Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Prokaryotic Expression and Affinity Purification of DDX3 Protein

Author(s): Lan Huang, Yue Liang, Huijin Hou, Min Tang, Xinpeng Liu, Yan-ni Ma and Shufang Liang*

Volume 31, Issue 3, 2024

Published on: 01 February, 2024

Page: [236 - 246] Pages: 11

DOI: 10.2174/0109298665285625231222075700

Price: $65

Open Access Journals Promotions 2
Abstract

Background: DDX3 is a protein with RNA helicase activity that is involved in a variety of biological processes, and it is an important protein target for the development of broad-spectrum antiviral drugs, multiple cancers and chronic inflammation.

Objectives: The objective of this study is to establish a simple and efficient method to express and purify DDX3 protein in E. coli, and the recombinant DDX3 should maintain helicase activity for further tailor-made screening and biochemical function validation.

Methods: DDX3 cDNA was simultaneously cloned into pET28a-TEV and pNIC28-Bsa4 vectors and transfected into E. coli BL21 (DE3) to compare one suitable prokaryotic expression system. The 6×His-tag was fused to the C-terminus of DDX3 to form a His-tagging DDX3 fusion protein for subsequent purification. Protein dissolution buffer and purification washing conditions were optimized. The His-tagged DDX3 protein would bind with the Ni-NTA agarose by chelation and collected by affinity purification. The 6×His-tag fused with N-terminal DDX3 was eliminated from DDX3 by TEV digestion. A fine purification of DDX3 was performed by gel filtration chromatography.

Results: The recombinant plasmid pNIC28-DDX3, which contained a 6×His-tag and one TEV cleavage site at the N terminal of DDX3 sequence, was constructed for DDX3 prokaryotic expression and affinity purification based on considering the good solubility of the recombinant His-tagging DDX3, especially under 0.5 mM IPTG incubation at 18°C for 18 h to obtain more soluble DDX3 protein. Finally, the exogenous recombinant DDX3 protein was obtained with more than 95% purity by affinity purification on the Ni-NTA column and removal of miscellaneous through gel filtration chromatography. The finely-purified DDX3 still retained its ATPase activity.

Conclusion: A prokaryotic expression pNIC28-DDX3 system is constructed for efficient expression and affinity purification of bioactive DDX3 protein in E. coli BL21(DE3), which provides an important high-throughput screening and validation of drugs targeting DDX3.

Keywords: DDX3, Prokaryotic expression, affinity purification, ATPase activity, His-tag, Ni-NTA column.

Graphical Abstract
[1]
Linder, P.; Jankowsky, E. From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol., 2011, 12(8), 505-516.
[http://dx.doi.org/10.1038/nrm3154] [PMID: 21779027]
[2]
Soto-Rifo, R.; Ohlmann, T. The role of the DEAD-box RNA helicase DDX3 in mRNA metabolism. Wiley Interdiscip. Rev. RNA, 2013, 4(4), 369-385.
[http://dx.doi.org/10.1002/wrna.1165] [PMID: 23606618]
[3]
Ryan, C.S.; Schröder, M. The human DEAD-box helicase DDX3X as a regulator of mRNA translation. Front. Cell Dev. Biol., 2022, 10, 1033684.
[http://dx.doi.org/10.3389/fcell.2022.1033684] [PMID: 36393867]
[4]
Fröhlich, A.; Rojas-Araya, B.; Pereira-Montecinos, C.; Dellarossa, A.; Toro-Ascuy, D.; Prades-Pérez, Y.; García-de-Gracia, F.; Garcés-Alday, A.; Rubilar, P.S.; Valiente-Echeverría, F.; Ohlmann, T.; Soto-Rifo, R. DEAD-box RNA helicase DDX3 connects CRM1-dependent nuclear export and translation of the HIV-1 unspliced mRNA through its N-terminal domain. Biochim. Biophys. Acta. Gene Regul. Mech., 2016, 1859(5), 719-730.
[http://dx.doi.org/10.1016/j.bbagrm.2016.03.009] [PMID: 27012366]
[5]
Mo, J.; Liang, H.; Su, C.; Li, P.; Chen, J.; Zhang, B. DDX3X: Structure, physiologic functions and cancer. Mol. Cancer, 2021, 20(1), 38.
[http://dx.doi.org/10.1186/s12943-021-01325-7] [PMID: 33627125]
[6]
Lee, C.S.; Dias, A.P.; Jedrychowski, M.; Patel, A.H.; Hsu, J.L.; Reed, R. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res., 2008, 36(14), 4708-4718.
[http://dx.doi.org/10.1093/nar/gkn454] [PMID: 18628297]
[7]
Shih, J-W.; Tsai, T-Y.; Chao, C-H.; Wu Lee, Y-H. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene, 2008, 27(5), 700-714.
[http://dx.doi.org/10.1038/sj.onc.1210687] [PMID: 17667941]
[8]
Song, H.; Ji, X. The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X. Nat. Commun., 2019, 10(1), 3085.
[http://dx.doi.org/10.1038/s41467-019-11083-2] [PMID: 31300642]
[9]
Chao, C.H.; Chen, C.M.; Cheng, P.L.; Shih, J.W.; Tsou, A.P.; Wu Lee, Y-H. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res., 2006, 66(13), 6579-6588.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2415] [PMID: 16818630]
[10]
He, Y.; Zhang, D.; Yang, Y.; Wang, X.; Zhao, X.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. A double-edged function of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review). Oncol. Rep., 2018, 39(3), 883-892.
[http://dx.doi.org/10.3892/or.2018.6203] [PMID: 29328432]
[11]
Samir, P.; Kesavardhana, S.; Patmore, D.M.; Gingras, S.; Malireddi, R.K.S.; Karki, R.; Guy, C.S.; Briard, B.; Place, D.E.; Bhattacharya, A.; Sharma, B.R.; Nourse, A.; King, S.V.; Pitre, A.; Burton, A.R.; Pelletier, S.; Gilbertson, R.J.; Kanneganti, T.D. DDX3X acts as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. Nature, 2019, 573(7775), 590-594.
[http://dx.doi.org/10.1038/s41586-019-1551-2] [PMID: 31511697]
[12]
Lennox, A.L.; Hoye, M.L.; Jiang, R.; Johnson-Kerner, B.L.; Suit, L.A.; Venkataramanan, S.; Sheehan, C.J.; Alsina, F.C.; Fregeau, B.; Aldinger, K.A.; Moey, C.; Lobach, I.; Afenjar, A.; Babovic-Vuksanovic, D.; Bézieau, S.; Blackburn, P.R.; Bunt, J.; Burglen, L.; Campeau, P.M.; Charles, P.; Chung, B.H.Y.; Cogné, B.; Curry, C.; D’Agostino, M.D.; Di Donato, N.; Faivre, L.; Héron, D.; Innes, A.M.; Isidor, B.; Keren, B.; Kimball, A.; Klee, E.W.; Kuentz, P.; Küry, S.; Martin-Coignard, D.; Mirzaa, G.; Mignot, C.; Miyake, N.; Matsumoto, N.; Fujita, A.; Nava, C.; Nizon, M.; Rodriguez, D.; Blok, L.S.; Thauvin-Robinet, C.; Thevenon, J.; Vincent, M.; Ziegler, A.; Dobyns, W.; Richards, L.J.; Barkovich, A.J.; Floor, S.N.; Silver, D.L.; Sherr, E.H. Pathogenic DDX3X mutations impair RNA metabolism and neurogenesis during fetal cortical development. Neuron, 2020, 106(3), 404-420.e8.
[http://dx.doi.org/10.1016/j.neuron.2020.01.042] [PMID: 32135084]
[13]
Rao, S.; Lungu, C.; Crespo, R.; Steijaert, T.H.; Gorska, A.; Palstra, R.J.; Prins, H.A.B.; van Ijcken, W.; Mueller, Y.M.; van Kampen, J.J.A.; Verbon, A.; Katsikis, P.D.; Boucher, C.A.B.; Rokx, C.; Gruters, R.A.; Mahmoudi, T. Selective cell death in HIV-1-infected cells by DDX3 inhibitors leads to depletion of the inducible reservoir. Nat. Commun., 2021, 12(1), 2475.
[http://dx.doi.org/10.1038/s41467-021-22608-z] [PMID: 33931637]
[14]
Ku, Y.C.; Lai, M.H.; Lo, C.C.; Cheng, Y.C.; Qiu, J.T.; Tarn, W.Y.; Lai, M.C. DDX3 participates in translational control of inflammation induced by infections and injuries. Mol. Cell. Biol., 2018, 39(1), e00285-e18.
[PMID: 30373933]
[15]
Choi, H.; Kwon, J.; Cho, M.S.; Sun, Y.; Zheng, X.; Wang, J.; Bouker, K.B.; Casey, J.L.; Atkins, M.B.; Toretsky, J.; Han, C. Targeting DDX3X triggers antitumor immunity via a dsRNA-mediated tumor-intrinsic type I interferon response. Cancer Res., 2021, 81(13), 3607-3620.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3790] [PMID: 33941613]
[16]
Chang, P-C.; Chi, C-W.; Chau, G-Y.; Li, F-Y.; Tsai, Y-H.; Wu, J-C.; Wu Lee, Y-H. DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene, 2006, 25(14), 1991-2003.
[http://dx.doi.org/10.1038/sj.onc.1209239] [PMID: 16301996]
[17]
Sun, M.; Song, L.; Zhou, T.; Gillespie, G.Y.; Jope, R.S. The role of DDX3 in regulating Snail. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(3), 438-447.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.003] [PMID: 21237216]
[18]
Hueng, D.Y.; Tsai, W.C.; Chiou, H.Y.; Feng, S.W.; Lin, C.; Li, Y.F.; Huang, L.C.; Lin, M.H. DDX3X biomarker correlates with poor survival in human gliomas. Int. J. Mol. Sci., 2015, 16(12), 15578-15591.
[http://dx.doi.org/10.3390/ijms160715578] [PMID: 26184164]
[19]
Tsai, W.C.; Hueng, D.Y.; Lin, C.R.; Yang, T.C.K.; Nieh, S.; Gao, H.W. Applying DDX3X biomarker to discriminate atypical from benign meningiomas in tissue microarray. Appl. Immunohistochem. Mol. Morphol., 2018, 26(4), 263-267.
[http://dx.doi.org/10.1097/PAI.0000000000000422] [PMID: 29621097]
[20]
Wilky, B.A.; Kim, C.; McCarty, G.; Montgomery, E.A.; Kammers, K.; DeVine, L.R.; Cole, R.N.; Raman, V.; Loeb, D.M. RNA helicase DDX3: A novel therapeutic target in ewing sarcoma. Oncogene, 2016, 35(20), 2574-2583.
[http://dx.doi.org/10.1038/onc.2015.336] [PMID: 26364611]
[21]
Wang, L.; Lawrence, M.S.; Wan, Y.; Stojanov, P.; Sougnez, C.; Stevenson, K.; Werner, L.; Sivachenko, A.; DeLuca, D.S.; Zhang, L.; Zhang, W.; Vartanov, A.R.; Fernandes, S.M.; Goldstein, N.R.; Folco, E.G.; Cibulskis, K.; Tesar, B.; Sievers, Q.L.; Shefler, E.; Gabriel, S.; Hacohen, N.; Reed, R.; Meyerson, M.; Golub, T.R.; Lander, E.S.; Neuberg, D.; Brown, J.R.; Getz, G.; Wu, C.J. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med., 2011, 365(26), 2497-2506.
[http://dx.doi.org/10.1056/NEJMoa1109016] [PMID: 22150006]
[22]
Ojha, J.; Secreto, C.R.; Rabe, K.G.; Van Dyke, D.L.; Kortum, K.M.; Slager, S.L.; Shanafelt, T.D.; Fonseca, R.; Kay, N.E.; Braggio, E. Identification of recurrent truncated DDX 3X mutations in chronic lymphocytic leukaemia. Br. J. Haematol., 2015, 169(3), 445-448.
[http://dx.doi.org/10.1111/bjh.13211] [PMID: 25382417]
[23]
Miao, X.; Yang, Z.L.; Xiong, L.; Zou, Q.; Yuan, Y.; Li, J.; Liang, L.; Chen, M.; Chen, S. Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int. J. Clin. Exp. Pathol., 2013, 6(2), 179-190.
[PMID: 23330003]
[24]
Liang, S.; Yang, Z.; Li, D.; Miao, X.; Yang, L.; Zou, Q.; Yuan, Y. The clinical and pathological significance of Nectin-2 and DDX3 expression in pancreatic ductal adenocarcinomas. Dis. Markers, 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/379568] [PMID: 26294807]
[25]
Lai, M.C.; Lee, Y.H.W.; Tarn, W.Y. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell, 2008, 19(9), 3847-3858.
[http://dx.doi.org/10.1091/mbc.e07-12-1264] [PMID: 18596238]
[26]
Björk, P.; Wieslander, L. Integration of mRNP formation and export. Cell. Mol. Life Sci., 2017, 74(16), 2875-2897.
[http://dx.doi.org/10.1007/s00018-017-2503-3] [PMID: 28314893]
[27]
Clouse, K.N.; Luo, M.; Zhou, Z.; Reed, R. A Ran-independent pathway for export of spliced mRNA. Nat. Cell Biol., 2001, 3(1), 97-99.
[http://dx.doi.org/10.1038/35050625] [PMID: 11146633]
[28]
Gales, J.P.; Kubina, J.; Geldreich, A.; Dimitrova, M. Strength in diversity: Nuclear export of viral RNAs. Viruses, 2020, 12(9), 1014.
[http://dx.doi.org/10.3390/v12091014] [PMID: 32932882]
[29]
Xie, M.; Vesuna, F.; Tantravedi, S.; Bol, G.M.; Heerma van Voss, M.R.; Nugent, K.; Malek, R.; Gabrielson, K.; van Diest, P.J.; Tran, P.T.; Raman, V. RK-33 radiosensitizes prostate cancer cells by blocking the RNA helicase DDX3. Cancer Res., 2016, 76(21), 6340-6350.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0440] [PMID: 27634756]
[30]
Kwong, A.D.; Rao, B.G.; Jeang, K.T. Viral and cellular RNA helicases as antiviral targets. Nat. Rev. Drug Discov., 2005, 4(10), 845-853.
[http://dx.doi.org/10.1038/nrd1853] [PMID: 16184083]
[31]
Bol, G.M.; Vesuna, F.; Xie, M.; Zeng, J.; Aziz, K.; Gandhi, N.; Levine, A.; Irving, A.; Korz, D.; Tantravedi, S.; Heerma van Voss, M.R.; Gabrielson, K.; Bordt, E.A.; Polster, B.M.; Cope, L.; van der Groep, P.; Kondaskar, A.; Rudek, M.A.; Hosmane, R.S.; van der Wall, E.; van Diest, P.J.; Tran, P.T.; Raman, V. Targeting DDX 3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol. Med., 2015, 7(5), 648-669.
[http://dx.doi.org/10.15252/emmm.201404368] [PMID: 25820276]
[32]
Maga, G.; Falchi, F.; Radi, M.; Botta, L.; Casaluce, G.; Bernardini, M.; Irannejad, H.; Manetti, F.; Garbelli, A.; Samuele, A.; Zanoli, S.; Esté, J.A.; Gonzalez, E.; Zucca, E.; Paolucci, S.; Baldanti, F.; De Rijck, J.; Debyser, Z.; Botta, M. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: Synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. ChemMedChem, 2011, 6(8), 1371-1389.
[http://dx.doi.org/10.1002/cmdc.201100166] [PMID: 21698775]
[33]
Samal, S.K.; Routray, S.; Veeramachaneni, G.K.; Dash, R.; Botlagunta, M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci. Rep., 2015, 5(1), 9982.
[http://dx.doi.org/10.1038/srep09982] [PMID: 25918862]
[34]
Nakao, S.; Nogami, M.; Iwatani, M.; Imaeda, T.; Ito, M.; Tanaka, T.; Tawada, M.; Endo, S.; Cary, D.R.; Ohori, M.; Imaeda, Y.; Kawamoto, T.; Aparicio, S.; Nakanishi, A.; Araki, S. Identification of a selective DDX3X inhibitor with newly developed quantitative high-throughput RNA helicase assays. Biochem. Biophys. Res. Commun., 2020, 523(3), 795-801.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.094] [PMID: 31954521]
[35]
Yedavalli, V.S.R.K.; Zhang, N.; Cai, H.; Zhang, P.; Starost, M.F.; Hosmane, R.S.; Jeang, K.T. Ring expanded nucleoside analogues inhibit RNA helicase and intracellular human immunodeficiency virus type 1 replication. J. Med. Chem., 2008, 51(16), 5043-5051.
[http://dx.doi.org/10.1021/jm800332m] [PMID: 18680273]
[36]
Brai, A.; Boccuto, A.; Monti, M.; Marchi, S.; Vicenti, I.; Saladini, F.; Trivisani, C.I.; Pollutri, A.; Trombetta, C.M.; Montomoli, E.; Riva, V.; Garbelli, A.; Nola, E.M.; Zazzi, M.; Maga, G.; Dreassi, E.; Botta, M. Exploring the implication of DDX3X in DENV infection: Discovery of the first-in-class DDX3X fluorescent inhibitor. ACS Med. Chem. Lett., 2020, 11(5), 956-962.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00681] [PMID: 32435411]
[37]
Brai, A.; Martelli, F.; Riva, V.; Garbelli, A.; Fazi, R.; Zamperini, C.; Pollutri, A.; Falsitta, L.; Ronzini, S.; Maccari, L.; Maga, G.; Giannecchini, S.; Botta, M. DDX3X helicase inhibitors as a new strategy to fight the west nile virus infection. J. Med. Chem., 2019, 62(5), 2333-2347.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01403] [PMID: 30721061]
[38]
Brai, A.; Riva, V.; Saladini, F.; Zamperini, C.; Trivisani, C.I.; Garbelli, A.; Pennisi, C.; Giannini, A.; Boccuto, A.; Bugli, F.; Martini, M.; Sanguinetti, M.; Zazzi, M.; Dreassi, E.; Botta, M.; Maga, G. DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. Eur. J. Med. Chem., 2020, 200, 112319.
[http://dx.doi.org/10.1016/j.ejmech.2020.112319] [PMID: 32446036]
[39]
Yang, S.N.Y.; Atkinson, S.C.; Audsley, M.D.; Heaton, S.M.; Jans, D.A.; Borg, N.A. RK-33 is a broad-spectrum antiviral agent that targets DEAD-Box RNA helicase DDX3X. Cells, 2020, 9(1), 170.
[http://dx.doi.org/10.3390/cells9010170] [PMID: 31936642]
[40]
Valiente-Echeverría, F.; Hermoso, M.A.; Soto-Rifo, R. RNA helicase DDX3: At the crossroad of viral replication and antiviral immunity. Rev. Med. Virol., 2015, 25(5), 286-299.
[http://dx.doi.org/10.1002/rmv.1845] [PMID: 26174373]
[41]
Schröder, M. Viruses and the human DEAD-box helicase DDX3: Inhibition or exploitation? Biochem. Soc. Trans., 2011, 39(2), 679-683.
[http://dx.doi.org/10.1042/BST0390679] [PMID: 21428961]
[42]
Quaranta, P.; Lottini, G.; Chesi, G.; Contrafatto, F.; Russotto, R.; Macera, L.; Lai, M.; Spezia, P.G.; Brai, A.; Botta, M.; Freer, G.; Pistello, M. DDX3 inhibitors show antiviral activity against positive-sense single-stranded RNA viruses but not against negative-sense single-stranded RNA viruses: The coxsackie B model. Antiviral Res., 2020, 178, 104750.
[http://dx.doi.org/10.1016/j.antiviral.2020.104750] [PMID: 32205137]
[43]
Kukhanova, M.K.; Karpenko, I.L.; Ivanov, A.V. DEAD-box RNA helicase DDX3: Functional properties and development of DDX3 inhibitors as antiviral and anticancer drugs. Molecules, 2020, 25(4), 1015.
[http://dx.doi.org/10.3390/molecules25041015] [PMID: 32102413]
[44]
Brai, A.; Ronzini, S.; Riva, V.; Botta, L.; Zamperini, C.; Borgini, M.; Trivisani, C.I.; Garbelli, A.; Pennisi, C.; Boccuto, A.; Saladini, F.; Zazzi, M.; Maga, G.; Botta, M. Synthesis and antiviral activity of novel 1,3,4-thiadiazole inhibitors of DDX3X. Molecules, 2019, 24(21), 3988.
[http://dx.doi.org/10.3390/molecules24213988] [PMID: 31690062]
[45]
Brai, A.; Fazi, R.; Tintori, C.; Zamperini, C.; Bugli, F.; Sanguinetti, M.; Stigliano, E.; Esté, J.; Badia, R.; Franco, S.; Martinez, M.A.; Martinez, J.P.; Meyerhans, A.; Saladini, F.; Zazzi, M.; Garbelli, A.; Maga, G.; Botta, M. Human DDX3 protein is a valuable target to develop broad spectrum antiviral agents. Proc. Natl. Acad. Sci., 2016, 113(19), 5388-5393.
[http://dx.doi.org/10.1073/pnas.1522987113] [PMID: 27118832]
[46]
Vesuna, F.; Akhrymuk, I.; Smith, A.; Winnard, P.T., Jr; Lin, S.C.; Panny, L.; Scharpf, R.; Kehn-Hall, K.; Raman, V. RK-33, a small molecule inhibitor of host RNA helicase DDX3, suppresses multiple variants of SARS-CoV-2. Front. Microbiol., 2022, 13, 959577.
[http://dx.doi.org/10.3389/fmicb.2022.959577] [PMID: 36090095]
[47]
Tantravedi, S.; Vesuna, F.; Winnard, P.T., Jr; Heerma Van Voss, M.R.; Van Diest, P.J.; Raman, V. Role of DDX3 in the pathogenesis of inflammatory bowel disease. Oncotarget, 2017, 8(70), 115280-115289.
[http://dx.doi.org/10.18632/oncotarget.23323] [PMID: 29383159]
[48]
Fu, R.; Yang, P.; Li, Z.; Liu, W.; Amin, S.; Li, Z. Avenanthramide A triggers potent ROS-mediated anti-tumor effects in colorectal cancer by directly targeting DDX3. Cell Death Dis., 2019, 10(8), 593.
[http://dx.doi.org/10.1038/s41419-019-1825-5] [PMID: 31391454]
[49]
Zhang, D.; Wang, X.; Ye, Y.; He, Y.; He, F.; Tian, Y.; Luo, Y.; Liang, S. Label-free proteomic dissection on dptP -deletion mutant uncovers dptP involvement in strain growth and daptomycin tolerance of Streptomyces roseosporus. Microb. Biotechnol., 2021, 14(2), 708-725.
[http://dx.doi.org/10.1111/1751-7915.13736] [PMID: 33369164]
[50]
Högbom, M.; Collins, R.; van den Berg, S.; Jenvert, R.M.; Karlberg, T.; Kotenyova, T.; Flores, A.; Hedestam, G.B.K.; Schiavone, L.H. Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J. Mol. Biol., 2007, 372(1), 150-159.
[http://dx.doi.org/10.1016/j.jmb.2007.06.050] [PMID: 17631897]
[51]
Sharma, D.; Jankowsky, E. The Ded1/DDX3 subfamily of DEAD-box RNA helicases. Crit. Rev. Biochem. Mol. Biol., 2014, 49(4), 343-360.
[http://dx.doi.org/10.3109/10409238.2014.931339] [PMID: 25039764]
[52]
Floor, S.N.; Condon, K.J.; Sharma, D.; Jankowsky, E.; Doudna, J.A. Autoinhibitory interdomain interactions and subfamily-specific extensions redefine the catalytic core of the human DEAD-box protein DDX3. J. Biol. Chem., 2016, 291(5), 2412-2421.
[http://dx.doi.org/10.1074/jbc.M115.700625] [PMID: 26598523]
[53]
Epling, L.B.; Grace, C.R.; Lowe, B.R.; Partridge, J.F.; Enemark, E.J. Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis. J. Mol. Biol., 2015, 427(9), 1779-1796.
[http://dx.doi.org/10.1016/j.jmb.2015.02.015] [PMID: 25724843]
[54]
Saito, M.; Hess, D.; Eglinger, J.; Fritsch, A.W.; Kreysing, M.; Weinert, B.T.; Choudhary, C.; Matthias, P. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol., 2019, 15(1), 51-61.
[http://dx.doi.org/10.1038/s41589-018-0180-7] [PMID: 30531905]
[55]
Oda, S.; Schröder, M.; Khan, A.R. Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure, 2009, 17(11), 1528-1537.
[http://dx.doi.org/10.1016/j.str.2009.09.005] [PMID: 19913487]
[56]
Heaton, S.M.; Atkinson, S.C.; Sweeney, M.N.; Yang, S.N.Y.; Jans, D.A.; Borg, N.A. Exportin-1-dependent nuclear export of DEAD-box helicase DDX3X is central to its role in antiviral immunity. Cells, 2019, 8(10), 1181.
[http://dx.doi.org/10.3390/cells8101181] [PMID: 31575075]
[57]
Shih, J.W.; Wang, W.T.; Tsai, T.Y.; Kuo, C.Y.; Li, H.K.; Wu Lee, Y.H. Critical roles of RNA helicase DDX3 and its interactions with eIF4E/PABP1 in stress granule assembly and stress response. Biochem. J., 2012, 441(1), 119-129.
[http://dx.doi.org/10.1042/BJ20110739] [PMID: 21883093]
[58]
Soto-Rifo, R.; Rubilar, P.S.; Limousin, T.; de Breyne, S.; Décimo, D.; Ohlmann, T. DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J., 2012, 31(18), 3745-3756.
[http://dx.doi.org/10.1038/emboj.2012.220] [PMID: 22872150]
[59]
Gu, L.; Fullam, A.; Brennan, R.; Schröder, M. Human DEAD box helicase 3 couples IκB kinase ε to interferon regulatory factor 3 activation. Mol. Cell. Biol., 2013, 33(10), 2004-2015.
[http://dx.doi.org/10.1128/MCB.01603-12] [PMID: 23478265]
[60]
Gu, L.; Fullam, A.; McCormack, N.; Höhn, Y.; Schröder, M. DDX3 directly regulates TRAF3 ubiquitination and acts as a scaffold to co-ordinate assembly of signalling complexes downstream from MAVS. Biochem. J., 2017, 474(4), 571-587.
[http://dx.doi.org/10.1042/BCJ20160956] [PMID: 27980081]
[61]
Sun, M.; Liu, J.; Qi, J.; Tefsen, B.; Shi, Y.; Yan, J.; Gao, G.F. Nα-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nα-acetylpeptide presentation. J. Immunol., 2014, 192(12), 5509-5519.
[http://dx.doi.org/10.4049/jimmunol.1400199] [PMID: 24829406]
[62]
Kwok, J.; Hui, K.P.Y.; Lescar, J.; Kotaka, M. Expression, purification, crystallization and preliminary X-ray analysis of full-length human RIG-I. Acta Crystallogr. F Struct. Biol. Commun., 2014, 70(2), 248-251.
[http://dx.doi.org/10.1107/S2053230X14000430] [PMID: 24637767]
[63]
Mital, S.; Christie, G.; Dikicioglu, D. Recombinant expression of insoluble enzymes in Escherichia coli: A systematic review of experimental design and its manufacturing implications. Microb. Cell Fact., 2021, 20(1), 208.
[http://dx.doi.org/10.1186/s12934-021-01698-w] [PMID: 34717620]
[64]
Jena, S.; Horn, J.; Suryanarayanan, R.; Friess, W.; Aksan, A. Effects of excipient interactions on the state of the freeze-concentrate and protein stability. Pharm. Res., 2017, 34(2), 462-478.
[http://dx.doi.org/10.1007/s11095-016-2078-y] [PMID: 27981449]
[65]
Jena, S.; Krishna Kumar, N.S.; Aksan, A.; Suryanarayanan, R. Stability of lyophilized albumin formulations: Role of excipient crystallinity and molecular mobility. Int. J. Pharm., 2019, 569, 118568.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118568] [PMID: 31352055]
[66]
Wu, G.; Hui, X.; Liang, J.; Liu, H.; Chen, H.; Gong, X.; Brennan, M.A.; Zeng, X.A.; Guo, X.; Brennan, C.S. Combination of rehydrated whey protein isolate aqueous solution with blackcurrant concentrate and the formation of encapsulates via spray-drying and freeze-drying: Alterations to the functional properties of protein and their anticancer properties. Food Chem., 2021, 355, 129620.
[http://dx.doi.org/10.1016/j.foodchem.2021.129620] [PMID: 33780795]
[67]
Jia, L.; Zhao, W.; Wei, W.; Guo, X.; Wang, W.; Wang, Y.; Sang, J.; Lu, F.; Liu, F. Expression and purification of amyloid β-protein, tau, and α-synuclein in Escherichia coli : A review. Crit. Rev. Biotechnol., 2020, 40(4), 475-489.
[http://dx.doi.org/10.1080/07388551.2020.1742646] [PMID: 32202164]
[68]
Linn, S. Strategies and considerations for protein purifications. Methods Enzymol., 2009, 463, 9-19.
[http://dx.doi.org/10.1016/S0076-6879(09)63002-0] [PMID: 19892162]
[69]
Deng, J.; Davies, D.R.; Wisedchaisri, G.; Wu, M.; Hol, W.G.J.; Mehlin, C. An improved protocol for rapid freezing of protein samples for long-term storage. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(1), 203-204.
[http://dx.doi.org/10.1107/S0907444903024491] [PMID: 14684931]
[70]
Vagenende, V.; Yap, M.G.S.; Trout, B.L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry, 2009, 48(46), 11084-11096.
[http://dx.doi.org/10.1021/bi900649t] [PMID: 19817484]
[71]
Rajan, R.S.; Tsumoto, K.; Tokunaga, M.; Tokunaga, H.; Kita, Y.; Arakawa, T. Chemical and pharmacological chaperones: Application for recombinant protein production and protein folding diseases. Curr. Med. Chem., 2011, 18(1), 1-15.
[http://dx.doi.org/10.2174/092986711793979698] [PMID: 21110818]
[72]
Tsumoto, K.; Umetsu, M.; Kumagai, I.; Ejima, D.; Philo, J.S.; Arakawa, T. Role of arginine in protein refolding, solubilization, and purification. Biotechnol. Prog., 2004, 20(5), 1301-1308.
[http://dx.doi.org/10.1021/bp0498793] [PMID: 15458311]
[73]
Chen, J.; Liu, Y.; Wang, Y.; Ding, H.; Su, Z. Different effects of L-arginine on protein refolding: Suppressing aggregates of hydrophobic interaction, not covalent binding. Biotechnol. Prog., 2008, 24(6), 1365-1372.
[http://dx.doi.org/10.1002/btpr.93] [PMID: 19194951]
[74]
Arakawa, T.; Tsumoto, K.; Kita, Y.; Chang, B.; Ejima, D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids, 2007, 33(4), 587-605.
[http://dx.doi.org/10.1007/s00726-007-0506-3] [PMID: 17357829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy