Review Article

细胞外囊泡参与肿瘤转移不同阶段及靶向策略的研究进展

卷 31, 期 28, 2024

发表于: 19 January, 2024

页: [4495 - 4509] 页: 15

弟呕挨: 10.2174/0109298673273299231121044055

价格: $65

Open Access Journals Promotions 2
摘要

肿瘤转移是肿瘤发生中最致命的事件。尽管进行了广泛的研究,但在早期转移检测和靶向策略方面仍存在未解决的挑战。细胞外囊泡(EVs)及其对肿瘤发生相关事件的影响是当前研究的重点。ev代表了大量的生物标志物和信息,它们被认为是肿瘤进展和肿瘤预后和监测的关键决定因素。ev是肿瘤细胞与其附近基质之间细胞间通讯的关键介质之一。它们参与了从侵袭到转移前生态位(pmn)的形成,以及肿瘤细胞在目标器官的最终生长和定植的不同步骤。ev及其运载物的膜组分可用于肿瘤转移的识别,其靶向治疗是一种很有前途的癌症治疗策略。在这篇综述中,我们旨在讨论目前对肿瘤中基于EV的转移倾向的理解,提供EV参与不同转移步骤的最新信息,并提出一些阻止这种破坏性疾病的策略。

关键词: 细胞外囊泡(EV)、外泌体、转移、肿瘤微环境(TME)、癌症相关成纤维细胞(CAF)、转化生长因子(TGF)、转移前生态位(PMN)。

[1]
Hsu, Y.L.; Huang, M.S.; Hung, J.Y.; Chang, W.A.; Tsai, Y.M.; Pan, Y.C.; Lin, Y.S.; Tsai, H.P.; Kuo, P.L. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer. Oncogene, 2020, 39(4), 739-753.
[http://dx.doi.org/10.1038/s41388-019-1024-y] [PMID: 31558801]
[2]
Majidpoor, J.; Mortezaee, K. Steps in metastasis: An updated review. Med. Oncol., 2021, 38(1), 3.
[http://dx.doi.org/10.1007/s12032-020-01447-w] [PMID: 33394200]
[3]
Mortezaee, K. Organ tropism in solid tumor metastasis: An updated review. Future Oncol., 2021, 17(15), 1943-1961.
[http://dx.doi.org/10.2217/fon-2020-1103] [PMID: 33728946]
[4]
Crescitelli, R.; Lässer, C.; Lötvall, J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat. Protoc., 2021, 16(3), 1548-1580.
[http://dx.doi.org/10.1038/s41596-020-00466-1] [PMID: 33495626]
[5]
Chen, W.; Zuo, F.; Zhang, K.; Xia, T.; Lei, W.; Zhang, Z.; Bao, L.; You, Y. Exosomal MIF derived from nasopharyngeal carcinoma promotes metastasis by repressing ferroptosis of macrophages. Front. Cell Dev. Biol., 2021, 9, 791187.
[http://dx.doi.org/10.3389/fcell.2021.791187] [PMID: 35036405]
[6]
Adams, S.D. Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr. Biol., 2021, 31(7), 1403-1416. e7
[http://dx.doi.org/10.1016/j.cub.2021.01.028]
[7]
Zomer, A.; Maynard, C.; Verweij, F.J.; Kamermans, A.; Schäfer, R.; Beerling, E.; Schiffelers, R.M.; de Wit, E.; Berenguer, J.; Ellenbroek, S.I.J.; Wurdinger, T.; Pegtel, D.M.; van Rheenen, J. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell, 2015, 161(5), 1046-1057.
[http://dx.doi.org/10.1016/j.cell.2015.04.042] [PMID: 26000481]
[8]
Treps, L.; Edmond, S.; Harford-Wright, E.; Galan-Moya, E.M.; Schmitt, A.; Azzi, S.; Citerne, A.; Bidère, N.; Ricard, D.; Gavard, J. Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene, 2016, 35(20), 2615-2623.
[http://dx.doi.org/10.1038/onc.2015.317] [PMID: 26364614]
[9]
Nishida-Aoki, N.; Tominaga, N.; Takeshita, F.; Sonoda, H.; Yoshioka, Y.; Ochiya, T. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol. Ther., 2017, 25(1), 181-191.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.009] [PMID: 28129113]
[10]
Clark, R.T. Imaging flow cytometry enhances particle detection sensitivity for extracellular vesicle analysis. Nat. Methods, 2015, 12(4), i-ii.
[http://dx.doi.org/10.1038/nmeth.f.380] [PMID: 25751143]
[11]
Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; Rubinstein, E.; Boncompain, G.; Perez, F.; Théry, C. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun., 2021, 12(1), 4389.
[http://dx.doi.org/10.1038/s41467-021-24384-2] [PMID: 34282141]
[12]
Luga, V.; Zhang, L.; Viloria-Petit, A.M.; Ogunjimi, A.A.; Inanlou, M.R.; Chiu, E.; Buchanan, M.; Hosein, A.N.; Basik, M.; Wrana, J.L. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 2012, 151(7), 1542-1556.
[http://dx.doi.org/10.1016/j.cell.2012.11.024] [PMID: 23260141]
[13]
Andreu, Z.; Yáñez-Mó, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol., 2014, 5, 442.
[http://dx.doi.org/10.3389/fimmu.2014.00442] [PMID: 25278937]
[14]
Al-Nedawi, K.; Meehan, B.; Micallef, J.; Lhotak, V.; May, L.; Guha, A.; Rak, J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol., 2008, 10(5), 619-624.
[http://dx.doi.org/10.1038/ncb1725] [PMID: 18425114]
[15]
Balaj, L.; Lessard, R.; Dai, L.; Cho, Y.J.; Pomeroy, S.L.; Breakefield, X.O.; Skog, J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun., 2011, 2(1), 180.
[http://dx.doi.org/10.1038/ncomms1180] [PMID: 21285958]
[16]
Fan, S.J.; Kroeger, B.; Marie, P.P.; Bridges, E.M.; Mason, J.D.; McCormick, K.; Zois, C.E.; Sheldon, H.; Khalid Alham, N.; Johnson, E.; Ellis, M.; Stefana, M.I.; Mendes, C.C.; Wainwright, S.M.; Cunningham, C.; Hamdy, F.C.; Morris, J.F.; Harris, A.L.; Wilson, C.; Goberdhan, D.C.I. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J., 2020, 39(16), e103009.
[http://dx.doi.org/10.15252/embj.2019103009] [PMID: 32720716]
[17]
Takahashi, A.; Okada, R.; Nagao, K.; Kawamata, Y.; Hanyu, A.; Yoshimoto, S.; Takasugi, M.; Watanabe, S.; Kanemaki, M.T.; Obuse, C.; Hara, E. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun., 2017, 8(1), 15287.
[http://dx.doi.org/10.1038/ncomms15287] [PMID: 28508895]
[18]
Takasugi, M.; Okada, R.; Takahashi, A.; Virya Chen, D.; Watanabe, S.; Hara, E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun., 2017, 8(1), 15729.
[http://dx.doi.org/10.1038/ncomms15728] [PMID: 28585531]
[19]
Samuel, M.; Fonseka, P.; Sanwlani, R.; Gangoda, L.; Chee, S.H.; Keerthikumar, S.; Spurling, A.; Chitti, S.V.; Zanker, D.; Ang, C.S.; Atukorala, I.; Kang, T.; Shahi, S.; Marzan, A.L.; Nedeva, C.; Vennin, C.; Lucas, M.C.; Cheng, L.; Herrmann, D.; Pathan, M.; Chisanga, D.; Warren, S.C.; Zhao, K.; Abraham, N.; Anand, S.; Boukouris, S.; Adda, C.G.; Jiang, L.; Shekhar, T.M.; Baschuk, N.; Hawkins, C.J.; Johnston, A.J.; Orian, J.M.; Hoogenraad, N.J.; Poon, I.K.; Hill, A.F.; Jois, M.; Timpson, P.; Parker, B.S.; Mathivanan, S. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat. Commun., 2021, 12(1), 3950.
[http://dx.doi.org/10.1038/s41467-021-24273-8] [PMID: 34168137]
[20]
Liu, Y.; Fan, J.; Xu, T.; Ahmadinejad, N.; Hess, K.; Lin, S.H.; Zhang, J.; Liu, X.; Liu, L.; Ning, B.; Liao, Z.; Hu, T.Y. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non–small cell lung cancer after concurrent chemoradiation. Sci. Adv., 2020, 6(11), eaaz6162.
[http://dx.doi.org/10.1126/sciadv.aaz6162] [PMID: 32195353]
[21]
Sun, J.; Lu, Z.; Fu, W.; Lu, K.; Gu, X.; Xu, F.; Dai, J.; Yang, Y.; Jiang, J. Exosome-derived ADAM17 promotes liver metastasis in colorectal Cancer. Front. Pharmacol., 2021, 12, 734351.
[http://dx.doi.org/10.3389/fphar.2021.734351] [PMID: 34650435]
[22]
Cardeñes, B.; Clares, I.; Toribio, V.; Pascual, L.; López-Martín, S.; Torres-Gomez, A.; Sainz de la Cuesta, R.; Lafuente, E.M.; López-Cabrera, M.; Yáñez-Mó, M.; Cabañas, C. Cellular integrin α5β1 and exosomal ADAM17 mediate the binding and uptake of exosomes produced by colorectal carcinoma cells. Int. J. Mol. Sci., 2021, 22(18), 9938.
[http://dx.doi.org/10.3390/ijms22189938] [PMID: 34576100]
[23]
Kawakami, K.; Fujita, Y.; Kato, T.; Mizutani, K.; Kameyama, K.; Tsumoto, H.; Miura, Y.; Deguchi, T.; Ito, M. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int. J. Oncol., 2015, 47(1), 384-390.
[http://dx.doi.org/10.3892/ijo.2015.3011] [PMID: 25997717]
[24]
Du, W.W.; Li, X.; Ma, J.; Fang, L.; Wu, N.; Li, F.; Dhaliwal, P.; Yang, W.; Yee, A.J.; Yang, B.B. Promotion of tumor progression by exosome transmission of circular RNA circSKA3. Mol. Ther. Nucleic Acids, 2022, 27, 276-292.
[http://dx.doi.org/10.1016/j.omtn.2021.11.027] [PMID: 35024241]
[25]
Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T., Jr; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O.; Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol., 2008, 10(12), 1470-1476.
[http://dx.doi.org/10.1038/ncb1800] [PMID: 19011622]
[26]
Sung, B.H.; Ketova, T.; Hoshino, D.; Zijlstra, A.; Weaver, A.M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun., 2015, 6(1), 7164.
[http://dx.doi.org/10.1038/ncomms8164] [PMID: 25968605]
[27]
Pegoraro, A.; De Marchi, E.; Ferracin, M.; Orioli, E.; Zanoni, M.; Bassi, C.; Tesei, A.; Capece, M.; Dika, E.; Negrini, M.; Di Virgilio, F.; Adinolfi, E. P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis., 2021, 12(12), 1088.
[http://dx.doi.org/10.1038/s41419-021-04378-0] [PMID: 34789738]
[28]
Wu, J.; Xie, Q.; Liu, Y.; Gao, Y.; Qu, Z.; Mo, L.; Xu, Y.; Chen, R.; Shi, L. A small vimentin-binding molecule blocks cancer exosome release and reduces cancer cell mobility. Front. Pharmacol., 2021, 12, 627394.
[http://dx.doi.org/10.3389/fphar.2021.627394] [PMID: 34305581]
[29]
Mortezaee, K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol. Int., 2021, 45(2), 273-286.
[http://dx.doi.org/10.1002/cbin.11506] [PMID: 33236822]
[30]
Yang, K.; Zhang, F.; Luo, B.; Qu, Z. CAFs-derived small extracellular vesicles circN4BP2L2 promotes proliferation and metastasis of colorectal cancer via miR-664b-3p/HMGB3 pathway. Cancer Biol. Ther., 2022, 23(1), 404-416.
[http://dx.doi.org/10.1080/15384047.2022.2072164] [PMID: 35722996]
[31]
Shi, Z.; Jiang, T.; Cao, B.; Sun, X.; Liu, J. CAF-derived exosomes deliver LINC01410 to promote epithelial-mesenchymal transition of esophageal squamous cell carcinoma. Exp. Cell Res., 2022, 412(2), 113033.
[http://dx.doi.org/10.1016/j.yexcr.2022.113033] [PMID: 35041823]
[32]
Yan, Z.; Sheng, Z.; Zheng, Y.; Feng, R.; Xiao, Q.; Shi, L.; Li, H.; Yin, C.; Luo, H.; Hao, C.; Wang, W.; Zhang, B. Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis., 2021, 12(12), 1120.
[http://dx.doi.org/10.1038/s41419-021-04409-w] [PMID: 34853307]
[33]
Mortezaee, K.; Majidpoor, J.; Kharazinejad, E. Epithelial-mesenchymal transition in cancer stemness and heterogeneity: Updated. Med. Oncol., 2022, 39(12), 193.
[http://dx.doi.org/10.1007/s12032-022-01801-0] [PMID: 36071302]
[34]
Song, J.W.; Zhu, J.; Wu, X.X.; Tu, T.; Huang, J.Q.; Chen, G.Z.; Liang, L.Y.; Zhou, C.H.; Xu, X.; Gong, L.Y. GOLPH3/CKAP4 promotes metastasis and tumorigenicity by enhancing the secretion of exosomal WNT3A in non-small-cell lung cancer. Cell Death Dis., 2021, 12(11), 976.
[http://dx.doi.org/10.1038/s41419-021-04265-8] [PMID: 34671013]
[35]
Franzen, C.A.; Blackwell, R.H.; Todorovic, V.; Greco, K.A.; Foreman, K.E.; Flanigan, R.C.; Kuo, P.C.; Gupta, G.N. Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis, 2015, 4(8), e163-e163.
[http://dx.doi.org/10.1038/oncsis.2015.21] [PMID: 26280654]
[36]
Hu, C.; Zhang, Y.; Zhang, M.; Li, T.; Zheng, X.; Guo, Q.; Zhang, X. Exosomal Cripto-1 serves as a potential biomarker for perihilar cholangiocarcinoma. Front. Oncol., 2021, 11, 730615.
[http://dx.doi.org/10.3389/fonc.2021.730615] [PMID: 34434900]
[37]
Ono, K.; Sogawa, C.; Kawai, H.; Tran, M.T.; Taha, E.A.; Lu, Y.; Oo, M.W.; Okusha, Y.; Okamura, H.; Ibaragi, S.; Takigawa, M.; Kozaki, K.I.; Nagatsuka, H.; Sasaki, A.; Okamoto, K.; Calderwood, S.K.; Eguchi, T. Triple knockdown of CDC37, HSP90-alpha and HSP90-beta diminishes extracellular vesicles-driven malignancy events and macrophage M2 polarization in oral cancer. J. Extracell. Vesicles, 2020, 9(1), 1769373.
[http://dx.doi.org/10.1080/20013078.2020.1769373] [PMID: 33144925]
[38]
Bai, J.; Zhang, X.; Shi, D.; Xiang, Z.; Wang, S.; Yang, C.; Liu, Q.; Huang, S.; Fang, Y.; Zhang, W.; Song, J.; Xiong, B. Exosomal miR-128-3p promotes epithelial-to-mesenchymal transition in colorectal cancer cells by targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 signaling. Front. Cell Dev. Biol., 2021, 9, 568738.
[http://dx.doi.org/10.3389/fcell.2021.568738] [PMID: 33634112]
[39]
Kim, H.S.; Kim, J.S.; Park, N.R.; Nam, H.; Sung, P.S.; Bae, S.H.; Choi, J.Y.; Yoon, S.K.; Hur, W.; Jang, J.W. Exosomal miR-125b exerts anti-metastatic properties and predicts early metastasis of hepatocellular carcinoma. Front. Oncol., 2021, 11, 637247.
[http://dx.doi.org/10.3389/fonc.2021.637247] [PMID: 34386414]
[40]
Yang, Z.; Wang, W.; Zhao, L.; Wang, X.; Gimple, R.C.; Xu, L.; Wang, Y.; Rich, J.N.; Zhou, S. Plasma cells shape the mesenchymal identity of ovarian cancers through transfer of exosome-derived microRNAs. Sci. Adv., 2021, 7(9), eabb0737.
[http://dx.doi.org/10.1126/sciadv.abb0737] [PMID: 33627414]
[41]
Lin, X.M.; Wang, Z.J.; Lin, Y.X.; Chen, H. Decreased exosome-delivered miR-486-5p is responsible for the peritoneal metastasis of gastric cancer cells by promoting EMT progress. World J. Surg. Oncol., 2021, 19(1), 312.
[http://dx.doi.org/10.1186/s12957-021-02381-5] [PMID: 34686196]
[42]
Qin, W.; Wang, L.; Tian, H.; Wu, X.; Xiao, C.; Pan, Y.; Fan, M.; Tai, Y.; Liu, W.; Zhang, Q.; Yang, Y. CAF-derived exosomes transmitted Gremlin-1 promotes cancer progression and decreases the sensitivity of hepatoma cells to sorafenib. Mol. Carcinog., 2022, 61(8), 764-775.
[http://dx.doi.org/10.1002/mc.23416] [PMID: 35638711]
[43]
Liu, W.; Wang, B.; Duan, A.; Shen, K.; Zhang, Q.; Tang, X.; Wei, Y.; Tang, J.; Zhang, S. Exosomal transfer of miR-769-5p promotes osteosarcoma proliferation and metastasis by targeting DUSP16. Cancer Cell Int., 2021, 21(1), 541.
[http://dx.doi.org/10.1186/s12935-021-02257-4] [PMID: 34663350]
[44]
La Camera, G.; Gelsomino, L.; Malivindi, R.; Barone, I.; Panza, S.; De Rose, D.; Giordano, F.; D’Esposito, V.; Formisano, P.; Bonofiglio, D.; Andò, S.; Giordano, C.; Catalano, S. Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Lett., 2021, 521, 155-168.
[http://dx.doi.org/10.1016/j.canlet.2021.08.021] [PMID: 34425186]
[45]
Wu, Q.; Li, J.; Li, Z.; Sun, S.; Zhu, S.; Wang, L.; Wu, J.; Yuan, J.; Zhang, Y.; Sun, S.; Wang, C. Retracted article: Exosomes from the tumour-adipocyte interplay stimulate beige/brown differentiation and reprogram metabolism in stromal adipocytes to promote tumour progression. J. Exp. Clin. Cancer Res., 2019, 38(1), 223.
[http://dx.doi.org/10.1186/s13046-019-1210-3] [PMID: 31138258]
[46]
Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.F.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[47]
Mortezaee, K. Normalization in tumor ecosystem: Opportunities and challenges. Cell Biol. Int., 2021, 45(10), 2017-2030.
[http://dx.doi.org/10.1002/cbin.11655] [PMID: 34189798]
[48]
Kim, D.H.; Park, H.; Choi, Y.J.; Kang, M.H.; Kim, T.K.; Pack, C.G.; Choi, C.M.; Lee, J.C.; Rho, J.K. Exosomal miR-1260b derived from non-small cell lung cancer promotes tumor metastasis through the inhibition of HIPK2. Cell Death Dis., 2021, 12(8), 747.
[http://dx.doi.org/10.1038/s41419-021-04024-9] [PMID: 34321461]
[49]
Mao, S.; Zheng, S.; Lu, Z.; Wang, X.; Wang, Y.; Zhang, G.; Xu, H.; Huang, J.; Lei, Y.; Liu, C.; Sun, N.; He, J. Exosomal miR-375-3p breaks vascular barrier and promotes small cell lung cancer metastasis by targeting claudin-1. Transl. Lung Cancer Res., 2021, 10(7), 3155-3172.
[http://dx.doi.org/10.21037/tlcr-21-356] [PMID: 34430355]
[50]
Dou, R.; Liu, K.; Yang, C.; Zheng, J.; Shi, D.; Lin, X.; Wei, C.; Zhang, C.; Fang, Y.; Huang, S.; Song, J.; Wang, S.; Xiong, B. EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer. Clin. Transl. Med., 2021, 11(12), e595.
[http://dx.doi.org/10.1002/ctm2.595] [PMID: 34936736]
[51]
Hara, T. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell, 2021, 39(6), 779-792. e11
[http://dx.doi.org/10.1016/j.ccell.2021.05.002]
[52]
Wu, D.; Deng, S.; Li, L.; Liu, T.; Zhang, T.; Li, J.; Yu, Y.; Xu, Y. TGF-β1-mediated exosomal lnc-MMP2-2 increases blood–brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis., 2021, 12(8), 721.
[http://dx.doi.org/10.1038/s41419-021-04004-z] [PMID: 34285192]
[53]
Kobayashi, M.; Fujiwara, K.; Takahashi, K.; Yoshioka, Y.; Ochiya, T.; Podyma-Inoue, K.A.; Watabe, T. Transforming growth factor-β-induced secretion of extracellular vesicles from oral cancer cells evokes endothelial barrier instability via endothelial-mesenchymal transition. Inflamm. Regen., 2022, 42(1), 38.
[http://dx.doi.org/10.1186/s41232-022-00225-7] [PMID: 36057626]
[54]
Ekström, E.J.; Bergenfelz, C.; von Bülow, V.; Serifler, F.; Carlemalm, E.; Jönsson, G.; Andersson, T.; Leandersson, K. WNT5A induces release of exosomes containing pro-angiogenic and immunosuppressive factors from malignant melanoma cells. Mol. Cancer, 2014, 13(1), 88.
[http://dx.doi.org/10.1186/1476-4598-13-88] [PMID: 24766647]
[55]
Zheng, H.; Chen, C.; Luo, Y.; Yu, M.; He, W.; An, M.; Gao, B.; Kong, Y.; Ya, Y.; Lin, Y.; Li, Y.; Xie, K.; Huang, J.; Lin, T. Tumor-derived exosomal BCYRN1 activates WNT5A/VEGF-C/VEGFR3 feedforward loop to drive lymphatic metastasis of bladder cancer. Clin. Transl. Med., 2021, 11(7), e497.
[http://dx.doi.org/10.1002/ctm2.497] [PMID: 34323412]
[56]
Liu, T.; Li, P.; Li, J.; Qi, Q.; Sun, Z.; Shi, S.; Xie, Y.; Liu, S.; Wang, Y.; Du, L.; Wang, C. Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Mol. Ther. Oncolytics, 2021, 23, 163-180.
[http://dx.doi.org/10.1016/j.omto.2021.09.003] [PMID: 34729394]
[57]
Godlewski, J.; Ferrer-Luna, R.; Rooj, A.K.; Mineo, M.; Ricklefs, F.; Takeda, Y.S.; Nowicki, M.O.; Salińska, E.; Nakano, I.; Lee, H.; Weissleder, R.; Beroukhim, R.; Chiocca, E.A.; Bronisz, A. MicroRNA signatures and molecular subtypes of glioblastoma: The role of extracellular transfer. Stem Cell Reports, 2017, 8(6), 1497-1505.
[http://dx.doi.org/10.1016/j.stemcr.2017.04.024] [PMID: 28528698]
[58]
Wang, S.; Zhang, Z.; Gao, Q. Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. Mol. Ther. Nucleic Acids, 2021, 23, 552-564.
[http://dx.doi.org/10.1016/j.omtn.2020.11.018] [PMID: 33510943]
[59]
Rodrigues, G.; Hoshino, A.; Kenific, C.M.; Matei, I.R.; Steiner, L.; Freitas, D.; Kim, H.S.; Oxley, P.R.; Scandariato, I.; Casanova-Salas, I.; Dai, J.; Badwe, C.R.; Gril, B.; Tešić Mark, M.; Dill, B.D.; Molina, H.; Zhang, H.; Benito-Martin, A.; Bojmar, L.; Ararso, Y.; Offer, K.; LaPlant, Q.; Buehring, W.; Wang, H.; Jiang, X.; Lu, T.M.; Liu, Y.; Sabari, J.K.; Shin, S.J.; Narula, N.; Ginter, P.S.; Rajasekhar, V.K.; Healey, J.H.; Meylan, E.; Costa-Silva, B.; Wang, S.E.; Rafii, S.; Altorki, N.K.; Rudin, C.M.; Jones, D.R.; Steeg, P.S.; Peinado, H.; Ghajar, C.M.; Bromberg, J.; de Sousa, M.; Pisapia, D.; Lyden, D. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat. Cell Biol., 2019, 21(11), 1403-1412.
[http://dx.doi.org/10.1038/s41556-019-0404-4] [PMID: 31685984]
[60]
Chatterjee, S.; Chatterjee, A.; Jana, S.; Dey, S.; Roy, H.; Das, M.K.; Alam, J.; Adhikary, A.; Chowdhury, A.; Biswas, A.; Manna, D.; Bhattacharyya, A. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8+ T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis, 2021, 42(1), 38-47.
[http://dx.doi.org/10.1093/carcin/bgaa092] [PMID: 32832992]
[61]
Liu, J.; Wu, S.; Zheng, X.; Zheng, P.; Fu, Y.; Wu, C.; Lu, B.; Ju, J.; Jiang, J. Immune suppressed tumor microenvironment by exosomes derived from gastric cancer cells via modulating immune functions. Sci. Rep., 2020, 10(1), 14749.
[http://dx.doi.org/10.1038/s41598-020-71573-y] [PMID: 32901082]
[62]
Mortezaee, K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci., 2021, 277, 119627.
[http://dx.doi.org/10.1016/j.lfs.2021.119627] [PMID: 34004256]
[63]
Chen, J.; Song, Y.; Miao, F.; Chen, G.; Zhu, Y.; Wu, N.; Pang, L.; Chen, Z.; Chen, X. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8 + T cell exhaustion during metastasis. Cancer Sci., 2021, 112(9), 3437-3454.
[http://dx.doi.org/10.1111/cas.15033] [PMID: 34152672]
[64]
Farhood, B.; Najafi, M.; Salehi, E.; Hashemi Goradel, N.; Nashtaei, M.S.; Khanlarkhani, N.; Mortezaee, K. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J. Cell. Biochem., 2019, 120(1), 71-76.
[http://dx.doi.org/10.1002/jcb.27594] [PMID: 30203529]
[65]
Yen, E-Y.; Miaw, S.C.; Yu, J.S.; Lai, I.R. Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. Am. J. Cancer Res., 2017, 7(11), 2199-2208.
[PMID: 29218244]
[66]
Feng, L.; Weng, J.; Yao, C.; Wang, R.; Wang, N.; Zhang, Y.; Tanaka, Y.; Su, L. Extracellular vesicles derived from SIPA1high breast cancer cells enhance macrophage infiltration and cancer metastasis through Myosin-9. Biology, 2022, 11(4), 543.
[http://dx.doi.org/10.3390/biology11040543] [PMID: 35453742]
[67]
Wang, F.; Niu, Y.; Chen, K.; Yuan, X.; Qin, Y.; Zheng, F.; Cui, Z.; Lu, W.; Wu, Y.; Xia, D. Extracellular Vesicle–Packaged circATP2B4 mediates M2 macrophage polarization via miR-532-3p/SREBF1 axis to promote epithelial ovarian cancer metastasis. Cancer Immunol. Res., 2023, 11(2), 199-216.
[http://dx.doi.org/10.1158/2326-6066.CIR-22-0410] [PMID: 36512324]
[68]
Chen, J.; Zhang, K.; Zhi, Y.; Wu, Y.; Chen, B.; Bai, J.; Wang, X. Tumor-derived exosomal miR-19b-3p facilitates M2 macrophage polarization and exosomal LINC00273 secretion to promote lung adenocarcinoma metastasis via Hippo pathway. Clin. Transl. Med., 2021, 11(9), e478.
[http://dx.doi.org/10.1002/ctm2.478] [PMID: 34586722]
[69]
Wei, K.; Ma, Z.; Yang, F.; Zhao, X.; Jiang, W.; Pan, C.; Li, Z.; Pan, X.; He, Z.; Xu, J.; Wu, W.; Xia, Y.; Chen, L. M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942. Cancer Lett., 2022, 526, 205-216.
[http://dx.doi.org/10.1016/j.canlet.2021.10.045] [PMID: 34838826]
[70]
Liu, W.; Long, Q.; Zhang, W.; Zeng, D.; Hu, B.; Liu, S.; Chen, L. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging, 2021, 13(15), 19760-19775.
[http://dx.doi.org/10.18632/aging.203388] [PMID: 34388111]
[71]
Rabe, D.C.; Walker, N.D.; Rustandy, F.D.; Wallace, J.; Lee, J.; Stott, S.L.; Rosner, M.R. Tumor extracellular vesicles regulate macrophage-driven metastasis through CCL5. Cancers, 2021, 13(14), 3459.
[http://dx.doi.org/10.3390/cancers13143459] [PMID: 34298673]
[72]
Li, H.; Yang, P.; Wang, J.; Zhang, J.; Ma, Q.; Jiang, Y.; Wu, Y.; Han, T.; Xiang, D. HLF regulates ferroptosis, development and chemoresistance of triple-negative breast cancer by activating tumor cell-macrophage crosstalk. J. Hematol. Oncol., 2022, 15(1), 2.
[http://dx.doi.org/10.1186/s13045-021-01223-x] [PMID: 34991659]
[73]
Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; O’Donnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191.
[http://dx.doi.org/10.1038/ncb3064] [PMID: 25402683]
[74]
Gonda, A.; Zhao, N.; Shah, J.V.; Siebert, J.N.; Gunda, S.; Inan, B.; Kwon, M.; Libutti, S.K.; Moghe, P.V.; Francis, N.L.; Ganapathy, V. Extracellular vesicle molecular signatures characterize metastatic dynamicity in ovarian cancer. Front. Oncol., 2021, 11, 718408.
[http://dx.doi.org/10.3389/fonc.2021.718408] [PMID: 34868914]
[75]
Costa-Silva, B.; Aiello, N.M.; Ocean, A.J.; Singh, S.; Zhang, H.; Thakur, B.K.; Becker, A.; Hoshino, A.; Mark, M.T.; Molina, H.; Xiang, J.; Zhang, T.; Theilen, T.M.; García-Santos, G.; Williams, C.; Ararso, Y.; Huang, Y.; Rodrigues, G.; Shen, T.L.; Labori, K.J.; Lothe, I.M.B.; Kure, E.H.; Hernandez, J.; Doussot, A.; Ebbesen, S.H.; Grandgenett, P.M.; Hollingsworth, M.A.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Schwartz, R.E.; Matei, I.; Peinado, H.; Stanger, B.Z.; Bromberg, J.; Lyden, D. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol., 2015, 17(6), 816-826.
[http://dx.doi.org/10.1038/ncb3169] [PMID: 25985394]
[76]
Gao, L.; Nie, X.; Gou, R.; Hu, Y.; Dong, H.; Li, X.; Lin, B. Exosomal ANXA2 derived from ovarian cancer cells regulates epithelial-mesenchymal plasticity of human peritoneal mesothelial cells. J. Cell. Mol. Med., 2021, 25(23), 10916-10929.
[http://dx.doi.org/10.1111/jcmm.16983] [PMID: 34725902]
[77]
Yang, X.; Zhang, Y.; Zhang, Y.; Li, H.; Li, L.; Wu, Y.; Chen, X.; Qiu, L.; Han, J.; Wang, Z. Colorectal cancer-derived extracellular vesicles induce liver premetastatic immunosuppressive niche formation to promote tumor early liver metastasis. Signal Transduct. Target. Ther., 2023, 8(1), 102.
[http://dx.doi.org/10.1038/s41392-023-01384-w] [PMID: 36878919]
[78]
Brassart, B.; Da Silva, J.; Donet, M.; Seurat, E.; Hague, F.; Terryn, C.; Velard, F.; Michel, J.; Ouadid-Ahidouch, H.; Monboisse, J.C.; Hinek, A.; Maquart, F.X.; Ramont, L.; Brassart-Pasco, S. Tumour cell blebbing and extracellular vesicle shedding: Key role of matrikines and ribosomal protein SA. Br. J. Cancer, 2019, 120(4), 453-465.
[http://dx.doi.org/10.1038/s41416-019-0382-0] [PMID: 30739912]
[79]
Zhang, P.; Wu, X.; Gardashova, G.; Yang, Y.; Zhang, Y.; Xu, L.; Zeng, Y. Molecular and functional extracellular vesicle analysis using nanopatterned microchips monitors tumor progression and metastasis. Sci. Transl. Med., 2020, 12(547), eaaz2878.
[http://dx.doi.org/10.1126/scitranslmed.aaz2878] [PMID: 32522804]
[80]
Zhao, A.; Zhao, Z.; Liu, W.; Cui, X.; Wang, N.; Wang, Y.; Wang, Y.; Sun, L.; Xue, H.; Wu, L.; Cui, S.; Yang, Y.; Bai, R. Carcinoma-associated fibroblasts promote the proliferation and metastasis of osteosarcoma by transferring exosomal LncRNA SNHG17. Am. J. Transl. Res., 2021, 13(9), 10094-10111.
[PMID: 34650683]
[81]
Cai, Z.; Yang, F.; Yu, L.; Yu, Z.; Jiang, L.; Wang, Q.; Yang, Y.; Wang, L.; Cao, X.; Wang, J. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J. Immunol., 2012, 188(12), 5954-5961.
[http://dx.doi.org/10.4049/jimmunol.1103466] [PMID: 22573809]
[82]
Shinde, A.; Paez, J.S.; Libring, S.; Hopkins, K.; Solorio, L.; Wendt, M.K. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis, 2020, 9(2), 16.
[http://dx.doi.org/10.1038/s41389-020-0204-5] [PMID: 32054828]
[83]
Wen, S.W.; Sceneay, J.; Lima, L.G.; Wong, C.S.F.; Becker, M.; Krumeich, S.; Lobb, R.J.; Castillo, V.; Wong, K.N.; Ellis, S.; Parker, B.S.; Möller, A. The biodistribution and immune suppressive effects of breast cancer–derived exosomes. Cancer Res., 2016, 76(23), 6816-6827.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0868] [PMID: 27760789]
[84]
Jiang, C.; Li, X.; Sun, B.; Zhang, N.; Li, J.; Yue, S.; Hu, X. Extracellular vesicles promotes liver metastasis of lung cancer by ALAHM increasing hepatocellular secretion of HGF. iScience, 2022, 25(3), 103984.
[http://dx.doi.org/10.1016/j.isci.2022.103984] [PMID: 35281743]
[85]
Zhang, C.; Wang, X.Y.; Zhang, P.; He, T.C.; Han, J.H.; Zhang, R.; Lin, J.; Fan, J.; Lu, L.; Zhu, W.W.; Jia, H.L.; Zhang, J.B.; Chen, J.H. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis., 2022, 13(1), 57.
[http://dx.doi.org/10.1038/s41419-022-04506-4] [PMID: 35027547]
[86]
Zou, Z.; Dai, R.; Deng, N.; Su, W.; Liu, P. Exosomal miR-1275 secreted by prostate cancer cells modulates osteoblast proliferation and activity by targeting the SIRT2/RUNX2 cascade. Cell Transplant., 2021, 30
[http://dx.doi.org/10.1177/09636897211052977] [PMID: 34689576]
[87]
Probert, C.; Dottorini, T.; Speakman, A.; Hunt, S.; Nafee, T.; Fazeli, A.; Wood, S.; Brown, J.E.; James, V. Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; A potential mechanism of metastasis. Oncogene, 2019, 38(10), 1751-1763.
[http://dx.doi.org/10.1038/s41388-018-0540-5] [PMID: 30353168]
[88]
Rode, M.P.; Silva, A.H.; Cisilotto, J.; Rosolen, D.; Creczynski-Pasa, T.B. miR-425-5p as an exosomal biomarker for metastatic prostate cancer. Cell. Signal., 2021, 87, 110113.
[http://dx.doi.org/10.1016/j.cellsig.2021.110113] [PMID: 34371055]
[89]
Mo, C.; Huang, B.; Zhuang, J.; Jiang, S.; Guo, S.; Mao, X. LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin. Transl. Med., 2021, 11(8), e493.
[http://dx.doi.org/10.1002/ctm2.493] [PMID: 34459124]
[90]
Li, X-Q. Extracellular vesicle-packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells. Cancer Res., 2022, 82(8), 1560-1574.
[91]
Jianjiao, N. Tumour-derived exosomal lncRNA-SOX2OT promotes bone metastasis of non-small cell lung cancer by targeting the miRNA-194-5p/RAC1 signalling axis in osteoclasts. Cell Death Dis., 2021, 12(7)
[92]
Wu, K.; Feng, J.; Lyu, F.; Xing, F.; Sharma, S.; Liu, Y.; Wu, S.Y.; Zhao, D.; Tyagi, A.; Deshpande, R.P.; Pei, X.; Ruiz, M.G.; Takahashi, H.; Tsuzuki, S.; Kimura, T.; Mo, Y.; Shiozawa, Y.; Singh, R.; Watabe, K. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat. Commun., 2021, 12(1), 5196.
[http://dx.doi.org/10.1038/s41467-021-25473-y] [PMID: 34465793]
[93]
Li, C.H.; Palanisamy, K.; Li, X.; Yu, S.H.; Wang, I.K.; Li, C.Y.; Sun, K.T. Exosomal tumor necrosis factor-α from hepatocellular cancer cells (Huh-7) promote osteoclast differentiation. J. Cell. Biochem., 2021, 122(11), 1749-1760.
[http://dx.doi.org/10.1002/jcb.30127] [PMID: 34383347]
[94]
Wang, M.; Zhao, M.; Guo, Q.; Lou, J.; Wang, L. Non-small cell lung cancer cell–derived exosomal miR-17-5p promotes osteoclast differentiation by targeting PTEN. Exp. Cell Res., 2021, 408(1), 112834.
[http://dx.doi.org/10.1016/j.yexcr.2021.112834] [PMID: 34537206]
[95]
Hoshino, A.; Costa-Silva, B.; Shen, T.L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; Singh, S.; Williams, C.; Soplop, N.; Uryu, K.; Pharmer, L.; King, T.; Bojmar, L.; Davies, A.E.; Ararso, Y.; Zhang, T.; Zhang, H.; Hernandez, J.; Weiss, J.M.; Dumont-Cole, V.D.; Kramer, K.; Wexler, L.H.; Narendran, A.; Schwartz, G.K.; Healey, J.H.; Sandstrom, P.; Jørgen Labori, K.; Kure, E.H.; Grandgenett, P.M.; Hollingsworth, M.A.; de Sousa, M.; Kaur, S.; Jain, M.; Mallya, K.; Batra, S.K.; Jarnagin, W.R.; Brady, M.S.; Fodstad, O.; Muller, V.; Pantel, K.; Minn, A.J.; Bissell, M.J.; Garcia, B.A.; Kang, Y.; Rajasekhar, V.K.; Ghajar, C.M.; Matei, I.; Peinado, H.; Bromberg, J.; Lyden, D. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578), 329-335.
[http://dx.doi.org/10.1038/nature15756] [PMID: 26524530]
[96]
Koide, R.; Hirane, N.; Kambe, D.; Yokoi, Y.; Otaki, M.; Nishimura, S.I. Antiadhesive nanosome elicits role of glycocalyx of tumor cell-derived exosomes in the organotropic cancer metastasis. Biomaterials, 2022, 280, 121314.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121314] [PMID: 34906850]
[97]
Najafi, S.; Majidpoor, J.; Mortezaee, K. Extracellular vesicle–based drug delivery in cancer immunotherapy. Drug Deliv. Transl. Res., 2023, 13(11), 2790-2806.
[http://dx.doi.org/10.1007/s13346-023-01370-3] [PMID: 37261603]
[98]
Tian, W.; Yang, X.; Yang, H.; Lv, M.; Sun, X.; Zhou, B. Exosomal miR-338-3p suppresses non-small-cell lung cancer cells metastasis by inhibiting CHL1 through the MAPK signaling pathway. Cell Death Dis., 2021, 12(11), 1030.
[http://dx.doi.org/10.1038/s41419-021-04314-2] [PMID: 34718336]
[99]
Wen, H.; Liu, Z.; Tang, J.; Bu, L. MiR-185-5p targets RAB35 gene to regulate tumor cell-derived exosomes-mediated proliferation, migration and invasion of non-small cell lung cancer cells. Aging, 2021, 13(17), 21435-21450.
[http://dx.doi.org/10.18632/aging.203483] [PMID: 34500436]
[100]
Lopatina, T.; Grange, C.; Cavallari, C.; Navarro-Tableros, V.; Lombardo, G.; Rosso, A.; Cedrino, M.; Pomatto, M.A.C.; Koni, M.; Veneziano, F.; Castellano, I.; Camussi, G.; Brizzi, M.F. Targeting IL-3Rα on tumor-derived endothelial cells blunts metastatic spread of triple-negative breast cancer via extracellular vesicle reprogramming. Oncogenesis, 2020, 9(10), 90.
[http://dx.doi.org/10.1038/s41389-020-00274-y] [PMID: 33040091]
[101]
Wei, L.; Wang, G.; Yang, C.; Zhang, Y.; Chen, Y.; Zhong, C.; Li, Q. MicroRNA-550a-3-5p controls the brain metastasis of lung cancer by directly targeting YAP1. Cancer Cell Int., 2021, 21(1), 491.
[http://dx.doi.org/10.1186/s12935-021-02197-z] [PMID: 34530822]
[102]
Wang, M.; Cai, W.; Yang, A.J.; Wang, C.Y.; Zhang, C.L.; Liu, W.; Xie, X.F.; Gong, Y.Y.; Zhao, Y.Y.; Wu, W.C.; Zhou, Q.; Zhao, C.Y.; Dong, J.F.; Li, M. Gastric cancer cell-derived extracellular vesicles disrupt endothelial integrity and promote metastasis. Cancer Lett., 2022, 545, 215827.
[http://dx.doi.org/10.1016/j.canlet.2022.215827] [PMID: 35842018]
[103]
Wang, S.; Li, F.; Ye, T.; Wang, J.; Lyu, C.; Qing, S.; Ding, Z.; Gao, X.; Jia, R.; Yu, D.; Ren, J.; Wei, W.; Ma, G. Macrophage-tumor chimeric exosomes accumulate in lymph node and tumor to activate the immune response and the tumor microenvironment. Sci. Transl. Med., 2021, 13(615), eabb6981.
[http://dx.doi.org/10.1126/scitranslmed.abb6981] [PMID: 34644149]
[104]
Tang, K.; Zhang, Y.; Zhang, H.; Xu, P.; Liu, J.; Ma, J.; Lv, M.; Li, D.; Katirai, F.; Shen, G.X.; Zhang, G.; Feng, Z.H.; Ye, D.; Huang, B. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat. Commun., 2012, 3(1), 1282.
[http://dx.doi.org/10.1038/ncomms2282] [PMID: 23250412]
[105]
Hu, S.; Ma, J.; Su, C.; Chen, Y.; Shu, Y.; Qi, Z.; Zhang, B.; Shi, G.; Zhang, Y.; Zhang, Y.; Huang, A.; Kuang, Y.; Cheng, P. Engineered exosome-like nanovesicles suppress tumor growth by reprogramming tumor microenvironment and promoting tumor ferroptosis. Acta Biomater., 2021, 135, 567-581.
[http://dx.doi.org/10.1016/j.actbio.2021.09.003] [PMID: 34506976]
[106]
Najafi, S.; Mortezaee, K. Advances in dendritic cell vaccination therapy of cancer. Biomed. Pharmacother., 2023, 164, 114954.
[http://dx.doi.org/10.1016/j.biopha.2023.114954] [PMID: 37257227]
[107]
Zhang, D.X.; Dang, X.T.T.; Vu, L.T.; Lim, C.M.H.; Yeo, E.Y.M.; Lam, B.W.S.; Leong, S.M.; Omar, N.; Putti, T.C.; Yeh, Y.C.; Ma, V.; Luo, J.Y.; Cho, W.C.; Chen, G.; Lee, V.K.M.; Grimson, A.; Le, M.T.N. αvβ1 integrin is enriched in extracellular vesicles of metastatic breast cancer cells: A mechanism mediated by galectin-3. J. Extracell. Vesicles, 2022, 11(8), e12234.
[http://dx.doi.org/10.1002/jev2.12234] [PMID: 35923105]
[108]
Peng, B.; Nguyen, T.M.; Jayasinghe, M.K.; Gao, C.; Pham, T.T.; Vu, L.T.; Yeo, E.Y.M.; Yap, G.; Wang, L.; Goh, B.C.; Tam, W.L.; Luo, D.; Le, M.T.N. Robust delivery of RIG-I agonists using extracellular vesicles for anti-cancer immunotherapy. J. Extracell. Vesicles, 2022, 11(4), e12187.
[http://dx.doi.org/10.1002/jev2.12187] [PMID: 35430766]
[109]
Pan, R.; He, T.; Zhang, K.; Zhu, L.; Lin, J.; Chen, P.; Liu, X.; Huang, H.; Zhou, D.; Li, W.; Yang, S.; Ye, G. Tumor-targeting extracellular vesicles loaded with siS100A4 for suppressing postoperative breast cancer metastasis. Cell. Mol. Bioeng., 2023, 16(2), 117-125.
[http://dx.doi.org/10.1007/s12195-022-00757-5] [PMID: 37096069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy