Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Pharmacokinetics of Anti-rheumatic Drugs Methotrexate and Tofacitinib with its Metabolite M9 in Rats by UPLC-MS/MS

Author(s): Er-min Gu*, Lingjie Xue, Chenjian Zhou, Yang Xia and Ge-xin Dai

Volume 31, Issue 22, 2024

Published on: 17 January, 2024

Page: [3426 - 3435] Pages: 10

DOI: 10.2174/0109298673256258231219060950

Price: $65

Abstract

Background: Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). The clinical efficacy and safety of an administered tofacitinib, either monotherapy or in combination with conventional synthetic disease-modifying anti-rheumatic drugs, mainly methotrexate (MTX), have been evaluated. The high plasma concentration with delayed medicine clearance may affect the liver and/or kidney functions. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC- MS/MS) method for the quantitative analysis of methotrexate, tofacitinib, and metabolite M9 in plasma of Sprague Dawley (SD) rats was developed, and its effectiveness was validated as well.

Methods: Methotrexate, tofacitinib, M9 and fedratinib (internal standard, IS) were separated by gradient elution. The chromatography was performed on an Acquity BEH C18 (2.1 mm × 50 mm, 1.7 μm) column with the mobile phases of acetonitrile and 0.1% formic acid aqueous solution with different proportions at the flow rate of 0.30 mL/min. In the positive ionization mode, the analyzes were detected using a Xevo TQ-S triple quadrupole tandem mass spectrometer, with the following mass transition pairs: m/z 313.12 → 148.97 for tofacitinib, m/z 329.10 → 165.00 for M9 and m/z 455.12 → 308.05 for methotrexate.

Results: The obtained results manifested good calibration linearity over the ranges of tofacitinib at 0.1-100 ng/mL, M9 at 0.05-100 ng/mL, and methotrexate at 0.05-100 ng/mL. The lower limit of quantifications (LLOQs) of methotrexate, tofacitinib and M9 were 0.05 ng/mL, 0.1 ng/mL and 0.05 ng/mL, respectively. Intra-day and inter-day accuracy values were confirmed with a range of -6.3% to 12.7%, while intra-day and inter-- day precision values were ≤14.4%. Additionally, recoveries were greater than 86.5% for each compound without significant matrix effects.

Conclusion: The currently established analytical method exhibited great potential for the evaluation of plasma concentrations of methotrexate, tofacitinib and M9 simultaneously, greatly reducing the detection time, which would serve as a supplementary role in formulating dose decisions to achieve personalized treatment, identify drugs that cause adverse reactions and finally, to assess drug-drug interactions on clinical studies.

Keywords: UPLC-MS/MS, methotrexate, tofacitinib, rheumatoid arthritis, pharmacokinetics, SD rat.

[1]
Smolen, J.S.; Aletaha, D.; Mcinnes, I.B.J.T.L. Rheumatoid arthritis., 2018, 388(10055), 2023-2038.
[http://dx.doi.org/10.1038/nrdp.2018.1]
[2]
Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; Aletaha, D.; Aringer, M.; Askling, J.; Balsa, A.; Boers, M.; den Broeder, A.A.; Buch, M.H.; Buttgereit, F.; Caporali, R.; Cardiel, M.H.; De Cock, D.; Codreanu, C.; Cutolo, M.; Edwards, C.J.; van Eijk-Hustings, Y.; Emery, P.; Finckh, A.; Gossec, L.; Gottenberg, J.E.; Hetland, M.L.; Huizinga, T.W.J.; Koloumas, M.; Li, Z.; Mariette, X.; Müller-Ladner, U.; Mysler, E.F.; da Silva, J.A.P.; Poór, G.; Pope, J.E.; Rubbert-Roth, A.; Ruyssen-Witrand, A.; Saag, K.G.; Strangfeld, A.; Takeuchi, T.; Voshaar, M.; Westhovens, R.; van der Heijde, D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis., 2020, 79(6), 685-699.
[http://dx.doi.org/10.1136/annrheumdis-2019-216655] [PMID: 31969328]
[3]
Fleischmann, R.; Kremer, J.; Cush, J.; Schulze-Koops, H.; Connell, C.A.; Bradley, J.D.; Gruben, D.; Wallenstein, G.V.; Zwillich, S.H.; Kanik, K.S.J.N.E.J.o.M. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis., 2012, 367(6), 495.
[http://dx.doi.org/10.1056/NEJMoa1109071]
[4]
Kremer, J.; Li, Z.G.; Hall, S.; Fleischmann, R.; Genovese, M.; Martin-Mola, E.; Isaacs, J.D.; Gruben, D.; Wallenstein, G.; Krishnaswami, S.J.A.o.I.M. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: A randomized trial. Ann. Intern. Med., 2013, 159(4), 253.
[http://dx.doi.org/10.7326/0003-4819-159-4-201308200-00006]
[5]
Vollenhoven, R.V.; Fleischmann, R.; Cohen, S.; Lee, E.B.; Meijide, J.G.; Wagner, S.; Forejtova, S.; Zwillich, S.H.; Gruben, D.; Koncz, T.J.N.E.J.M. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Eng. J. Med., 2012, 367(6), 508-519.
[http://dx.doi.org/10.1056/NEJMoa1112072]
[6]
Burmester, G.R.; Blanco, R.; Charles-Schoeman, C.; Wollenhaupt, J.; Zerbini, C.; Benda, B.; Gruben, D.; Wallenstein, G.; Krishnaswami, S.; Zwillich, S.H.; Koncz, T.; Soma, K.; Bradley, J.; Mebus, C. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet, 2013, 381(9865), 451-460.
[http://dx.doi.org/10.1016/S0140-6736(12)61424-X] [PMID: 23294500]
[7]
Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. J. Arthritis Rheumatism., 2013, 65(3), 559-570.
[8]
Lee, E.B.; Fleischmann, R.; Hall, S.; Wilkinson, B.; Bradley, J.D.; Gruben, D.; Koncz, T.; Krishnaswami, S.; Wallenstein, G.V.; Zang, C.J.N.E.J.o.M. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Eng. J. Med., 2014, 371(25), 2377-2386.
[http://dx.doi.org/10.1056/NEJMoa1310476]
[9]
Wollenhaupt, J.; Silverfield, J.; Lee, E.B.; Curtis, J.R.; Wood, S.P.; Soma, K.; Nduaka, C.I.; Benda, B.; Gruben, D.; Nakamura, H.; Komuro, Y.; Zwillich, S.H.; Wang, L.; Riese, R.J. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J. Rheumatol., 2014, 41(5), 837-852.
[http://dx.doi.org/10.3899/jrheum.130683] [PMID: 24692527]
[10]
Yamanaka, H.; Tanaka, Y.; Takeuchi, T.; Sugiyama, N.; Yuasa, H.; Toyoizumi, S.; Morishima, Y.; Hirose, T.; Zwillich, S. Tofacitinib, an oral Janus kinase inhibitor, as monotherapy or with background methotrexate, in Japanese patients with rheumatoid arthritis: an open-label, long-term extension study. Arthritis Res. Ther., 2016, 18(1), 34.
[http://dx.doi.org/10.1186/s13075-016-0932-2] [PMID: 26818974]
[11]
Silva, M.F.; Ribeiro, C.; Gonçalves, V.M.F.; Tiritan, M.E.; Lima, Á. Liquid chromatographic methods for the therapeutic drug monitoring of methotrexate as clinical decision support for personalized medicine: A brief review. Biomed. Chromatogr., 2018, 32(5), e4159.
[http://dx.doi.org/10.1002/bmc.4159] [PMID: 29226354]
[12]
Abdelhameed, A.S.; Attwa, M.W.; Kadi, A.A. An LC–MS/MS method for rapid and sensitive high-throughput simultaneous determination of various protein kinase inhibitors in human plasma. Biomed. Chromatogr., 2017, 31(2), e3793.
[http://dx.doi.org/10.1002/bmc.3793] [PMID: 27450926]
[13]
Dixit, A.; Mallurwar, S.R.; Sulochana, S.P.; Zainuddin, M.; Mullangi, R. Determination of tofacitinib in mice whole blood on dried blood spots using LC–ESI–MS/MS: Application to pharmacokinetic study in mice. Drug Res. (Stuttg.), 2019, 69(6), 330-336.
[http://dx.doi.org/10.1055/a-0677-3066] [PMID: 30193392]
[14]
Bharwad, K.D.; Shah, P.A.; Shrivastav, P.S.; Singhal, P. Development and validation of a rapid and sensitive UPLC–MS/MS assay for the quantification of tofacitinib in human plasma. Biomed. Chromatogr., 2019, 33(4), e4458.
[http://dx.doi.org/10.1002/bmc.4458] [PMID: 30520053]
[15]
Wang, B.; Shen, J.; Zhou, Q.; Meng, D.; He, Y.; Chen, F.; Wang, S.; Ji, W. Effects of naringenin on the pharmacokinetics of tofacitinib in rats. Pharm. Biol., 2020, 58(1), 225-230.
[http://dx.doi.org/10.1080/13880209.2020.1738504] [PMID: 32202190]
[16]
Koller, D.; Vaitsekhovich, V.; Mba, C.; Steegmann, J.L.; Zubiaur, P.; Abad-Santos, F.; Wojnicz, A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta, 2020, 208, 120450.
[http://dx.doi.org/10.1016/j.talanta.2019.120450] [PMID: 31816725]
[17]
Restellini, S.; Afif, W. Update on TDM (Therapeutic Drug Monitoring) with Ustekinumab, Vedolizumab and Tofacitinib in Inflammatory Bowel Disease. J. Clin. Med., 2021, 10(6), 1242.
[http://dx.doi.org/10.3390/jcm10061242] [PMID: 33802816]
[18]
Dowty, M.E.; Lin, J.; Ryder, T.F.; Wang, W.; Walker, G.S.J.D.m. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor. In Humans, 2014, 42(4), 759.
[19]
Sharma, K.; Giri, K.; Dhiman, V.; Dixit, A.; Zainuddin, M.; Mullangi, R. A validated LC-MS/MS assay for simultaneous quantification of methotrexate and tofacitinib in rat plasma: Application to a pharmacokinetic study. Biomed. Chromatogr., 2015, 29(5), 722-732.
[http://dx.doi.org/10.1002/bmc.3348] [PMID: 25298296]
[20]
Wang, Q.; Gu, E.; Bi, Y.; Su, Y.; Tan, W.; Du, X. Simultaneous determination of tofacitinib and its principal metabolite in beagle dog plasma by UPLC-MS/MS and its application in pharmacokinetics. Arab. J. Chem., 2022, 15(1), 103514.
[http://dx.doi.org/10.1016/j.arabjc.2021.103514]
[21]
Xu, R.; Lin, Q.; Qiu, X.; Chen, J.; Shao, Y.; Hu, G.; Lin, G. UPLC-MS/MS method for the simultaneous determination of imatinib, voriconazole and their metabolites concentrations in rat plasma. J. Pharm. Biomed. Anal., 2019, 166, 6-12.
[http://dx.doi.org/10.1016/j.jpba.2018.12.036] [PMID: 30594035]
[22]
Tang, C.; Niu, X.; Shi, L.; Zhu, H.; Lin, G.; Xu, R. In vivo pharmacokinetic drug-drug interaction studies between fedratinib and antifungal agents based on a newly developed and validated UPLC/MS-MS method. Front. Pharmacol., 2021, 11, 626897.
[http://dx.doi.org/10.3389/fphar.2020.626897] [PMID: 33613287]
[23]
Journal, N.J.I. The guide for the care and use of laboratory animals 2015, 56(1)
[24]
Amr, A.; Abd El-Wahed, A.; El-Seedi, H.R.; Khalifa, S.A.M.; Augustyniak, M.; El-Samad, L.M.; Abdel Karim, A.E.; El Wakil, A. UPLC-MS/MS analysis of naturally derived Apis mellifera products and their promising effects against cadmium-induced adverse effects in female rats. Nutrients, 2022, 15(1), 119.
[http://dx.doi.org/10.3390/nu15010119] [PMID: 36615776]
[25]
Emami, S.; Taha, A.Y. Effects of carotenoid pigmentation in salmon on antibiotic extraction recovery, matrix effects and accuracy of quantification by ultrahigh performance liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2023, 1216, 123585.
[http://dx.doi.org/10.1016/j.jchromb.2022.123585] [PMID: 36669255]
[26]
Asakawa, Y.; Sano, T.; Hotta, K.; Miyajima, Y.; Mano, Y. A validated UPLC-MS/MS assay of E7090, a novel selective inhibitor of fibroblast growth factor receptors, in human plasma and urine. J. Pharm. Biomed. Anal., 2023, 225, 115216.
[http://dx.doi.org/10.1016/j.jpba.2022.115216] [PMID: 36610174]
[27]
Lu, S.; Zhao, M.; Zhao, L.; Li, G. Development of a UPLC–MS/MS method for simultaneous therapeutic drug monitoring of anti-hepatocellular carcinoma drugs and analgesics in human plasma. Front. Pharmacol., 2023, 14, 1136735.
[http://dx.doi.org/10.3389/fphar.2023.1136735] [PMID: 37324468]
[28]
Wang, M.J.; Zhao, Y.H.; Fan, C.; Wang, Y.J.; Wang, X.Q.; Qiu, X.J.; Shen, R.L. Development of an UPLC-MS/MS method for the quantitative analysis of upadacitinib in beagle dog plasma and pharmacokinetics study. Drug Des. Devel. Ther., 2021, 15, 4167-4175.
[http://dx.doi.org/10.2147/DDDT.S332282] [PMID: 34629864]
[29]
Li, J.; Chen, C.; Wang, J.; Ye, Z.; Pan, L.; Liu, Z.; Tang, C. Simultaneous measurement of upadacitinib and methotrexate by UPLC-MS/MS and its pharmacokinetic application in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2022, 1188, 123071.
[http://dx.doi.org/10.1016/j.jchromb.2021.123071] [PMID: 34875493]
[30]
Saha, C.; Harrison, C. Fedratinib, the first selective JAK2 inhibitor approved for treatment of myelofibrosis – an option beyond ruxolitinib. Expert Rev. Hematol., 2022, 15(7), 583-595.
[http://dx.doi.org/10.1080/17474086.2022.2098105] [PMID: 35787092]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy