Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Antidiabetic Drug Metformin Attenuated Depressive and Anxiety-like Behaviors and Oxidative Stress in the Brain in a Rodent Model of Inflammation Induced by Lipopolysaccharide in Male Rats

Author(s): Faezeh Sadat Hosseini Kakhki, Amir Asghari, Zahra Bardaghi, Akbar Anaeigoudari, Farimah Beheshti, Hossein Salmani and Mahmoud Hosseini*

Volume 24, Issue 13, 2024

Published on: 25 January, 2024

Page: [1525 - 1537] Pages: 13

DOI: 10.2174/0118715303275039231228065050

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Inflammation is considered to be a link between diabetes and central nervous system (CNS) disorders, including depression and anxiety. Metformin is suggested to have antioxidant, anti-inflammatory, and mood-improving effects. The aim of the current research was to investigate the effects of the antidiabetic drug metformin on depressive- and anxiety- like behaviors and oxidative stress in the brain in a rodent model of inflammation induced by lipopolysaccharide (LPS) in male rats.

Materials and Methods: The rats were treated as follows: (1) Vehicle instead of metformin and lipopolysaccharide, (2) Lipopolysaccharide (1 mg/ kg) + vehicle instead of metformin, (3–5) Lipopolysaccharide + 50, 100, or 150 mg/ kg of metformin. After the behavioral tests, including open field (OF), elevated pulse maze (EPM), and force swimming (FS) tests, the brains were removed, and malondialdehyde (MDA), nitric oxide (NO) metabolites, total thiol, catalase (CAT) activity, interleukin-6 (IL-6) and superoxide dismutase (SOD) activity were determined.

Results: In the EPM, metformin increased the open arm time and entry and decreased closed arm time and entry. In the FS test, metformin lowered the immobility and increased active time compared to lipopolysaccharide. In the OF test, metformin increased total crossing and total distance, time spent, traveled distance, and crossing number in the central zone. As a result of metformin administration, IL-6, MDA, and NO metabolites were decreased while thiol content, SOD, and CAT activity were increased.

Conclusion: The results indicated that the well-known antidiabetic drug metformin attenuated depressive- and anxiety-like behaviors induced by inflammation in rats. These beneficial effects are suggested to be due to their attenuating effects on neuroinflammation, oxidative stress, and NO in the brain.

Keywords: Metformin, lipopolysaccharide, inflammation, depression, anxiety, oxidative stress.

Graphical Abstract
[1]
Meng, Y.; Wu, H.; Niu, J.; Zhang, Y.; Qin, H.; Huang, L.; Zhang, X.; Yu, L.; Yu, H.; Yan, T.; Zhao, J. Prevalence of depression and anxiety and their predictors among patients undergoing maintenance hemodialysis in Northern China: A cross-sectional study. Ren. Fail., 2022, 44(1), 933-944.
[http://dx.doi.org/10.1080/0886022X.2022.2077761] [PMID: 35618386]
[2]
Alam, M.; Zameer, S.; Najmi, A.K.; Ahmad, F.J.; Imam, S.S.; Akhtar, M. Thymoquinone loaded solid lipid nanoparticles demonstrated antidepressant-like activity in rats via indoleamine 2, 3-dioxygenase pathway. Drug Res., 2020, 70(5), 206-213.
[http://dx.doi.org/10.1055/a-1131-7793] [PMID: 32198742]
[3]
Nazir, S.; Farooq, R.K.; Khan, H.; Alam, T.; Javed, A. Thymoquinone harbors protection against Concanavalin A‐induced behavior deficit in BALB/c mice model. J. Food Biochem., 2021, 45(3), e13348.
[http://dx.doi.org/10.1111/jfbc.13348] [PMID: 32618005]
[4]
Korhonen, M.J.; Pentti, J.; Hartikainen, J.; Kivimäki, M.; Vahtera, J. Somatic symptoms of anxiety and nonadherence to statin therapy. Int. J. Cardiol., 2016, 214, 493-499.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.003] [PMID: 27100341]
[5]
Nickhah Klashami, Z.; Yaghoobi, A.; Panahi, N.; Amoli, M.M. Association of the APOE gene variants with depression in type 2 diabetes. J. Diabetes Metab. Disord., 2023, 22(2), 1481-1487.
[http://dx.doi.org/10.1007/s40200-023-01271-9] [PMID: 37975117]
[6]
Singh, P.; Walia, V.; Verma, P.K. Hypoglycemia and anxiolysis mediated by levofloxacin treatment in diabetic rats. J. Diabetes Metab. Disord., 2023, 22(2), 1197-1209.
[http://dx.doi.org/10.1007/s40200-023-01234-0] [PMID: 37975146]
[7]
Li, S.; Yang, D.; Zhou, X.; Chen, L.; Liu, L.; Lin, R.; Li, X.; Liu, Y.; Qiu, H.; Cao, H.; Liu, J.; Cheng, Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci. Ther., 2023, cns.14497.
[http://dx.doi.org/10.1111/cns.14497] [PMID: 37927197]
[8]
Okamoto, N.; Hoshikawa, T.; Honma, Y.; Chibaatar, E.; Ikenouchi, A.; Harada, M.; Yoshimura, R. Effect modification of tumor necrosis factor-α on the kynurenine and serotonin pathways in major depressive disorder on type 2 diabetes mellitus. Eur. Arch. Psychiatry Clin. Neurosci., 2023.
[http://dx.doi.org/10.1007/s00406-023-01713-8] [PMID: 37991535]
[9]
Mehdi, S.; Wani, S.U.D.; Krishna, K.L.; Kinattingal, N.; Roohi, T.F. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem. Biophys. Rep., 2023, 36, 101571.
[http://dx.doi.org/10.1016/j.bbrep.2023.101571] [PMID: 37965066]
[10]
de Mello, A.J.; Moretti, M.; Rodrigues, A.L.S. SARS-CoV-2 consequences for mental health: Neuroinflammatory pathways linking COVID-19 to anxiety and depression. World J. Psychiatry, 2022, 12(7), 874-883.
[http://dx.doi.org/10.5498/wjp.v12.i7.874] [PMID: 36051596]
[11]
Han, Q.Q.; Yu, J. Inflammation: A mechanism of depression? Neurosci. Bull., 2014, 30(3), 515-523.
[http://dx.doi.org/10.1007/s12264-013-1439-3] [PMID: 24838302]
[12]
Jiménez-Fernández, S.; Gurpegui, M.; Garrote-Rojas, D.; Gutiérrez-Rojas, L.; Carretero, M.D.; Correll, C.U. Oxidative stress parameters and antioxidants in adults with unipolar or bipolar depression versus healthy controls: Systematic review and meta-analysis. J. Affect. Disord., 2022, 314, 211-221.
[http://dx.doi.org/10.1016/j.jad.2022.07.015] [PMID: 35868596]
[13]
Mease, P.; Kuritzky, L.; Wright, W.L.; Mallick-Searle, T.; Fountaine, R.; Yang, R. Efficacy and safety of tanezumab, NSAIDs, and placebo in patients with moderate to severe hip or knee osteoarthritis and a history of depression, anxiety, or insomnia: Post-hoc analysis of phase 3 trials. Curr. Med. Res. Opin., 2022, 38(4), 1909-1922.
[14]
Almohaimeed, H.; Al-Zahrani, M.; Almuhayawi, M.; Algaidi, S.; Batawi, A.; Baz, H.; Mohammedsaleh, Z.; Baz, N.; Saleh, F.; Ayuob, N. Accelerating effect of Cucurbita pepo L. Fruit extract on excisional wound healing in depressed rats is mediated through its anti-inflammatory and antioxidant effects. Nutrients, 2022, 14(16), 3336.
[http://dx.doi.org/10.3390/nu14163336] [PMID: 36014842]
[15]
Essmat, N.; Soliman, E.; Mahmoud, M.F.; Mahmoud, A.A.A. Antidepressant activity of anti-hyperglycemic agents in experimental models: A review. Diabetes Metab. Syndr., 2020, 14(5), 1179-1186.
[http://dx.doi.org/10.1016/j.dsx.2020.06.021] [PMID: 32673838]
[16]
Soliman, E.; Essmat, N.; Mahmoud, M.F.; Mahmoud, A.A.A. Impact of some oral hypoglycemic agents on type 2 diabetes-associated depression and reserpine-induced depression in rats: The role of brain oxidative stress and inflammation. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(8), 1391-1404.
[http://dx.doi.org/10.1007/s00210-020-01838-w] [PMID: 32077986]
[17]
Piskovatska, V.; Storey, K.B.; Vaiserman, A.M.; Lushchak, O. The use of metformin to increase the human healthspan. In: Reviews on New Drug Targets in Age-Related Disorders; , 2020; pp. 319-332.
[http://dx.doi.org/10.1007/978-3-030-42667-5_13]
[18]
Giusti, L.; Tesi, M.; Ciregia, F.; Marselli, L.; Zallocco, L.; Suleiman, M.; De Luca, C.; Del Guerra, S.; Zuccarini, M.; Trerotola, M.; Eizirik, D.L.; Cnop, M.; Mazzoni, M.R.; Marchetti, P.; Lucacchini, A.; Ronci, M. The protective action of metformin against pro-inflammatory cytokine-induced human islet cell damage and the mechanisms involved. Cells, 2022, 11(15), 2465.
[http://dx.doi.org/10.3390/cells11152465] [PMID: 35954309]
[19]
Lyu, Q.; Wen, Y.; He, B.; Zhang, X.; Chen, J.; Sun, Y.; Zhao, Y.; Xu, L.; Xiao, Q.; Deng, H. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice. Biochim. Biophys. Acta Mol. Basis Dis., 2022, 1868(11), 166508.
[http://dx.doi.org/10.1016/j.bbadis.2022.166508] [PMID: 35905940]
[20]
Li, Y.; Gappy, S.; Liu, X.; Sassalos, T.; Zhou, T.; Hsu, A.; Zhang, A.; Edwards, P.A.; Gao, H.; Qiao, X. Metformin suppresses pro-inflammatory cytokines in vitreous of diabetes patients and human retinal vascular endothelium. PLoS One, 2022, 17(7), e0268451.
[http://dx.doi.org/10.1371/journal.pone.0268451] [PMID: 35802672]
[21]
Hammad, A.M.; Ibrahim, Y.A.; Khdair, S.I.; Hall, F.S.; Alfaraj, M.; Jarrar, Y.; Abed, A.F. Metformin reduces oxandrolone- induced depression-like behavior in rats via modulating the expression of IL-1β, IL-6, IL-10 and TNF-α. Behav. Brain Res., 2021, 414, 113475.
[http://dx.doi.org/10.1016/j.bbr.2021.113475] [PMID: 34280460]
[22]
Baradaran, Z.; Vakilian, A.; Zare, M.; Hashemzehi, M.; Hosseini, M.; Dinpanah, H.; Beheshti, F. Metformin improved memory impairment caused by chronic ethanol consumption during adolescent to adult period of rats: Role of oxidative stress and neuroinflammation. Behav. Brain Res., 2021, 411, 113399.
[http://dx.doi.org/10.1016/j.bbr.2021.113399] [PMID: 34087254]
[23]
Bonea, M.; Filip, G.A. Modulatory effect of metformin on ethanol-induced anxiety, redox imbalance, and extracellular matrix levels in the brains of wistar rats. J. Mol. Neurosci., 2020, 70(12), 1943-1961.
[24]
Bogdanova, O.V.; Kanekar, S.; D’Anci, K.E.; Renshaw, P.F. Factors influencing behavior in the forced swim test. Physiol. Behav., 2013, 118, 227-239.
[http://dx.doi.org/10.1016/j.physbeh.2013.05.012] [PMID: 23685235]
[25]
Marefati, N.; Abdi, T.; Beheshti, F.; Vafaee, F.; Mahmoudabady, M.; Hosseini, M. Zingiber officinale (Ginger) hydroalcoholic extract improved avoidance memory in rat model of streptozotocin-induced diabetes by regulating brain oxidative stress. Horm. Mol. Biol. Clin. Investig., 2022, 43(1), 15-26.
[http://dx.doi.org/10.1515/hmbci-2021-0033] [PMID: 34679261]
[26]
Abbasnezhad, A.; Mohebbati, R.; Havakhah, S.; Mousavi, M. The effect of nigella sativa on renal oxidative injury in diabetic rats. Saudi J. Kidney Dis. Transpl., 2020, 31(4), 775-786.
[http://dx.doi.org/10.4103/1319-2442.292311] [PMID: 32801238]
[27]
Rastegar Moghaddam, S.H.; Hosseini, M.; Sabzi, F.; Hojjati Fard, F.; Marefati, N.; Beheshti, F.; Darroudi, M.; Ebrahimzadeh Bideskan, A.; Anaeigoudari, A. Cardiovascular protective effect of nano selenium in hypothyroid rats: protection against oxidative stress and cardiac fibrosis. Clin. Exp. Hypertens., 2022, 44(3), 268-279.
[http://dx.doi.org/10.1080/10641963.2022.2036994] [PMID: 35142246]
[28]
León-Rodríguez, A.; Fernández-Arjona, M.M.; Grondona, J.M.; Pedraza, C.; López-Ávalos, M.D. Anxiety-like behavior and microglial activation in the amygdala after acute neuroinflammation induced by microbial neuraminidase. Sci. Rep., 2022, 12(1), 11581.
[http://dx.doi.org/10.1038/s41598-022-15617-5] [PMID: 34992227]
[29]
Wei, Y.; Gao, H.; Luo, Y.; Feng, J.; Li, G.; Wang, T.; Xu, H.; Yin, L.; Ma, J.; Chen, J. Systemic inflammation and oxidative stress markers in patients with unipolar and bipolar depression: A large-scale study. J. Affect. Disord., 2024, 346, 154-166.
[http://dx.doi.org/10.1016/j.jad.2023.10.156] [PMID: 37924985]
[30]
Samaryn, E.; Galińska-Skok, B. The effect of antidepressant treatment on neurocognitive functions, redox and inflammatory parameters in the context of COVID-19. J. Clin. Med., 2023, 12(22), 7049.
[31]
Arab, Z.; Hosseini, M.; Marefati, N.; Beheshti, F.; Anaeigoudari, A.; Sadeghnia, H.R. Neuroprotective and memory enhancing effects of Zataria multiflora in lipopolysaccharide-treated rats. Vet. Res. Forum, 2022, 13(1), 101-110.
[32]
Kinra, M.; Ranadive, N.; Mudgal, J.; Zhang, Y.; Govindula, A.; Anoopkumar-Dukie, S.; Davey, A.K.; Grant, G.D.; Nampoothiri, M.; Arora, D. Putative involvement of sirtuin modulators in LPS-induced sickness behaviour in mice. Metab. Brain Dis., 2022, 37(6), 1969-1976.
[http://dx.doi.org/10.1007/s11011-022-00992-9] [PMID: 35554791]
[33]
Ji, M.; Zhang, L.; Mao, M.; Zhang, H.; Yang, J.; Qiu, L. Overinhibition mediated by parvalbumin interneurons might contribute to depression-like behavior and working memory impairment induced by lipopolysaccharide challenge. Behav. Brain Res., 2020, 383, 112509.
[http://dx.doi.org/10.1016/j.bbr.2020.112509] [PMID: 31987933]
[34]
Abareshi, A.; Anaeigoudari, A.; Norouzi, F.; Marefati, N.; Beheshti, F.; Saeedjalali, M. The effects of captopril on lipopolysaccharide-induced sickness behaviour in rats. Vet. Res. Forum., 2019, 10(3), 199-205.
[35]
Yin, R.; Zhang, K.; Li, Y.; Tang, Z.; Zheng, R.; Ma, Y.; Chen, Z.; Lei, N.; Xiong, L.; Guo, P.; Li, G.; Xie, Y. Lipopolysaccharide-induced depression-like model in mice: Meta-analysis and systematic evaluation. Front. Immunol., 2023, 14, 1181973.
[http://dx.doi.org/10.3389/fimmu.2023.1181973] [PMID: 37359525]
[36]
Song, J.; Han, K.; Wang, Y.; Qu, R.; Liu, Y.; Wang, S.; Wang, Y.; An, Z.; Li, J.; Wu, H.; Wu, W. Microglial activation and oxidative stress in PM2.5-induced neurodegenerative disorders. Antioxidants, 2022, 11(8), 1482.
[http://dx.doi.org/10.3390/antiox11081482] [PMID: 36009201]
[37]
Moradi Vastegani, S.; Hajipour, S.; Sarkaki, A.; Basir, Z.; Parisa Navabi, S.; Farbood, Y.; Khoshnam, S.E. Curcumin mitigates lipopolysaccharide-induced anxiety/depression-like behaviors, blood–brain barrier dysfunction and brain edema by decreasing cerebral oxidative stress in male rats. Neurosci. Lett., 2022, 782, 136697.
[http://dx.doi.org/10.1016/j.neulet.2022.136697] [PMID: 35642797]
[38]
Arab, Z.; Hosseini, M.; Mashayekhi, F.; Anaeigoudari, A. Zataria multiflora extract reverses lipopolysaccharide-induced anxiety and depression behaviors in rats. Avicenna J. Phytomed., 2020, 10(1), 78-88.
[PMID: 31921610]
[39]
Norouzi, F.; Abareshi, A.; Anaeigoudari, A.; Shafei, M.N.; Gholamnezhad, Z.; Saeedjalali, M.; Mohebbati, R.; Hosseini, M. The effects of Nigella sativa on sickness behavior induced by lipopolysaccharide in male Wistar rats. Avicenna J. Phytomed., 2016, 6(1), 104-116.
[PMID: 27247927]
[40]
Azizi-Malekabadi, H.; Hosseini, M.; Pourganji, M.; Zabihi, H.; Saeedjalali, M.; Anaeigoudari, A. Deletion of ovarian hormones induces a sickness behavior in rats comparable to the effect of lipopolysaccharide. Neurol. Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/627642] [PMID: 25705518]
[41]
Arbab, A.A.I.; Lu, X.; Abdalla, I.M.; Idris, A.A.; Chen, Z.; Li, M.; Mao, Y.; Xu, T.; Yang, Z. Metformin inhibits lipoteichoic acid–induced oxidative stress and inflammation through AMPK/NRF2/NF-κB signaling pathway in bovine mammary epithelial cells. Front. Vet. Sci., 2021, 8, 661380.
[http://dx.doi.org/10.3389/fvets.2021.661380] [PMID: 34262962]
[42]
Beheshti, F.; Hosseini, M.; Arab, Z.; Asghari, A.; Anaeigoudari, A. Ameliorative role of metformin on lipopolysaccharide-mediated liver malfunction through suppression of inflammation and oxidative stress in rats. Toxin Rev., 2022, 41(1), 55-63.
[http://dx.doi.org/10.1080/15569543.2020.1833037]
[43]
Liu, Z.; Tang, W.; Liu, J.; Han, Y.; Yan, Q.; Dong, Y.; Liu, X.; Yang, D.; Ma, G.; Cao, H. A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound. Bioact. Mater., 2023, 20, 610-626.
[http://dx.doi.org/10.1016/j.bioactmat.2022.06.008] [PMID: 35846848]
[44]
Song, G.; Liang, H.; Song, H.; Ding, X.; Wang, D.; Zhang, X. Metformin improves the prognosis of adult mice with sepsis-associated encephalopathy better than that of aged mice. J. Immunol. Res., 2022, 2022, 3218452.
[http://dx.doi.org/10.1155/2022/3218452]
[45]
Qin, Z.; Zhou, C.; Xiao, X.; Guo, C. Metformin attenuates sepsis-induced neuronal injury and cognitive impairment. BMC Neurosci., 2021, 22(1), 78.
[http://dx.doi.org/10.1186/s12868-021-00683-8] [PMID: 34911449]
[46]
Hosseini, M.J.; Arabiyan, A.; Mobassem, S.; Ghavimi, H. Metformin attenuates depressive-like behaviour of methamphetamine withdrawal in mice: A mechanistic approach. World J. Biol. Psychiatry, 2023, 24(3), 209-222.
[PMID: 35673936]
[47]
Yang, J.; Zhang, Z.; Xie, Z.; Bai, L.; Xiong, P.; Chen, F.; Zhu, T.; Peng, Q.; Wu, H.; Zhou, Y.; Ma, Y.; Zhang, Y.; Chen, M.; Gao, J.; Tian, W.; Shi, K.; Du, Y.; Duan, Y.; Wang, H.; Xu, Y.; Kuang, Y.Q.; Zhu, M.; Yu, J.; Wang, K. Metformin modulates microbiota-derived inosine and ameliorates methamphetamine-induced anxiety and depression-like withdrawal symptoms in mice. Biomed. Pharmacother., 2022, 149, 112837.
[http://dx.doi.org/10.1016/j.biopha.2022.112837] [PMID: 35339829]
[48]
Turan, I.; Sayan Özaçmak, H.; Erdem, S.; Ergenc, M.; Ozacmak, V.H. Protective effect of metformin against ovariectomy induced depressive- and anxiety-like behaviours in rats: Role of oxidative stress. Neuroreport, 2021, 32(8), 666-671.
[http://dx.doi.org/10.1097/WNR.0000000000001634] [PMID: 33913928]
[49]
Zhou, C.; Peng, B.; Qin, Z.; Zhu, W.; Guo, C. Metformin attenuates LPS-induced neuronal injury and cognitive impairments by blocking NF-κB pathway. BMC Neurosci., 2021, 22(1), 73.
[http://dx.doi.org/10.1186/s12868-021-00678-5] [PMID: 34836498]
[50]
Asghari, A.A.; Hosseini, M.; Bafadam, S.; Rakhshandeh, H.; Farazandeh, M.; Mahmoudabady, M. Olea europaea L. (olive) leaf extract ameliorates learning and memory deficits in streptozotocin-induced diabetic rats. Avicenna J. Phytomed., 2022, 12(2), 163-174.
[PMID: 35614890]
[51]
Bafadam, S.; Beheshti, F.; Khodabakhshi, T.; Asghari, A.; Ebrahimi, B.; Sadeghnia, H.R. Trigonella foenum-graceum seed (Fenugreek) hydroalcoholic extract improved the oxidative stress status in a rat model of diabetes-induced memory impairment. Horm. Mol. Biol. Clin. Investig., 2019, 39(2)
[http://dx.doi.org/10.1515/hmbci-2018-0074]
[52]
Clark, G.J.; Pandya, K.; Lau-Cam, C.A. Assessment of in vitro tests as predictors of the antioxidant effects of insulin, metformin, and taurine in the brain of diabetic rats. Adv. Exp. Med. Biol., 2022, 1370, 243-256.
[http://dx.doi.org/10.1007/978-3-030-93337-1_24] [PMID: 35882800]
[53]
Mousavi, S.M.; Niazmand, S.; Hosseini, M.; Hassanzadeh, Z.; Sadeghnia, H.R.; Vafaee, F.; Keshavarzi, Z. Beneficial effects of teucrium polium and metformin on diabetes-induced memory impairments and brain tissue oxidative damage in rats. Int. J. Alzheimers Dis., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/493729] [PMID: 25810947]
[54]
Ishola, I.O.; Balogun, A.O.; Adeyemi, O.O. Novel potential of metformin on valproic acid‐induced autism spectrum disorder in rats: involvement of antioxidant defence system. Fundam. Clin. Pharmacol., 2020, 34(6), 650-661.
[http://dx.doi.org/10.1111/fcp.12567] [PMID: 32415700]
[55]
Bourget, C.; Adams, K.V.; Morshead, C.M. Reduced microglia activation following metformin administration or microglia ablation is sufficient to prevent functional deficits in a mouse model of neonatal stroke. J. Neuroinflammation, 2022, 19(1), 146.
[http://dx.doi.org/10.1186/s12974-022-02487-x] [PMID: 35705953]
[56]
Largani, S.H.H.; Borhani-Haghighi, M.; Pasbakhsh, P.; Mahabadi, V.P.; Nekoonam, S.; Shiri, E.; Kashani, I.R.; Zendehdel, A. Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. J. Mol. Histol., 2019, 50(3), 263-271.
[http://dx.doi.org/10.1007/s10735-019-09824-0] [PMID: 31016544]
[57]
Ismail Hassan, F.; Didari, T.; Baeeri, M.; Gholami, M.; Haghi-Aminjan, H.; Khalid, M.; Navaei-Nigjeh, M.; Rahimifard, M.; Solgi, S.; Abdollahi, M.; Mojtahedzadeh, M. Metformin attenuates brain injury by inhibiting inflammation and regulating tight junction proteins in septic rats. Cell J., 2020, 22(Suppl. 1), 29-37.
[PMID: 32779431]
[58]
Sritawan, N.; Suwannakot, K.; Naewla, S.; Chaisawang, P.; Aranarochana, A.; Sirichoat, A.; Pannangrong, W.; Wigmore, P.; Welbat, J.U. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats. Biomed. Pharmacother., 2021, 144, 112280.
[http://dx.doi.org/10.1016/j.biopha.2021.112280] [PMID: 34628167]
[59]
Sanchis, A.; García-Gimeno, M.A.; Cañada-Martínez, A.J. Metformin treatment reduces motor and neuropsychiatric phenotypes in the zQ175 mouse model of Huntington disease. Exp. Mol. Med., 2019, 51(6), 1-16.
[http://dx.doi.org/10.1038/s12276-019-0264-9]
[60]
Khadrawy, Y.A.; Khoder, N.M.; Sawie, H.G.; Sharada, H.M.; Hosny, E.N.; Abdulla, M.S. The neuroprotective effect of alpha lipoic acid and/or metformin against the behavioral and neurochemical changes induced by hypothyroidism in rat. Neuroendocrinology, 2022, 112(11), 1129-1142.
[http://dx.doi.org/10.1159/000524367] [PMID: 35354137]
[61]
Dawood, A.F.; Alzamil, N.M.; Hewett, P.W.; Momenah, M.A. Metformin protects against diabetic cardiomyopathy: An association between desmin-sarcomere injury and the iNOS/mTOR/TIMP-1 fibrosis axis. Biomedicines, 2022, 10(5), 984.
[62]
Eltony, S.A.; Mohaseb, H.S.; Ahmed, A.A.; Sayed, M.M. Can metformin modulate the retinal degenerative changes in a rat model of retinitis pigmentosa? Tissue Cell, 2022, 76, 101786.
[http://dx.doi.org/10.1016/j.tice.2022.101786] [PMID: 35325673]
[63]
Mendonça, I.P.; Paiva, I.H.R.; Duarte-Silva, E.P.; Melo, M.G.; Silva, R.S.; Oliveira, W.H.; Costa, B.L.S.A.; Peixoto, C.A. Metformin and fluoxetine improve depressive-like behavior in a murine model of Parkinsońs disease through the modulation of neuroinflammation, neurogenesis and neuroplasticity. Int. Immunopharmacol., 2022, 102, 108415.
[http://dx.doi.org/10.1016/j.intimp.2021.108415] [PMID: 34890997]
[64]
Abdi, M.; Pasbakhsh, P.; Shabani, M.; Nekoonam, S.; Sadeghi, A.; Fathi, F. Metformin therapy attenuates pro-inflammatory microglia by inhibiting NF-κB in cuprizone demyelinating mouse model of multiple sclerosis. Neurotox. Res., 2021, 39(6), 1732-1746.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy