Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

In silico Identification of MHC Displayed Tumor Associated Peptides in Ovarian Cancer for Multi-Epitope Vaccine Construct

Author(s): Shivashish Dobhal, Kanchan Chauhan, Sachin Kumar, Sristy Shikha, Mukesh K. Jogi, Dinesh Kumar, Anuj Kumar, Varun K. Jaiswal and Pramod Kumar*

Volume 24, Issue 12, 2024

Published on: 24 January, 2024

Page: [1401 - 1413] Pages: 13

DOI: 10.2174/0118715303169428231205173914

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Recognizing the potential of the immune system, immunotherapies have brought about a revolution in the treatment of cancer. Low tumour mutational burden and strong immunosuppression in the peritoneal tumor microenvironment (TME) lead to poor outcomes of immune checkpoint inhibition (ICI) and CART cell therapy in ovarian cancer. Alternative immunotherapeutic strategies are of utmost importance to achieve sound clinical success.

Introduction: The development of peptide vaccines based on tumor-associated antigens (TAAs) for ovarian cancer cells can be a potential target to provoke an anti-tumor immune response and subsequent clearance of tumour cells. The purpose of this in silico study was to find potential epitopes for a multi-epitope vaccine construct using the immunopeptidomics landscape of ovarian carcinoma.

Methods: The four TAAs (MUC16, IDO1, FOLR1, and DDX5) were selected for potential epitopes prediction. The epitopes for B-cells, helper T-lymphocytes (HTL), and Cytotoxic Tlymphocytes (CTL) were predicted on the basis of antigenic, allergenic, and toxic properties. These epitopes were combined with suitable linkers and an adjuvant to form a multi-epitope construct.

Results: Four HTLs, 13 CTLs, and 6 potential B-cell epitopes were selected from the predicted epitope. The designed multi-epitope construct was potentially immunogenic, non-toxic, and non-allergenic. Physicochemical properties and higher-order structural analyses of the final construct revealed a potential vaccine candidate.

Conclusion: The designed vaccine construct has the potential to trigger both humoral and cellular immune responses and may be employed as a therapeutic immunization candidate for ovarian malignancies. However, further in vitro and animal experimentation is required to establish the efficacy of the vaccine candidate.

Keywords: Ovarian cancer, immune checkpoint inhibition (ICI), tumor-associated antigens (TAAs), in silico evaluation, MUC16, epitopes.

Graphical Abstract
[1]
Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment (PDQ®). In: PDQ Cancer Information Summaries; National Cancer Institute: US, 2021.
[2]
Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet, 2014, 384(9951), 1376-1388.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7] [PMID: 24767708]
[3]
Mancari, R. Development of new medical treatment for epithelial ovarian cancer recurrence. Gland Surg., 2020, 9(4), 1149.
[http://dx.doi.org/10.21037/gs-20-413]
[4]
Hennessy, B.T.; Coleman, R.L.; Markman, M. Ovarian cancer. Lancet, 2009, 374(9698), 1371-1382.
[http://dx.doi.org/10.1016/S0140-6736(09)61338-6] [PMID: 19793610]
[5]
Crusz, S.M.; Balkwill, F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol., 2015, 12(10), 584-596.
[http://dx.doi.org/10.1038/nrclinonc.2015.105] [PMID: 26122183]
[6]
Ferris, R.L.; Licitra, L. PD-1 immunotherapy for recurrent or metastatic HNSCC. Lancet, 2019, 394(10212), 1882-1884.
[http://dx.doi.org/10.1016/S0140-6736(19)32539-5] [PMID: 31679948]
[7]
Hamanishi, J.; Mandai, M.; Ikeda, T.; Minami, M.; Kawaguchi, A.; Murayama, T.; Kanai, M.; Mori, Y.; Matsumoto, S.; Chikuma, S.; Matsumura, N.; Abiko, K.; Baba, T.; Yamaguchi, K.; Ueda, A.; Hosoe, Y.; Morita, S.; Yokode, M.; Shimizu, A.; Honjo, T.; Konishi, I. Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J. Clin. Oncol., 2015, 33(34), 4015-4022.
[http://dx.doi.org/10.1200/JCO.2015.62.3397] [PMID: 26351349]
[8]
Jelinek, T.; Mihalyova, J.; Kascak, M.; Duras, J.; Hajek, R.P.D. ‐1/PD ‐L1 inhibitors in haematological malignancies: Update 2017. Immunology, 2017, 152(3), 357-371.
[http://dx.doi.org/10.1111/imm.12788] [PMID: 28685821]
[9]
Stevanović, S.; Pasetto, A.; Helman, S.R.; Gartner, J.J.; Prickett, T.D.; Howie, B.; Robins, H.S.; Robbins, P.F.; Klebanoff, C.A.; Rosenberg, S.A.; Hinrichs, C.S. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science, 2017, 356(6334), 200-205.
[http://dx.doi.org/10.1126/science.aak9510] [PMID: 28408606]
[10]
Ning, F.; Cole, C.B.; Annunziata, C.M. Driving Immune Responses in the Ovarian Tumor Microenvironment. Front. Oncol., 2021, 10, 604084.
[http://dx.doi.org/10.3389/fonc.2020.604084] [PMID: 33520713]
[11]
Spear, T.T.; Nagato, K.; Nishimura, M.I. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol. Immunother., 2016, 65(6), 631-649.
[http://dx.doi.org/10.1007/s00262-016-1842-5] [PMID: 27138532]
[12]
Vogelstein, B. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122]
[13]
Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; Kiezun, A.; Hammerman, P.S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A.H.; Pugh, T.J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortés, M.L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D.I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A.M.; Lohr, J.; Landau, D.A.; Wu, C.J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S.A.; Mora, J.; Lee, R.S.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S.B.; Roberts, C.W.M.; Biegel, J.A.; Stegmaier, K.; Bass, A.J.; Garraway, L.A.; Meyerson, M.; Golub, T.R.; Gordenin, D.A.; Sunyaev, S.; Lander, E.S.; Getz, G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499(7457), 214-218.
[http://dx.doi.org/10.1038/nature12213] [PMID: 23770567]
[14]
Pietragalla, A.; Duranti, S.; Daniele, G.; Nero, C.; Ciccarone, F.; Lorusso, D.; Fagotti, A.; Scambia, G. Oregovomab: An investigational agent for the treatment of advanced ovarian cancer. Expert Opin. Investig. Drugs, 2021, 30(2), 103-110.
[http://dx.doi.org/10.1080/13543784.2021.1868436] [PMID: 33423551]
[15]
Brewer, M.; Angioli, R.; Scambia, G.; Lorusso, D.; Terranova, C.; Panici, P.B.; Raspagliesi, F.; Scollo, P.; Plotti, F.; Ferrandina, G.; Salutari, V.; Ricci, C.; Braly, P.; Holloway, R.; Method, M.; Madiyalakan, M.; Bayever, E.; Nicodemus, C. Front-line chemo-immunotherapy with carboplatin-paclitaxel using oregovomab indirect immunization in advanced ovarian cancer: A randomized phase II study. Gynecol. Oncol., 2020, 156(3), 523-529.
[http://dx.doi.org/10.1016/j.ygyno.2019.12.024] [PMID: 31916979]
[16]
Lee, D.H. Mucin1 and mucin16: Therapeutic targets for cancer therapy. Pharmaceuticals, 2021, 14(10), 1053.
[http://dx.doi.org/10.3390/ph14101053]
[17]
Kalli, K.R.; Block, M.S.; Kasi, P.M.; Erskine, C.L.; Hobday, T.J.; Dietz, A.; Padley, D.; Gustafson, M.P.; Shreeder, B.; Puglisi-Knutson, D.; Visscher, D.W.; Mangskau, T.K.; Wilson, G.; Knutson, K.L. Folate receptor alpha peptide vaccine generates immunity in breast and ovari-an cancer patients. Clin. Cancer Res., 2018, 24(13), 3014-3025.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2499] [PMID: 29545464]
[18]
Vilgelm, A.E.; Johnson, D.B.; Richmond, A. Combinatorial approach to cancer immunotherapy: Strength in numbers. J. Leukoc. Biol., 2016, 100(2), 275-290.
[http://dx.doi.org/10.1189/jlb.5RI0116-013RR] [PMID: 27256570]
[19]
Jain, N.; Shankar, U.; Majee, P.; Kumar, A. Scrutinizing the SARS-CoV-2 protein information for designing an effective vaccine encom-passing both the T-cell and B-cell epitopes. Infect. Genet. Evol., 2021, 87, 104648.
[http://dx.doi.org/10.1016/j.meegid.2020.104648] [PMID: 33264668]
[20]
Schuster, H.; Peper, J.K.; Bösmüller, H.C.; Röhle, K.; Backert, L.; Bilich, T.; Ney, B.; Löffler, M.W.; Kowalewski, D.J.; Trautwein, N.; Rabsteyn, A.; Engler, T.; Braun, S.; Haen, S.P.; Walz, J.S.; Schmid-Horch, B.; Brucker, S.Y.; Wallwiener, D.; Kohlbacher, O.; Fend, F.; Rammensee, H.G.; Stevanović, S.; Staebler, A.; Wagner, P. The immunopeptidomic landscape of ovarian carcinomas. Proc. Natl. Acad. Sci. USA, 2017, 114(46), E9942-E9951.
[http://dx.doi.org/10.1073/pnas.1707658114] [PMID: 29093164]
[21]
Shikha, S.; Jogi, M.K.; Jha, R.; Kumar, R.A.; Sah, T.; Singh, P.; Sagar, R.; Kumar, A.; Marwal, R.; Ponnusamy, K.; Agarwal, S.M.; Kumar, R.S.; Arif, N.; Bharadwaj, M.; Singh, S.; Kumar, P. Genome sequencing of SARS-CoV-2 omicron variants in Delhi reveals alterations in immunogenic regions in spike glycoprotein. Front. Immunol., 2023, 14, 1209513.
[http://dx.doi.org/10.3389/fimmu.2023.1209513] [PMID: 37849762]
[22]
Gonzalez-Galarza, F.F.; McCabe, A.; Santos, E.J.M.; Jones, J.; Takeshita, L.; Ortega-Rivera, N.D.; Cid-Pavon, G.M.D.; Ramsbottom, K.; Ghattaoraya, G.; Alfirevic, A.; Middleton, D.; Jones, A.R. Allele frequency net database (AFND) 2020 update: Gold-standard data classifi-cation, open access genotype data and new query tools. Nucleic Acids Res., 2019, 48(D1), gkz1029.
[http://dx.doi.org/10.1093/nar/gkz1029] [PMID: 31722398]
[23]
Doytchinova, I.A.; Flower, D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8(1), 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[24]
Calis, J.J.A.; Maybeno, M.; Greenbaum, J.A.; Weiskopf, D.; De Silva, A.D.; Sette, A.; Keşmir, C.; Peters, B. Properties of MHC class I presented peptides that enhance immunogenicity. PLOS Comput. Biol., 2013, 9(10), e1003266.
[http://dx.doi.org/10.1371/journal.pcbi.1003266] [PMID: 24204222]
[25]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[26]
Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I.; Allergen, F.P.; Allergen, F.P. Allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014, 30(6), 846-851.
[http://dx.doi.org/10.1093/bioinformatics/btt619] [PMID: 24167156]
[27]
Dhanda, S.K.; Gupta, S.; Vir, P. Prediction of IL4 inducing peptides. J. Immunol. Res., 2013, 2013, 263952.
[http://dx.doi.org/10.1155/2013/263952]
[28]
Dhanda, S.K.; Vir, P.; Raghava, G.P.S. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct, 2013, 8(1), 30.
[http://dx.doi.org/10.1186/1745-6150-8-30] [PMID: 24304645]
[29]
Saha, S.; Raghava, G.P.S. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins, 2006, 65(1), 40-48.
[http://dx.doi.org/10.1002/prot.21078] [PMID: 16894596]
[30]
Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res., 2003, 31(13), 3784-3788.
[http://dx.doi.org/10.1093/nar/gkg563] [PMID: 12824418]
[31]
Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res., 2004, 32(Web Server), W526-W531.
[http://dx.doi.org/10.1093/nar/gkh468] [PMID: 15215442]
[32]
Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res., 2012, 40, W294-W297.
[http://dx.doi.org/10.1093/nar/gks493]
[33]
Corulli, L.R.; Cecil, D.L.; Gad, E.; Koehnlein, M.; Coveler, A.L.; Childs, J.S.; Lubet, R.A.; Disis, M.L. Multi-epitope-based vaccines for colon cancer treatment and prevention. Front. Immunol., 2021, 12, 729809.
[http://dx.doi.org/10.3389/fimmu.2021.729809] [PMID: 34526999]
[34]
Dhingra, A.; Sharma, D.; Kumar, A.; Singh, S.; Kumar, P. Microbiome and development of ovarian cancer. Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(11), 1073-1090.
[http://dx.doi.org/10.2174/1871530322666220509034847] [PMID: 35532247]
[35]
Kaumaya, P.T.P. Immunogenicity and antitumor efficacy of a novel human PD-1 B-cell vaccine (PD1-Vaxx) and combination immuno-therapy with dual trastuzumab/pertuzumab-like HER-2 B-cell epitope vaccines (B-Vaxx) in a syngeneic mouse model. OncoImmunology, 2020, 9(1), 1818437.
[http://dx.doi.org/10.1080/2162402X.2020.1818437]
[36]
Iversen, T.Z.; Engell-Noerregaard, L.; Ellebaek, E.; Andersen, R.; Larsen, S.K.; Bjoern, J.; Zeyher, C.; Gouttefangeas, C.; Thomsen, B.M.; Holm, B. thor Straten, P.; Mellemgaard, A.; Andersen, M.H.; Svane, I.M. Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin. Cancer Res., 2014, 20(1), 221-232.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1560] [PMID: 24218513]
[37]
Le Saux, Olivia; Ray-Coquard, Isabelle Labidi-Galy, I.S. Challenges for immunotherapy for the treatment of platinum resistant ovarian cancer. Semin. Cancer Biol., 2021, 77, 127-143.
[http://dx.doi.org/10.1016/j.semcancer.2020.08.017]
[38]
Lisi, L.; Lacal, P.M.; Martire, M.; Navarra, P.; Graziani, G. Clinical experience with CTLA-4 blockade for cancer immunotherapy: From the monospecific monoclonal antibody ipilimumab to probodies and bispecific molecules targeting the tumor microenvironment. Pharmacol. Res., 2022, 175, 105997.
[http://dx.doi.org/10.1016/j.phrs.2021.105997] [PMID: 34826600]
[39]
Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 2018, 18(3), 168-182.
[http://dx.doi.org/10.1038/nri.2017.131] [PMID: 29226910]
[40]
Hirayama, M.; Nishimura, Y. The present status and future prospects of peptide-based cancer vaccines. Int. Immunol., 2016, 28(7), 319-328.
[http://dx.doi.org/10.1093/intimm/dxw027] [PMID: 27235694]
[41]
Thommen, D.S.; Schumacher, T.N. T cell dysfunction in cancer. Cancer Cell, 2018, 33(4), 547-562.
[http://dx.doi.org/10.1016/j.ccell.2018.03.012] [PMID: 29634943]
[42]
Saxena, M.; Bhardwaj, N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer, 2018, 4(2), 119-137.
[http://dx.doi.org/10.1016/j.trecan.2017.12.007] [PMID: 29458962]
[43]
Pourseif, M.M. A novel B-and helper T-cell epitopes-based prophylactic vaccine against Echinococcus granulosus. BioImpacts: BI,, 2018, 8(1), 39.
[http://dx.doi.org/10.34172/bi.2021.11]
[44]
Pourseif, M.M.; Moghaddam, G.; Naghili, B.; Saeedi, N.; Parvizpour, S.; Nematollahi, A.; Omidi, Y. A novel in silico minigene vaccine based on CD4 + T-helper and B-cell epitopes of EG95 isolates for vaccination against cystic echinococcosis. Comput. Biol. Chem., 2018, 72, 150-163.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.11.008] [PMID: 29195784]
[45]
Chinnadurai, R.K.; Khan, N.; Meghwanshi, G.K.; Ponne, S.; Althobiti, M.; Kumar, R. Current research status of anti-cancer peptides: Mechanism of action, production, and clinical applications. Biomed. Pharmacother., 2023, 164, 114996.
[http://dx.doi.org/10.1016/j.biopha.2023.114996] [PMID: 37311281]
[46]
Cistrone, P.A.; Bird, M.J.; Flood, D.T.; Silvestri, A.P.; Hintzen, J.C.J.; Thompson, D.A.; Dawson, P.E. Native chemical ligation of peptides and proteins. Curr. Protoc. Chem. Biol., 2019, 11(1), e61.
[http://dx.doi.org/10.1002/cpch.61] [PMID: 30645048]
[47]
Hosseinkhani, N.; Derakhshani, A.; Kooshkaki, O.; Abdoli Shadbad, M.; Hajiasgharzadeh, K.; Baghbanzadeh, A.; Safarpour, H.; Mokh-tarzadeh, A.; Brunetti, O.; Yue, S.; Silvestris, N.; Baradaran, B. Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies? Int. J. Mol. Sci., 2020, 21(21), 8305.
[http://dx.doi.org/10.3390/ijms21218305] [PMID: 33167514]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy