparticles for gene delivery. Top. Curr. Chem., 2017, 375(2), 31.
[http://dx.doi.org/10.1007/s41061-017-0114-y] [PMID: 28251564]
[144]
Huang, G.; Huang, H. Application of dextran as nanoscale drug carriers. Nanomedicine, 2018, 13(24), 3149-3158.
[http://dx.doi.org/10.2217/nnm-2018-0331] [PMID: 30516091]
[145]
Vitulo, M.; Gnodi, E.; Meneveri, R.; Barisani, D. Interactions between nanoparticles and intestine. Int. J. Mol. Sci., 2022, 23(8), 4339.
[http://dx.doi.org/10.3390/ijms23084339] [PMID: 35457155]
[146]
Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed. Pharmacother., 2018, 107, 96-108.
[http://dx.doi.org/10.1016/j.biopha.2018.07.136] [PMID: 30086465]
[147]
Zhong, Y.; Qu, J.Z.; Liu, X.; Ding, L.; Liu, Y.; Bertoft, E.; Petersen, B.L.; Hamaker, B.R.; Hebelstrup, K.H.; Blennow, A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydr. Polym., 2022, 287, 119327.
[http://dx.doi.org/10.1016/j.carbpol.2022.119327] [PMID: 35422293]
[148]
Moura, L.I.F.; Dias, A.M.A.; Carvalho, E.; de Sousa, H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomater., 2013, 9(7), 7093-7114.
[http://dx.doi.org/10.1016/j.actbio.2013.03.033] [PMID: 23542233]
[149]
Müller, A.; Ni, Z.; Hessler, N.; Wesarg, F.; Müller, F.A.; Kralisch, D.; Fischer, D. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J. Pharm. Sci., 2013, 102(2), 579-592.
[http://dx.doi.org/10.1002/jps.23385] [PMID: 23192666]
[150]
Ropartz, D; Ralet, M-C Pectin structure. In: Pectin: Technological and Physiological Properties; Kontogiorgos, V., Ed.; Springer, 2020.
[http://dx.doi.org/10.1007/978-3-030-53421-9_2]
[151]
Bulmer, C.; Margaritis, A.; Xenocostas, A. Encapsulation and controlled release of recombinant human erythropoietin from chitosan-carrageenan nanoparticles. Curr. Drug Deliv., 2012, 9(5), 527-537.
[http://dx.doi.org/10.2174/156720112802650680] [PMID: 22812393]
[152]
Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers, 2018, 10(7), 762.
[http://dx.doi.org/10.3390/polym10070762] [PMID: 30960687]
[153]
Elshahed, M.S.; Miron, A.; Aprotosoaie, A.C.; Farag, M.A. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr. Polym., 2021, 255, 117388.
[http://dx.doi.org/10.1016/j.carbpol.2020.117388] [PMID: 33436217]
[154]
Pistone, S.; Goycoolea, F.M.; Young, A.; Smistad, G.; Hiorth, M. Formulation of polysaccharide-based nanoparticles for local administration into the oral cavity. Eur. J. Pharm. Sci., 2017, 96, 381-389.
[http://dx.doi.org/10.1016/j.ejps.2016.10.012] [PMID: 27721043]
[155]
Li, T.; Shi, X.W.; Du, Y.M.; Tang, Y.F. Quaternized chitosan/alginate nanoparticles for protein delivery. J. Biomed. Mater. Res. A, 2007, 83A(2), 383-390.
[http://dx.doi.org/10.1002/jbm.a.31322] [PMID: 17450586]
[156]
Jain, A.K.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur. J. Pharm. Biopharm., 2008, 69(2), 426-435.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.001] [PMID: 18295464]
[157]
Li, H.; Zhang, Z.; Bao, X.; Xu, G.; Yao, P. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids Surf. B. Biointerfaces, 2018, 170, 136-143.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.063] [PMID: 29894834]
[158]
Fan, Y.; Yi, J.; Zhang, Y.; Yokoyama, W. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem., 2018, 239, 1210-1218.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.075] [PMID: 28873542]
[159]
Du, Z.; Liu, J.; Zhang, T.; Yu, Y.; Zhang, Y.; Zhai, J.; Huang, H.; Wei, S.; Ding, L.; Liu, B. A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Food Chem., 2019, 286, 530-536.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.012] [PMID: 30827643]
[160]
Asha, A.; MALAR, G.S.P.L. Preparation and applications of drug loaded albumin/pectin cross linking nanoparticles. Period. Mineral., 91(1), 493-504.
[161]
Raei, M.; Shahidi, F.; Farhoodi, M.; Jafari, S.M.; Rafe, A. Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. Int. J. Biol. Macromol., 2017, 105(Pt 1), 281-291.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.037] [PMID: 28693995]
[162]
Li, M.; Sun, Y.; Ma, C.; Hua, Y.; Zhang, L.; Shen, J. Design and investigation of penetrating mechanism of octaarginine-modified alginate nanoparticles for improving intestinal insulin delivery. J. Pharm. Sci., 2021, 110(1), 268-279.
[http://dx.doi.org/10.1016/j.xphs.2020.07.004] [PMID: 32663595]
[163]
Yadav, P.; Yadav, A.B. Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. Future J. Pharm. Sci, 2021, 7(1), 200.
[http://dx.doi.org/10.1186/s43094-021-00345-w]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy