Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review

Author(s): Presenjit, Shubhra Chaturvedi, Akanksha Singh, Divya Gautam, Kaman Singh* and Anil Kumar Mishra*

Volume 24, Issue 7, 2024

Published on: 25 January, 2024

Page: [488 - 503] Pages: 16

DOI: 10.2174/0118715206280314231201111358

Price: $65

Abstract

Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.

Keywords: Metallodrugs, schiff base, anticancer activity, cisplatin, MTT assay, cancer cell lines, IC50.

Graphical Abstract
[1]
Sumrra, S.H.; Arshad, Z.; Zafar, W.; Mahmood, K.; Ashfaq, M.; Hassan, A.U.; Mughal, E.U.; Irfan, A.; Imran, M. Metal incorporated aminothiazole-derived compounds: Synthesis, density function theory analysis, in vitro antibacterial and antioxidant evaluation. R. Soc. Open Sci., 2021, 8(9), 210910.
[http://dx.doi.org/10.1098/rsos.210910] [PMID: 34631124]
[2]
Khalid, S.; Sumrra, S.H.; Chohan, Z.H. Isatin endowed metal chelates as antibacterial and antifungal agents. Sains Malays., 2020, 49(8), 1891-1904.
[http://dx.doi.org/10.17576/jsm-2020-4908-11]
[3]
Maurya, R.C.; Malik, B.A.; Mir, J.M.; Sharma, A.K. Synthesis, characterization, thermal behavior, and DFT aspects of some oxovanadium(IV) complexes involving ONO-donor sugar Schiff bases. J. Coord. Chem., 2014, 67(18), 3084-3106.
[http://dx.doi.org/10.1080/00958972.2014.959508]
[4]
Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer, 2007, 7(8), 573-584.
[http://dx.doi.org/10.1038/nrc2167] [PMID: 17625587]
[5]
Yang, Z.Y.; Yang, R.D.; Li, F.S.; Yu, K.B. Crystal structure and antitumor activity of some rare earth metal complexes with Schiff base. Polyhedron, 2000, 19(26-27), 2599-2604.
[http://dx.doi.org/10.1016/S0277-5387(00)00562-3]
[6]
Gupta, A.D.; Patil, A.M.; Ambekar, J.G.; Das, S.N.; Dhundasi, S.A.; Das, K.K. L-ascorbic acid protects the antioxidant defense system in nickel-exposed albino rat lung tissue. J. Basic Clin. Physiol. Pharmacol., 2006, 17(2), 87-100.
[http://dx.doi.org/10.1515/JBCPP.2006.17.2.87] [PMID: 16910314]
[7]
Zhao, P.; Zhai, S.; Dong, J.; Gao, L.; Liu, X.; Wang, L.; Kong, J.; Li, L. Synthesis, structure, DNA interaction, and SOD activity of three nickel (II) complexes containing L-phenylalanine Schiff base and 1, 10-phenanthroline. Bioinorg. Chem. Appl., 2018, 2018, 1-16.
[http://dx.doi.org/10.1155/2018/8478152] [PMID: 30073020]
[8]
Mei, H.; Jean, M.; Albalat, M.; Vanthuyne, N.; Roussel, C.; Moriwaki, H.; Yin, Z.; Han, J.; Soloshonok, V.A. Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of α‐amino acid Schiff bases. Chirality, 2019, 31(5), 401-409.
[http://dx.doi.org/10.1002/chir.23066] [PMID: 30916841]
[9]
Elerman, Y.; Kabak, M.; Elmali, A. Crystal structure and conformation of N-(5-Chlorosalicylidene)- 2-hydroxy-5-chloroaniline. Z. Naturforsch. B. J. Chem. Sci., 2002, 57(6), 651-656.
[http://dx.doi.org/10.1515/znb-2002-0610]
[10]
Harney, A.S.; Lee, J.; Manus, L.M.; Wang, P.; Ballweg, D.M.; LaBonne, C.; Meade, T.J. Targeted inhibition of Snail family zinc finger transcription factors by oligonucleotide-Co(III) Schiff base conjugate. Proc. Natl. Acad. Sci., 2009, 106(33), 13667-13672.
[http://dx.doi.org/10.1073/pnas.0906423106] [PMID: 19666616]
[11]
Hassan, A.U.; Sumrra, S.H. Exploring the bioactive sites of new sulfonamide metal chelates for multi-drug resistance: An experimental versus theoretical design. J. Inorg. Organomet. Polym. Mater., 2022, 32(2), 513-535.
[http://dx.doi.org/10.1007/s10904-021-02135-6]
[12]
Matela, G. Schiff bases and complexes: A review on anticancer activity. Anticancer Agents Med Chem, 2020, 20(16), 1908-1917.
[13]
Chohan, Z.H.; Shad, H.A. Metal-based new sulfonamides: Design, synthesis, antibacterial, antifungal, and cytotoxic properties. J. Enzyme Inhib. Med. Chem., 2012, 27(3), 403-412.
[http://dx.doi.org/10.3109/14756366.2011.593515] [PMID: 21815774]
[14]
Hameed, A.; al-Rashida, M.; Uroos, M.; Abid Ali, S.; Khan, K.M. Schiff bases in medicinal chemistry: A patent review (2010-2015). Expert Opin. Ther. Pat., 2017, 27(1), 63-79.
[http://dx.doi.org/10.1080/13543776.2017.1252752] [PMID: 27774821]
[15]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[16]
Russo, A.; Piovano, M.; Lombardo, L.; Vanella, L.; Cardile, V.; Garbarino, J. Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anticancer Drugs, 2006, 17(10), 1163-1169.
[http://dx.doi.org/10.1097/01.cad.0000236310.66080.ed] [PMID: 17075315]
[17]
Economou, M.A.; Andersson, S.; Vasilcanu, D.; All-Ericsson, C.; Menu, E.; Girnita, A.; Girnita, L.; Axelson, M.; Seregard, S.; Larsson, O. Oral picropodophyllin (PPP) is well tolerated in vivo and inhibits IGF-1R expression and growth of uveal melanoma. Invest. Ophthalmol. Vis. Sci., 2008, 49(6), 2337-2342.
[http://dx.doi.org/10.1167/iovs.07-0819] [PMID: 18515579]
[18]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[19]
Aroua, L.M.; Al-Hakimi, A.N.; Abdulghani, M.A.M.; Alhag, S.K. Cytotoxic urea Schiff base complexes for multidrug discovery as anticancer activity and low in vivo oral assessing toxicity. Arab. J. Chem., 2022, 15(8), 103986.
[http://dx.doi.org/10.1016/j.arabjc.2022.103986]
[20]
Hassan, A.M.; Said, A.O.; Heakal, B.H.; Younis, A.; Aboulthana, W.M.; Mady, M.F. Green synthesis, characterization, antimicrobial and anticancer screening of new metal complexes incorporating schiff base. ACS Omega, 2022, 7(36), 32418-32431.
[http://dx.doi.org/10.1021/acsomega.2c03911] [PMID: 36120022]
[21]
Sayed, F.N.; Mohamed, G.G. Newly synthesized lanthanides complexes of ferrocene-based Schiff base with high biological activities and improved molecular docking data. J. Organomet. Chem., 2022, 977, 122450.
[http://dx.doi.org/10.1016/j.jorganchem.2022.122450]
[22]
Basaran, E.; Gamze Sogukomerogullari, H.; Cakmak, R.; Akkoc, S.; Taskin-Tok, T.; Köse, A. Novel chiral Schiff base Palladium(II), Nickel(II), Copper(II) and Iron(II) complexes: Synthesis, characterization, anticancer activity and molecular docking studies. Bioorg. Chem., 2022, 129, 106176.
[http://dx.doi.org/10.1016/j.bioorg.2022.106176] [PMID: 36209564]
[23]
Mokhtari, P.; Mohammadnezhad, G. Anti-cancer properties and catalytic oxidation of sulfides based on vanadium(V) complexes of unprotected sugar-based Schiff-base ligands. Polyhedron, 2022, 215, 115655.
[http://dx.doi.org/10.1016/j.poly.2022.115655]
[24]
Mohamed, G.G.; Omar, M.M.A.; Moustafa, B.S. AbdEl-Halim, H.F.; Farag, N.A. Spectroscopic investigation, thermal, molecular structure, antimicrobial and anticancer activity with modelling studies of some metal complexes derived from isatin Schiff base ligand. Inorg. Chem. Commun., 2022, 141, 109606.
[http://dx.doi.org/10.1016/j.inoche.2022.109606]
[25]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Chaudhari, H.K.; Sekar, N. Schiff base clubbed benzothiazole: Synthesis, potent antimicrobial and MCF-7 anticancer activity, DNA cleavage and computational study. J. Biomol. Struct. Dyn., 2019, 1-14.
[http://dx.doi.org/10.1080/07391102.2019.1621213] [PMID: 31107179]
[26]
Terenzi, A.; Bonsignore, R.; Spinello, A.; Gentile, C.; Martorana, A.; Ducani, C.; Högberg, B.; Almerico, A.M.; Lauria, A.; Barone, G. Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity. RSC Advances, 2014, 4(63), 33245-33256.
[http://dx.doi.org/10.1039/C4RA05355A]
[27]
Gou, Y.; Li, J.; Fan, B.; Xu, B.; Zhou, M.; Yang, F. Structure and biological properties of mixed-ligand Cu(II) Schiff base complexes as potential anticancer agents. Eur. J. Med. Chem., 2017, 134, 207-217.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.026] [PMID: 28415010]
[28]
Jiang, Q.; Xiao, N.; Shi, P.; Zhu, Y.; Guo, Z. Design of artificial metallonucleases with oxidative mechanism. Coord. Chem. Rev., 2007, 251(15-16), 1951-1972.
[http://dx.doi.org/10.1016/j.ccr.2007.02.013]
[29]
Abd El-Halim, H.F.; Omar, M.M.; Anwar, M.N. Preparation, characterization, antimicrobial and anticancer activities of Schiff base mixed ligand complexes. J. Therm. Anal. Calorim., 2017, 130(2), 1069-1083.
[http://dx.doi.org/10.1007/s10973-017-6491-1]
[30]
Ebrahimipour, S.Y.; Sheikhshoaie, I.; Kautz, A.C.; Ameri, M.; Pasban-Aliabadi, H.; Amiri, R.H.; Bruno, G.; Janiak, C. Mono- and dioxido-vanadium(V) complexes of a tridentate ONO Schiff base ligand: Synthesis, spectral characterization, X-ray crystal structure, and anticancer activity. Polyhedron, 2015, 93, 99-105.
[http://dx.doi.org/10.1016/j.poly.2015.03.037]
[31]
Ariyaeifar, M.; Amiri Rudbari, H.; Sahihi, M.; Kazemi, Z.; Kajani, A.A.; Zali-Boeini, H.; Kordestani, N.; Bruno, G.; Gharaghani, S. Chiral halogenated Schiff base compounds: Green synthesis, anticancer activity and DNA-binding study. J. Mol. Struct., 2018, 1161, 497-511.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.042]
[32]
Dhahagani, K.; Kesavan, M.P.; Gujuluva, G.V.K.; Ravi, L.; Rajagopal, G.; Rajesh, J. Crystal structure, optical properties, DFT analysis of new morpholine based Schiff base ligands and their copper(II) complexes: DNA, protein docking analyses, antibacterial study and anticancer evaluation. Mater. Sci. Eng. C, 2018, 90, 119-130.
[http://dx.doi.org/10.1016/j.msec.2018.04.032] [PMID: 29853075]
[33]
Shiju, C.; Arish, D.; Kumaresan, S. Novel water soluble Schiff base metal complexes: Synthesis, characterization, antimicrobial-, DNA cleavage, and anticancer activity. J. Mol. Struct., 2020, 1221, 128770.
[http://dx.doi.org/10.1016/j.molstruc.2020.128770]
[34]
Abd El-Halim, H.F.; Mohamed, G.G.; Anwar, M.N. Antimicrobial and anticancer activities of Schiff base ligand and its transition metal mixed ligand complexes with heterocyclic base. Appl. Organomet. Chem., 2018, 32(1), e3899.
[http://dx.doi.org/10.1002/aoc.3899]
[35]
Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem., 2016, 69, 140-152.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.009] [PMID: 27816797]
[36]
Abd-Elzaher, M.M.; Labib, A.A.; Mousa, H.A.; Moustafa, S.A.; Ali, M.M.; El-Rashedy, A.A. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni-suef Univ. J. Basic Appl. Sci., 2016, 5(1), 85-96.
[37]
Aslan, H.G.; Akkoç, S.; Kökbudak, Z. Anticancer activities of various new metal complexes prepared from a Schiff base on A549 cell line. Inorg. Chem. Commun., 2020, 111, 107645.
[http://dx.doi.org/10.1016/j.inoche.2019.107645]
[38]
Pradeepa, S.M.; Bhojya, N.H.S.; Vinay Kumar, B.; Indira, P.K.; Barik, A.; Ravikumar, N.T.R.; Prabhakara, M.C. Metal based photosensitizers of tetradentate Schiff base: Promising role in antitumor activity through singlet oxygen generation mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 115, 12-21.
[http://dx.doi.org/10.1016/j.saa.2013.06.009] [PMID: 23831972]
[39]
Xie, J.; Shen, S.; Chen, R.; Xu, J.; Dong, K.; Huang, J.; Lu, Q.; Zhu, W.; Ma, T.; Jia, L.; Cai, H.; Zhu, T. Synthesis, characterization and antitumor activity of Ln(III) complexes with hydrazone Schiff base derived from 2-acetylpyridine and isonicotinohydrazone. Oncol. Lett., 2017, 13(6), 4413-4419.
[http://dx.doi.org/10.3892/ol.2017.6018] [PMID: 28599443]
[40]
Mir, J.M.; Jain, N.; Jaget, P.S.; Maurya, R.C. Density functionalized [Ru II (NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets. Photodiagn. Photodyn. Ther., 2017, 19, 363-374.
[http://dx.doi.org/10.1016/j.pdpdt.2017.07.006] [PMID: 28743589]
[41]
Damercheli, M.; Dayyani, D.; Behzad, M.; Mehravi, B.; Shafiee Ardestani, M. New salen-type manganese(III) Schiff base complexes derived from meso -1,2-diphenyl-1,2-ethylenediamine: in vitro anticancer activity, mechanism of action, and molecular docking studies. J. Coord. Chem., 2015, 68(9), 1500-1513.
[http://dx.doi.org/10.1080/00958972.2015.1027697]
[42]
Aidi, M.; Keypour, H.; Shooshtari, A.; Bayat, M.; Hosseinzadeh, L.; Rudbari, H.A.; Gable, R.W. Coordination chemistry of some new Mn(II), Cd(II) and Zn(II) macrocyclic Schiff base complexes containing a homopiperazine head unit. Spectral, X-ray crystal structural, theoretical studies and anticancer activity. Inorg. Chim. Acta, 2019, 490, 294-302.
[http://dx.doi.org/10.1016/j.ica.2018.12.046]
[43]
Abdel-Rahman, L.H.; Ismail, N.M.; Ismael, M.; Abu-Dief, A.M.; Ahmed, E.A.H. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand. J. Mol. Struct., 2017, 1134, 851-862.
[http://dx.doi.org/10.1016/j.molstruc.2017.01.036]
[44]
Xia, Y.; Liu, X.; Zhang, L.; Zhang, J.; Li, C.; Zhang, N.; Xu, H.; Li, Y. A new Schiff base coordinated copper(II) compound induces apoptosis and inhibits tumor growth in gastric cancer. Cancer Cell Int., 2019, 19(1), 81.
[http://dx.doi.org/10.1186/s12935-019-0801-6] [PMID: 30988662]
[45]
Howsaui, H.B.; Basaleh, A.S.; Abdellattif, M.H.; Hassan, W.M.I.; Hussien, M.A. Synthesis, structural investigations, molecular docking, and anticancer activity of some novel Schiff bases and their uranyl complexes. Biomolecules, 2021, 11(8), 1138.
[http://dx.doi.org/10.3390/biom11081138] [PMID: 34439805]
[46]
Kordestani, N.; Amiri Rudbari, H.; Correia, I.; Valente, A.; Côrte-Real, L.; Islam, M.K.; Micale, N.; Braun, J.D.; Herbert, D.E.; Tumanov, N.; Wouters, J.; Enamullah, M. Heteroleptic enantiopure Pd(II)-complexes derived from halogen-substituted Schiff bases and 2-picolylamine: Synthesis, experimental and computational characterization and investigation of the influence of chirality and halogen atoms on the anticancer activity. New J. Chem., 2021, 45(20), 9163-9180.
[http://dx.doi.org/10.1039/D1NJ01491A]
[47]
Rudbari, H.A.; Kordestani, N.; Cuevas-Vicario, J.V.; Zhou, M.; Efferth, T.; Correia, I.; Schirmeister, T.; Barthels, F.; Enamullah, M.; Fernandes, A.R.; Micale, N. Investigation of the influence of chirality and halogen atoms on the anticancer activity of enantiopure palladium( II ) complexes derived from chiral amino-alcohol Schiff bases and 2-picolylamine. New J. Chem., 2022, 46(14), 6470-6483.
[http://dx.doi.org/10.1039/D2NJ00321J]
[48]
Parsekar, S.U.; Paliwal, K.; Haldar, P.; Antharjanam, P.K.S.; Kumar, M. Synthesis, characterization, crystal structure, DNA and HSA Interactions, and anticancer activity of a mononuclear Cu (II) complex with a Schiff base ligand containing a thiadiazoline moiety. ACS Omega, 2022, 7(3), 2881-2896.
[http://dx.doi.org/10.1021/acsomega.1c05750] [PMID: 35097283]
[49]
Deghadi, R.G.; Abbas, A.A.; Mohamed, G.G. Theoretical and experimental investigations of new bis (amino triazole) schiff base ligand: Preparation of its UO 2 (II), Er (III), and La (III) complexes, studying of their antibacterial, anticancer, and molecular docking. Appl. Organomet. Chem., 2021, 35(8), e6292.
[http://dx.doi.org/10.1002/aoc.6292]
[50]
Alyar, S.; Özmen, Ü.Ö. Adem, Ş.; Alyar, H.; Bilen, E.; Kaya, K. Synthesis, spectroscopic characterizations, carbonic anhydrase II inhibitory activity, anticancer activity and docking studies of new Schiff bases of sulfa drugs. J. Mol. Struct., 2021, 1223, 128911.
[http://dx.doi.org/10.1016/j.molstruc.2020.128911]
[51]
Ismail, B.A.; Nassar, D.A.; Abd El-Wahab, Z.H.; Ali, O.A.M. Synthesis, characterization, thermal, DFT computational studies and anticancer activity of furfural-type schiff base complexes. J. Mol. Struct., 2021, 1227, 129393.
[http://dx.doi.org/10.1016/j.molstruc.2020.129393]
[52]
Alkış, M.E.; Keleştemür, Ü.; Alan, Y.; Turan, N.; Buldurun, K. Cobalt and ruthenium complexes with pyrimidine based schiff base: Synthesis, characterization, anticancer activities and electrochemotherapy efficiency. J. Mol. Struct., 2021, 1226, 129402.
[http://dx.doi.org/10.1016/j.molstruc.2020.129402]
[53]
Wongsuwan, S.; Chatwichien, J.; Pinchaipat, B.; Kumphune, S.; Harding, D.J.; Harding, P.; Boonmak, J.; Youngme, S.; Chotima, R. Synthesis, characterization and anticancer activity of Fe(II) and Fe(III) complexes containing N-(8-quinolyl)salicylaldimine Schiff base ligands. J. Biol. Inorg. Chem., 2021, 26(2-3), 327-339.
[http://dx.doi.org/10.1007/s00775-021-01857-9] [PMID: 33606116]
[54]
Omar, M.M.; Abd El-Halim, H.F.; Khalil, E.A.M. Synthesis, characterization, and biological and anticancer studies of mixed ligand complexes with Schiff base and 2,2′‐bipyridine. Appl. Organomet. Chem., 2017, 31(10), e3724.
[http://dx.doi.org/10.1002/aoc.3724]
[55]
Zhang, N.; Fan, Y.; Zhang, Z.; Zuo, J.; Zhang, P.; Wang, Q.; Liu, S.; Bi, C. Syntheses, crystal structures and anticancer activities of three novel transition metal complexes with Schiff base derived from 2-acetylpyridine and l-tryptophan. Inorg. Chem. Commun., 2012, 22, 68-72.
[http://dx.doi.org/10.1016/j.inoche.2012.05.022]
[56]
Andiappan, K.; Sanmugam, A.; Deivanayagam, E.; Karuppasamy, K.; Kim, H.S.; Vikraman, D. In vitro cytotoxicity activity of novel Schiff base ligand–lanthanide complexes. Sci. Rep., 2018, 8(1), 3054.
[http://dx.doi.org/10.1038/s41598-018-21366-1] [PMID: 29445233]
[57]
Li, X.; Bi, C.; Fan, Y.; Zhang, X.; Meng, X.; Cui, L. Synthesis, crystal structure and anticancer activity of a novel ternary copper(II) complex with Schiff base derived from 2-amino-4-fluorobenzoic acid and salicylaldehyde. Inorg. Chem. Commun., 2014, 50, 35-41.
[http://dx.doi.org/10.1016/j.inoche.2014.10.014]
[58]
Chow, M.J.; Licona, C.; Yuan Qiang Wong, D.; Pastorin, G.; Gaiddon, C.; Ang, W.H. Discovery and investigation of anticancer ruthenium-arene Schiff-base complexes via water-promoted combinatorial three-component assembly. J. Med. Chem., 2014, 57(14), 6043-6059.
[http://dx.doi.org/10.1021/jm500455p] [PMID: 25023617]
[59]
Sathiyaraj, S.; Sampath, K.; Butcher, R.J.; Pallepogu, R.; Jayabalakrishnan, C. Designing, structural elucidation, comparison of DNA binding, cleavage, radical scavenging activity and anticancer activity of copper(I) complex with 5-dimethyl-2-phenyl-4-[(pyridin-2-ylmethylene)-amino]-1,2-dihydro-pyrazol-3-one Schiff base ligand. Eur. J. Med. Chem., 2013, 64, 81-89.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.047] [PMID: 23644191]
[60]
Şahin, Ö.; Özdemir, Ü.Ö.; Seferoğlu, N.; Genc, Z.K.; Kaya, K.; Aydıner, B.; Tekin, S.; Seferoğlu, Z. New platinum (II) and palladium (II) complexes of coumarin-thiazole Schiff base with a fluorescent chemosensor properties: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro anticancer activity on various human carcinoma cell lines and computational studies. J. Photochem. Photobiol. B, 2018, 178, 428-439.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.030] [PMID: 29216566]
[61]
Asadi, Z.; Asadi, M.; Dehghani Firuzabadi, F.; Yousefi, R.; Jamshidi, M. Synthesis, characterization, anticancer activity, thermal and electrochemical studies of some novel uranyl Schiff base complexes. J. Indian Chem. Soc., 2014, 11, 423-429.
[62]
Elsayed, S.A.; Butler, I.S.; Claude, B.J.; Mostafa, S.I. Synthesis, characterization and anticancer activity of 3-formylchromone benzoylhydrazone metal complexes. Trans. Met. Chem., 2015, 40(2), 179-187.
[http://dx.doi.org/10.1007/s11243-014-9904-z]
[63]
Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol., 2014, 19, 144-153.
[http://dx.doi.org/10.1016/j.cbpa.2014.02.003] [PMID: 24608084]
[64]
Hannon, M.J. Metal-based anticancer drugs: From a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl. Chem., 2007, 79(12), 2243-2261.
[http://dx.doi.org/10.1351/pac200779122243]
[65]
Kaim, W.; Schwederski, B.; Klein, A. Bioinorganic Chemistry-Inorganic Elements in the Chemistry of Life: An Introduction and Guide; John Wiley & Sons, 2013.
[66]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[67]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinumbased chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[68]
Dasari, S.; Bernard, T.P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[69]
Rigamonti, L.; Reginato, F.; Ferrari, E.; Pigani, L.; Gigli, L.; Demitri, N.; Kopel, P.; Tesarova, B.; Heger, Z. From solid state to in vitro anticancer activity of copper(II) compounds with electronically-modulated NNO Schiff base ligands. Dalton Trans., 2020, 49(41), 14626-14639.
[http://dx.doi.org/10.1039/D0DT03038D] [PMID: 33057512]
[70]
Davis, K.J.; Assadawi, N.M.O.; Pham, S.Q.T.; Birrento, M.L.; Richardson, C.; Beck, J.L.; Willis, A.C.; Ralph, S.F. Effect of structure variations on the quadruplex DNA binding ability of nickel Schiff base complexes. Dalton Trans., 2018, 47(38), 13573-13591.
[http://dx.doi.org/10.1039/C8DT02727G] [PMID: 30206589]
[71]
King, A.P.; Gellineau, H.A.; MacMillan, S.N.; Wilson, J.J. Physical properties, ligand substitution reactions, and biological activity of Co( III )-Schiff base complexes. Dalton Trans., 2019, 48(18), 5987-6002.
[http://dx.doi.org/10.1039/C8DT04606A] [PMID: 30672949]
[72]
Elamathi, C.; Butcher, R.; Prabhakaran, R. Anomalous coordination behaviour of 6‐methyl‐2‐oxo‐1,2‐dihydroquinoline‐3‐carboxaldehyde‐4(N)‐substituted Schiff bases in Cu(II) complexes: Studies of structure, biomolecular interactions and cytotoxicity. Appl. Organomet. Chem., 2019, 33(4), e4659.
[http://dx.doi.org/10.1002/aoc.4659]
[73]
Ayaz, F. Gonul, İ.; Demirbag, B.; Ocakoglu, K. Differential immunomodulatory activities of Schiff base complexes depending on their metal conjugation. Inflammation, 2019, 42(5), 1878-1885.
[http://dx.doi.org/10.1007/s10753-019-01050-w] [PMID: 31267275]
[74]
da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2(1), 1-8.
[http://dx.doi.org/10.1016/j.jare.2010.05.004]
[75]
Denoyer, D.; Masaldan, S.; La Fontaine, S.; Cater, M.A. Targeting copper in cancer therapy: ‘Copper That Cancer’. Metallomics, 2015, 7(11), 1459-1476.
[http://dx.doi.org/10.1039/C5MT00149H] [PMID: 26313539]
[76]
Turski, M.L.; Thiele, D.J. New roles for copper metabolism in cell proliferation, signaling, and disease. J. Biol. Chem., 2009, 284(2), 717-721.
[http://dx.doi.org/10.1074/jbc.R800055200] [PMID: 18757361]
[77]
Brissos, R.F.; Torrents, E. Mariana dos, S.M.F.; Carvalho, P.W.; de Paula Silveira-Lacerda, E.; Caballero, A.B.; Caubet, A.; Massera, C.; Roubeau, O.; Teat, S.J.; Gamez, P. Highly cytotoxic DNA-interacting copper(II) coordination compounds. Metallomics, 2014, 6(10), 1853-1868.
[http://dx.doi.org/10.1039/C4MT00152D] [PMID: 25096758]
[78]
Ali, I.; Lone, M.; Al-Othman, Z.; Al-Warthan, A.; Sanagi, M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[79]
Sreenivasulu, R.; Tej, M.B.; Jadav, S.S.; Sujitha, P.; Kumar, C.G.; Raju, R.R. Synthesis, anticancer evaluation and molecular docking studies of 2,5-bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues. J. Mol. Struct., 2020, 1208, 127875.
[http://dx.doi.org/10.1016/j.molstruc.2020.127875]
[80]
Saeed, H.K.; Sreedharan, S.; Thomas, J.A. Photoactive metal complexes that bind DNA and other biomolecules as cell probes, therapeutics, and theranostics. Chem. Commun., 2020, 56(10), 1464-1480.
[http://dx.doi.org/10.1039/C9CC09312E] [PMID: 31967621]
[81]
Dhanaraj, C.J.; Johnson, J.; Joseph, J.; Joseyphus, R.S. Quinoxaline-based Schiff base transition metal complexes: Review. J. Coord. Chem., 2013, 66(8), 1416-1450.
[http://dx.doi.org/10.1080/00958972.2013.782008]
[82]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[83]
Sumrra, S.H.; Sahrish, I.; Raza, M.A.; Ahmad, Z.; Zafar, M.N.; Chohan, Z.H.; Khalid, M.; Ahmed, S. Efficient synthesis, characterization, and in vitro bactericidal studies of unsymmetrically substituted triazole-derived Schiff base ligand and its transition metal complexes. Monatsh. Chem., 2020, 151(4), 549-557.
[http://dx.doi.org/10.1007/s00706-020-02571-z]
[84]
Ekennia, A.C.; Onwudiwe, D.C.; Osowole, A.A.; Okpareke, O.C.; Olubiyi, O.O.; Lane, J.R. Coordination compounds of heterocyclic bases: Synthesis, characterization, computational and biological studies. Res. Chem. Intermed., 2019, 45(3), 1169-1205.
[http://dx.doi.org/10.1007/s11164-018-3664-x]
[85]
Moro, S.; Chipman, J.K.; Wegener, J.W.; Hamberger, C.; Dekant, W.; Mally, A. Furan in heat‐treated foods: Formation, exposure, toxicity, and aspects of risk assessment. Mol. Nutr. Food Res., 2012, 56(8), 1197-1211.
[http://dx.doi.org/10.1002/mnfr.201200093] [PMID: 22641279]
[86]
Guo, J.; Zhao, R.; Li, J.; Wu, D.; Yang, Q.; Zhang, Y.; Wang, S. Furan formation from ingredient interactions and furan mitigation by sugar alcohols and antioxidants of bamboo leaves in milk beverage model systems. J. Sci. Food Agric., 2019, 99(11), 4993-4999.
[http://dx.doi.org/10.1002/jsfa.9739] [PMID: 30977142]
[87]
Ali, O.A.M. Abd El -Wahab, Z.H.; Ismail, B.A. Synthesis, structural characterization and evaluation of catalytic and antimicrobial properties of new mononuclear Ag(I), Mn(II), Cu(II) and Pt(IV) complexes. J. Mol. Struct., 2017, 1139, 175-195.
[http://dx.doi.org/10.1016/j.molstruc.2017.03.025]
[88]
Mohamed, G.G.; Zayed, E.M.; Hindy, A.M.M. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 76-84.
[http://dx.doi.org/10.1016/j.saa.2015.01.129] [PMID: 25767990]
[89]
Benabid, W.; Ouari, K.; Bendia, S.; Bourzami, R.; Ait Ali, M. Crystal structure, spectroscopic studies, DFT calculations, cyclic voltammetry and biological activity of a copper (II) Schiff base complex. J. Mol. Struct., 2020, 1203, 127313.
[http://dx.doi.org/10.1016/j.molstruc.2019.127313]
[90]
Bandyopadhyay, D.; Layek, M.; Fleck, M.; Saha, R.; Rizzoli, C. Synthesis, crystal structure and antibacterial activity of azido complexes of cobalt(III) containing heteroaromatic Schiff bases. Inorg. Chim. Acta, 2017, 461, 174-182.
[http://dx.doi.org/10.1016/j.ica.2017.02.018]
[91]
Gündüzalp, A.B. Özsen, İ.; Alyar, H.; Alyar, S.; Özbek, N. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies. J. Mol. Struct., 2016, 1120, 259-266.
[http://dx.doi.org/10.1016/j.molstruc.2016.05.002]
[92]
Shelke, V.A.; Jadhav, S.M.; Patharkar, V.R.; Shankarwar, S.G.; Munde, A.S.; Chondhekar, T.K. Synthesis, spectroscopic characterization and thermal studies of some rare earth metal complexes of unsymmetrical tetradentate Schiff base ligand. Arab. J. Chem., 2012, 5(4), 501-507.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.018]
[93]
Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 698-708.
[http://dx.doi.org/10.1016/j.saa.2012.07.051] [PMID: 22885083]
[94]
Morgan, S.M.; El-Sonbati, A.Z.; Eissa, H.R. Geometrical structures, thermal properties and spectroscopic studies of Schiff base complexes: Correlation between ionic radius of metal complexes and DNA binding. J. Mol. Liq., 2017, 240, 752-776.
[http://dx.doi.org/10.1016/j.molliq.2017.05.114]
[95]
Palanimurugan, A.; Dhanalakshmi, A.; Selvapandian, P.; Kulandaisamy, A. Electrochemical behavior, structural, morphological, Calf Thymus-DNA interaction and in vitro antimicrobial studies of synthesized Schiff base transition metal complexes. Heliyon, 2019, 5(7), e02039.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02039] [PMID: 31334376]
[96]
Marchetti, F.; Pettinari, C.; Di Nicola, C.; Tombesi, A.; Pettinari, R. Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes. Coord. Chem. Rev., 2019, 401, 213069.
[http://dx.doi.org/10.1016/j.ccr.2019.213069]
[97]
Finkelstein, A.E.; Walz, D.T.; Batista, V.; Mizraji, M.; Roisman, F.; Misher, A. Auranofin. New oral gold compound for treatment of rheumatoid arthritis. Ann. Rheum. Dis., 1976, 35(3), 251-257.
[http://dx.doi.org/10.1136/ard.35.3.251] [PMID: 791161]
[98]
Milacic, V.; Fregona, D.; Dou, Q.P. Gold complexes as prospective metal-based anticancer drugs. Histol. Histopathol., 2008, 23(1), 101-108.
[PMID: 17952862]
[99]
Nardon, C.; Boscutti, G.; Fregona, D. Beyond platinums: Gold complexes as anticancer agents. Anticancer Res., 2014, 34(1), 487-492.
[PMID: 24403506]
[100]
Nasser, A.T.; Al-Asadi, R. Schiff bases ligands derived from o-phthalaldehyde and their metal complexes with Cu2+ and Ni2+: Synthesis, anti-breast cancer and molecular docking study. Trends in Sciences, 2023, 20(9), 5675-5675.
[http://dx.doi.org/10.48048/tis.2023.5675]
[101]
Hosny, S.; Ragab, M.S.; Abd El-Baki, R.F. Synthesis of a new sulfadimidine Schiff base and their nano complexes as potential anti-COVID-19 and anti-cancer activity. Sci. Rep., 2023, 13(1), 1502.
[http://dx.doi.org/10.1038/s41598-023-28402-9] [PMID: 36707628]
[102]
Al-Fakeh, M.S.; Alsikhan, M.A.; Alnawmasi, J.S. Physico-chemical study of Mn(II), Co(II), Cu(II), Cr(III), and Pd(II) complexes with schiff-base and aminopyrimidyl derivatives and anti-cancer, antioxidant, antimicrobial applications. Molecules, 2023, 28(6), 2555.
[http://dx.doi.org/10.3390/molecules28062555] [PMID: 36985526]
[103]
Moscicki, A.B.; Darragh, T.M.; Berry-Lawhorn, J.M.; Roberts, J.M.; Khan, M.J.; Boardman, L.A.; Palefsky, J.M. Screening for anal cancer in women. J Low Genit Tract Dis, 2015, 19(3 0 1), S26-S41.
[http://dx.doi.org/10.1097/LGT.0000000000000117]
[104]
Amolegbe, S.A.; Akinremi, C.A.; Adewuyi, S.; Lawal, A.; Bamigboye, M.O.; Obaleye, J.A. Some nontoxic metal-based drugs for selected prevalent tropical pathogenic diseases. J. Biol. Inorg. Chem., 2017, 22(1), 1-18.
[http://dx.doi.org/10.1007/s00775-016-1421-4] [PMID: 27904956]
[105]
Levina, A.; Crans, D.C.; Lay, P.A. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord. Chem. Rev., 2017, 352, 473-498.
[http://dx.doi.org/10.1016/j.ccr.2017.01.002]
[106]
Egorova, K.S.; Ananikov, V.P. Toxicity of metal compounds: Knowledge and myths. Organometallics, 2017, 36(21), 4071-4090.
[http://dx.doi.org/10.1021/acs.organomet.7b00605]
[107]
Majid, S.A.; Mir, J.M.; Jan, G.; Shalla, A.H. Schiff base complexes, cancer cell lines, and anticancer evaluation: A review. J. Coord. Chem., 2022, 75(15-16), 2018-2038.
[http://dx.doi.org/10.1080/00958972.2022.2131402]
[108]
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[109]
Diehn, M.; Cho, R.W.; Lobo, N.A.; Kalisky, T.; Dorie, M.J.; Kulp, A.N.; Clarke, M.F. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature, 2009, 458(7239), 780-783.
[110]
Aldib, I.; Soubhye, J.; Zouaoui Boudjeltia, K.; Vanhaeverbeek, M.; Rousseau, A.; Furtmüller, P.G.; Obinger, C.; Dufrasne, F.; Nève, J.; Van Antwerpen, P.; Prévost, M. Evaluation of new scaffolds of myeloperoxidase inhibitors by rational design combined with high-throughput virtual screening. J. Med. Chem., 2012, 55(16), 7208-7218.
[http://dx.doi.org/10.1021/jm3007245] [PMID: 22793255]
[111]
Sánchez-Valle, V.; Chávez-Tapia, N.C.; Uribe, M.; Méndez-Sánchez, N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr. Med. Chem., 2012, 19(28), 4850-4860.
[http://dx.doi.org/10.2174/092986712803341520] [PMID: 22709007]
[112]
Halliwell, B.; Gutteridge, J.M. Free radicals in biology and medicine; Oxford university press: USA, 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[113]
de Souza, I.C.A.; Faro, L.V.; Pinheiro, C.B.; Gonzaga, D.T.G.; da Silva, F.C.; Ferreira, V.F.; Miranda, F.S.; Scarpellini, M.; Lanznaster, M. Investigation of cobalt(III)-triazole systems as prototypes for hypoxia-activated drug delivery. Dalton Trans., 2016, 45(35), 13671-13674.
[http://dx.doi.org/10.1039/C6DT02456D] [PMID: 27488398]
[114]
Yamamoto, N.; Renfrew, A.K.; Kim, B.J.; Bryce, N.S.; Hambley, T.W. Dual targeting of hypoxic and acidic tumor environments with a cobalt(III) chaperone complex. J. Med. Chem., 2012, 55(24), 11013-11021.
[http://dx.doi.org/10.1021/jm3014713] [PMID: 23199008]
[115]
Renfrew, A.K.; Bryce, N.S.; Hambley, T.W. Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: A XANES and FLIM study. Chem. Sci. (Camb.), 2013, 4(9), 3731-3739.
[http://dx.doi.org/10.1039/c3sc51530c]
[116]
Bustamante, F.L.S.; Metello, J.M.; de Castro, F.A.V.; Pinheiro, C.B.; Pereira, M.D.; Lanznaster, M. Lawsone dimerization in cobalt(III) complexes toward the design of new prototypes of bioreductive prodrugs. Inorg. Chem., 2013, 52(3), 1167-1169.
[http://dx.doi.org/10.1021/ic302175t] [PMID: 23343393]
[117]
Ware, D.C.; Brothers, P.J.; Clark, G.R.; Denny, W.A.; Palmer, B.D.; Wilson, W.R. Synthesis, structures and hypoxia-selective cytotoxicity of cobalt(III) complexes containing tridentate amine and nitrogen mustard ligands. J. Chem. Soc., Dalton Trans., 2000, (6), 925-932.
[http://dx.doi.org/10.1039/a909447d]
[118]
Parker, L.L.; Lacy, S.M.; Farrugia, L.J.; Evans, C.; Robins, D.J.; O’Hare, C.C.; Hartley, J.A.; Jaffar, M.; Stratford, I.J. A novel design strategy for stable metal complexes of nitrogen mustards as bioreductive prodrugs. J. Med. Chem., 2004, 47(23), 5683-5689.
[http://dx.doi.org/10.1021/jm049866w] [PMID: 15509167]
[119]
Craig, P.R.; Brothers, P.J.; Clark, G.R.; Wilson, W.R.; Denny, W.A.; Ware, D.C. Anionic carbonato and oxalato cobalt(iii) nitrogen mustard complexes. Dalton Trans., 2004, 611-618.
[120]
Failes, T.W.; Hambley, T.W. Models of hypoxia activated prodrugs: Co(iii) complexes of hydroxamic acids. Dalton Trans., 2006, (15), 1895-1901.
[http://dx.doi.org/10.1039/b512322d] [PMID: 16585977]
[121]
Renfrew, A.K.; Bryce, N.S.; Hambley, T. Cobalt (III) chaperone complexes of curcumin: Photoreduction, cellular accumulation and light selective toxicity towards tumour cells. Chemistry, 2015, 21(43), 15224-15234.
[http://dx.doi.org/10.1002/chem.201502702] [PMID: 26471438]
[122]
Bansal, A.; Saleh-E-In, M.M.; Kar, P.; Roy, A.; Sharma, N.R. Synthesis of carvacrol derivatives as potential new anticancer agent against lung cancer. Molecules, 2022, 27(14), 4597.
[http://dx.doi.org/10.3390/molecules27144597] [PMID: 35889476]
[123]
Yan, F.; Cao, X.X.; Jiang, H.X.; Zhao, X.L.; Wang, J.Y.; Lin, Y.H.; Liu, Q.L.; Zhang, C.; Jiang, B.; Guo, F. A novel watersoluble gossypol derivative increases chemotherapeutic sensitivity and promotes growth inhibition in colon cancer. J. Med. Chem., 2010, 53(15), 5502-5510.
[http://dx.doi.org/10.1021/jm1001698] [PMID: 20684596]
[124]
O’Neal, S.L.; Zheng, W. Manganese toxicity upon overexposure: A decade in review. Curr. Environ. Health Rep., 2015, 2(3), 315-328.
[http://dx.doi.org/10.1007/s40572-015-0056-x] [PMID: 26231508]
[125]
Zhang, C.J.; Valic, M.S.; Chen, J.; Zheng, G. In vivo potential of manganese chelated porphysomes as MRI contrast agents. SFJ, 2017, 3(1), 47-53.
[http://dx.doi.org/10.17975/sfj-2017-007]
[126]
Chang, G.L.; Li, Z.; Niu, M.J. andSu-NaWang,“Studiesonthe manganese and copper complexes derived from chiral Schiff base: Synthesis, structure, cytotoxicity and DNA/BSA inter- action,”. J. Coord. Chem., 2019, 72(14), 2422-2436.
[http://dx.doi.org/10.1080/00958972.2019.1652275]
[127]
Haque, M.; Rahman, M.Z.; Pervin, M.; Kabir, M.H.; Imran, M.S. Biological screening of some ferrocene deriv- ative metal complexes. Pak. J. Biol. Sci., 2005, 8(12), 1746-1750.
[http://dx.doi.org/10.3923/pjbs.2005.1746.1750]
[128]
Prihantono, I.R.; Irfandi, R.; Raya, I. Warsinggih, Potential anticancer activity of Mn (II) complexes containing arginine dithiocarbamate ligand on MCF-7 breast cancer cell lines. Ann. Med. Surg., 2020, 60, 396-402.
[http://dx.doi.org/10.1016/j.amsu.2020.11.018] [PMID: 33235715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy