Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Mini-Review Article

Glutamate Receptors and C-ABL Inhibitors: A New Therapeutic Approach for Parkinson's Disease

Author(s): Priya P. Shejul and Gaurav M. Doshi*

Volume 24, Issue 1, 2024

Published on: 16 January, 2024

Page: [22 - 44] Pages: 23

DOI: 10.2174/0118715249268627231206115942

Price: $65

Abstract

Parkinson's disease (PD) is the second-most prevalent central nervous system (CNS) neurodegenerative condition. Over the past few decades, suppression of BCR-Abelson tyrosine kinase (c-Abl), which serves as a marker of -synuclein aggregation and oxidative stress, has shown promise as a potential therapy target in PD. c-Abl inhibition has the potential to provide neuroprotection against PD, as shown by experimental results and the first-in-human trial, which supports the strategy in bigger clinical trials. Furthermore, glutamate receptors have also been proposed as potential therapeutic targets for the treatment of PD since they facilitate and regulate synaptic neurotransmission throughout the basal ganglia motor system. It has been noticed that pharmacological manipulation of the receptors can change normal as well as abnormal neurotransmission in the Parkinsonian brain. The review study contributes to a comprehensive understanding of the approach toward the role of c-Abl and glutamate receptors in Parkinson's disease by highlighting the significance and urgent necessity to investigate new pharmacotherapeutic targets. The article covers an extensive insight into the concept of targeting, pathophysiology, and c-Abl interaction with α-synuclein, parkin, and cyclin-dependent kinase 5 (Cdk5). Furthermore, the concepts of Nmethyl- D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA) receptor, and glutamate receptors are discussed briefly. Conclusion: This review article focuses on in-depth literature findings supported by an evidence-based discussion on pre-clinical trials and clinical trials related to c-Abl and glutamate receptors that act as potential therapeutic targets for PD.

Keywords: Parkinson’s disease, c-Abl inhibitors, α-synuclein, parkin, dopamine, glutamate receptors, NMDA receptors, AMPA receptors.

Graphical Abstract
[1]
Beckers, M.; Bloem, B.R.; Verbeek, M.M. Mechanisms of peripheral levodopa resistance in Parkinson’s disease. NPJ Parkinsons Dis., 2022, 8(1), 56.
[http://dx.doi.org/10.1038/s41531-022-00321-y]
[2]
Kalia, L.V.; Kalia, S.K.; Lang, A.E. Disease-modifying strategies for Parkinson’s disease. Mov. Disord., 2015, 30(11), 1442-1450.
[http://dx.doi.org/10.1002/mds.26354] [PMID: 26208210]
[3]
Clarke, C.E. Parkinson’s disease. BMJ, 2007, 335(7617), 441-445.
[http://dx.doi.org/10.1136/bmj.39289.437454.AD] [PMID: 17762036]
[4]
Beitz, J.M. Parkinson’s disease a review. Front. Biosci., 2014, S6(1), 65-74.
[http://dx.doi.org/10.2741/S415] [PMID: 24389262]
[5]
Zhang, Y.; Dawson, V.L.; Dawson, T.M. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol. Dis., 2000, 7(4), 240-250.
[http://dx.doi.org/10.1006/nbdi.2000.0319] [PMID: 10964596]
[6]
Parkinson’s Disease Pathway - Creative Diagnostics. Available from: https://www.creative-diagnostics.com/parkinson-s-disease-pathway.htm (Cited 2023 Oct 1).
[7]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 31, 1-21.
[http://dx.doi.org/10.1038/nrdp.2017.13]
[8]
Barrett, P.J.; Timothy Greenamyre, J. Post-translational modification of α-synuclein in Parkinson’s disease. Brain Res., 1628, 1628(Pt B), 247-253.
[9]
Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol., 2009, 8(4), 382-397.
[http://dx.doi.org/10.1016/S1474-4422(09)70062-6] [PMID: 19296921]
[10]
Lamberts, J.T.; Hildebrandt, E.N.; Brundin, P. Spreading of α-synuclein in the face of axonal transport deficits in Parkinson’s disease: A speculative synthesis. Neurobiol. Dis., 2015, 77, 276-283.
[http://dx.doi.org/10.1016/j.nbd.2014.07.002] [PMID: 25046996]
[11]
Abushouk, A.I.; Negida, A.; Elshenawy, R.A.; Zein, H.; Hammad, A.M.; Menshawy, A.; Mohamed, W.M.Y. C-Abl inhibition; A novel therapeutic target for parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2018, 17(1), 14-21.
[http://dx.doi.org/10.2174/1871527316666170602101538] [PMID: 28571531]
[12]
Werner, M.H.; Olanow, C.W. Parkinson’s disease modification through abl kinase inhibition: An opportunity. Mov. Disord., 2022, 37(1), 6-15.
[http://dx.doi.org/10.1002/mds.28858] [PMID: 34816484]
[13]
Zahoor, I.; Shafi, A.; Haq, E. Pharmacological treatment of parkinson’s disease. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU), 2018; pp. 129-144.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch7]
[14]
Zhang, Z.; Zhang, S.; Fu, P.; Zhang, Z.; Lin, K.; Ko, J.K.S.; Yung, K.K.L. Roles of glutamate receptors in parkinson’s disease. Int. J. Mol. Sci., 2019, 20(18), 4391.
[http://dx.doi.org/10.3390/ijms20184391] [PMID: 31500132]
[15]
Wang, J.Y.J. The capable ABL: What is its biological function? Mol. Cell. Biol., 2014, 34(7), 1188-1197.
[http://dx.doi.org/10.1128/MCB.01454-13] [PMID: 24421390]
[16]
Moresco, E.M.Y.; Donaldson, S.; Williamson, A.; Koleske, A.J. Integrin-mediated dendrite branch maintenance requires Abelson (Abl) family kinases. J. Neurosci., 2005, 25(26), 6105-6118.
[http://dx.doi.org/10.1523/JNEUROSCI.1432-05.2005] [PMID: 15987940]
[17]
Marie, E.; Moresco, Y.; Donaldson, S.; Williamson, A.; Koleske, A.J. Development/Plasticity/Repair Integrin-Mediated Dendrite Branch Maintenance Requires Abelson (Abl) Family Kinases. 2005. Available from: www.jneurno osci.org
[18]
Cilloni, D.; Saglio, G. Molecular pathways: BCR-ABL. Clin. Cancer Res., 2012, 18(4), 930-937.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1613] [PMID: 22156549]
[19]
Brahmachari, S.; Ge, P.; Lee, S.H.; Kim, D.; Karuppagounder, S.S.; Kumar, M.; Mao, X.; Shin, J.H.; Lee, Y.; Pletnikova, O.; Troncoso, J.C.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J. Clin. Invest., 2016, 126(8), 2970-2988.
[http://dx.doi.org/10.1172/JCI85456] [PMID: 27348587]
[20]
Brahmachari, S.; Karuppagounder, S.S.; Ge, P.; Lee, S.; Dawson, V.L. Dawson, TM C-Abl and parkinson’s disease: Mechanisms and therapeutic potential. J. Parkinsons Dis., 2017, 7, 589-601.
[21]
Lindholm, D.; Pham, D.D.; Cascone, A.; Eriksson, O.; Wennerberg, K.; Saarma, M. C-Abl inhibitors enable insights into the pathophysiology and neuroprotection in Parkinson’s disease. Front. Aging Neurosci., 2016, 8(OCT), 254.
[http://dx.doi.org/10.3389/fnagi.2016.00254] [PMID: 27833551]
[22]
Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative stress factors in Parkinson’s disease. Neural Regen. Res., 2021, 16(7), 1383-1391.
[23]
Motaln, H.; Rogelj, B. The role of c-Abl tyrosine kinase in brain and its pathologies. Cells, 2023, 12(16), 2041.
[http://dx.doi.org/10.3390/cells12162041]
[24]
Hebron, M.L.; Lonskaya, I. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of a-synuclein in Parkinson’s disease models. Hum. Mol. Genet., 2013, 22(16), 3315-3328.
[25]
Dawson, T.M.; Dawson, V.L. The role of Parkin in familial and sporadic Parkinson’s disease. Mov. Disord., 2010, 25(S1), 22798.
[http://dx.doi.org/10.1002/mds.22798]
[26]
Lonskaya, I.; Hebron, M.L.; Desforges, N.M. Franjie, A Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol. Med., 2013, 5(8), 1247-1262.
[27]
The potential role of c-Abl in neurodegenerative disease | Download Scientific Diagram. Available from: https://www.researchgate.net/figure/The-Potential-Role-of-c-Abl-in-Neurodegenerative-Disease_fig3_51466209
[28]
Zhou, Z.H.; Wu, Y.F.; Wang, X.; Han, Y.Z. The c-Abl inhibitor in Parkinson disease. Neurol. Sci., 2017, 38(4), 547-552.
[http://dx.doi.org/10.1007/s10072-016-2808-2] [PMID: 28078567]
[29]
Karuppagounder, S.S.; Brahmachari, S.; Lee, Y.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. The c-Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci. Rep., 2014, 4(1), 4874.
[http://dx.doi.org/10.1038/srep04874] [PMID: 24786396]
[30]
Hebron, M.L.; Lonskaya, I.; Moussa, C.E.H. Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of -synuclein in Parkinson’s disease models. Hum. Mol. Genet., 2013, 22(16), 3315-3328.
[http://dx.doi.org/10.1093/hmg/ddt192] [PMID: 23666528]
[31]
Tanabe, A.; Yamamura, Y.; Kasahara, J.; Morigaki, R.; Kaji, R.; Goto, S. A novel tyrosine kinase inhibitor AMN107 (nilotinib) normalizes striatal motor behaviors in a mouse model of Parkinson’s disease. Front. Cell. Neurosci., 2014, 8, 50.
[32]
Banerjee, R.; Rai, A.; Iyer, S.M.; Narwal, S.; Tare, M. Animal models in the study of Alzheimer’s disease and Parkinson’s disease: A historical perspective. Animal Model. Exp. Med., 2022, 5(1), 27-37.
[http://dx.doi.org/10.1002/ame2.12209] [PMID: 35229999]
[33]
Daubner, S.C.; Le, T.; Wang, S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys., 2011, 508(1), 1-12.
[http://dx.doi.org/10.1016/j.abb.2010.12.017] [PMID: 21176768]
[34]
Wu, R.; Chen, H.; Ma, J.; He, Q.; Huang, Q.; Liu, Q.; Li, M.; Yuan, Z. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ., 2016, 23(3), 542-552.
[http://dx.doi.org/10.1038/cdd.2015.135] [PMID: 26517532]
[35]
Karim, M.R. Liao, EE; Kim, J; Meints, J; Martell Martinez, H; Pletnikova, O α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Mol. Neurodegener., 2020, 15(1), 27.
[http://dx.doi.org/10.1186/s13024-020-00364-w]
[36]
Mahul-Mellier, A.L.; Fauvet, B.; Gysbers, A.; Dikiy, I.; Oueslati, A.; Georgeon, S.; Lamontanara, A.J.; Bisquertt, A.; Eliezer, D.; Masliah, E.; Halliday, G.; Hantschel, O.; Lashuel, H.A. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum. Mol. Genet., 2014, 23(11), 2858-2879.
[http://dx.doi.org/10.1093/hmg/ddt674] [PMID: 24412932]
[37]
Seirafi, M.; Kozlov, G.; Gehring, K. Parkin structure and function. FEBS J., 2015, 282(11), 2076-2088.
[http://dx.doi.org/10.1111/febs.13249] [PMID: 25712550]
[38]
Imam, S.Z.; Zhou, Q.; Yamamoto, A.; Valente, A.J.; Ali, S.F.; Bains, M. Brief Communications Novel Regulation of Parkin Function through c-Abl-Mediated Tyrosine Phosphorylation: Implications for Parkinson’s Disease. 2011. Available from: www.jneurosci.org
[39]
Lee, Y.; Karuppagounder, S.S.; Shin, J.H.; Lee, Y.I.; Ko, H.S.; Swing, D.; Jiang, H.; Kang, S.U.; Lee, B.D.; Kang, H.C.; Kim, D.; Tessarollo, L.; Dawson, V.L.; Dawson, T.M. Erratum: Corrigendum: Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci., 2015, 18(12), 1861-1861.
[http://dx.doi.org/10.1038/nn1215-1861a] [PMID: 26605883]
[40]
Kim, H.; Shin, J.Y.; Jo, A.; Kim, J.H.; Park, S.; Choi, J.Y.; Kang, H.C.; Dawson, V.L.; Dawson, T.M.; Shin, J.H.; Lee, Y. Parkin interacting substrate phosphorylation by c-Abl drives dopaminergic neurodegeneration. Brain, 2021, 144(12), 3674-3691.
[http://dx.doi.org/10.1093/brain/awab356] [PMID: 34581802]
[41]
Wen, Z.; Shu, Y.; Gao, C.; Wang, X.; Qi, G.; Zhang, P.; Li, M.; Shi, J.; Tian, B. CDK5-mediated phosphorylation and autophagy of RKIP regulate neuronal death in Parkinson’s disease. Neurobiol. Aging, 2014, 35(12), 2870-2880.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.05.034] [PMID: 25104559]
[42]
Su, L.Y.; Li, H.; Lv, L.; Feng, Y.M.; Li, G.D.; Luo, R.; Zhou, H.J.; Lei, X.G.; Ma, L.; Li, J.L.; Xu, L.; Hu, X.T.; Yao, Y.G. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy, 2015, 11(10), 1745-1759.
[http://dx.doi.org/10.1080/15548627.2015.1082020] [PMID: 26292069]
[43]
Imam, S.Z.; Trickler, W.; Kimura, S.; Binienda, Z.K.; Paule, M.G. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine parkinson’s disease model. PLoS One, 2013, 8(5)e65129
[http://dx.doi.org/10.1371/journal.pone.0065129]
[44]
Hung, A.Y.; Schwarzschild, M.A. Approaches to disease modification for parkinson’s disease: Clinical trials and lessons learned. Neurotherapeutics, 2020, 174, 1393-1405.
[http://dx.doi.org/10.1007/s13311-020-00964-w]
[45]
Simuni, T.; Fiske, B.; Merchant, K.; Coffey, C.S.; Klingner, E.; Caspell-Garcia, C.; Lafontant, D.E.; Matthews, H.; Wyse, R.K.; Brundin, P.; Simon, D.K.; Schwarzschild, M.; Weiner, D.; Adams, J.; Venuto, C.; Dawson, T.M.; Baker, L.; Kostrzebski, M.; Ward, T.; Rafaloff, G.; Adams, J.; Augustine, E.; Baker, D.; Brocht, A.; Casaceli, C.; Eaton, K.; Henderson, S.; McMullen, N.; Muneath, P.; Trusso, L.; Field, C.; Brahmachari, S.; Rosenthal, L.; Carman, E.; Kamp, C.; Bolger, P.; Wegel, C.; Reynolds, H.; Levy, O.; Servi, A.; Chou, K.; Stovall, A.S.; Pal, G.; Keith, K.; Chung, K.; Shahed, J.; Hunter, C.; Shah, B.; Sullivan, K.; Hung, A.Y.; Bwala, G.; Spindler, M.; Oliver, A.; Hauser, R.A.; Rocha, C.; Molho, E.; Evans, S.; Shill, H.A.; Ismail, F.; Stover, N.; Cromer, C.; Blair, C.; Zhang, L.; Kishchenko, O.; Swan, M.; Ramirez, L.; Frank, S.; Burrows, S.; Duker, A.; Gruenwald, C.; Blindauer, K.; Wheeler, L.; Seeberger, L.; Simpson, A.; Scott, B.L.; Gauger, L.; Ahmed, A.; Pitchford, Y.; Mule, J.; Ramirez-Zamora, A.; Ridgeway, D.B.; Slevin, J.S.; Wagner, R.W.; Hinson, V.; Jenkins, S.; Goudreau, J.L.; Russell, D.; Mari, Z.; Dumitrescu, L.; Aldred, J.; Bixby, M.; LeDoux, M. Efficacy of nilotinib in patients with moderately advanced parkinson disease. JAMA Neurol., 2021, 78(3), 312-320.
[http://dx.doi.org/10.1001/jamaneurol.2020.4725] [PMID: 33315105]
[46]
Nilotinib in Cognitively Impaired Parkinson Disease Patients 001. NCT02281474, 2015.
[47]
Pagan, F.L.; Hebron, M.L.; Wilmarth, B.; Torres-Yaghi, Y.; Lawler, A.; Mundel, E.E.; Yusuf, N.; Starr, N.J.; Anjum, M.; Arellano, J.; Howard, H.H.; Shi, W.; Mulki, S.; Kurd-Misto, T.; Matar, S.; Liu, X.; Ahn, J.; Moussa, C. Nilotinib effects on safety, tolerability, and potential biomarkers in parkinson disease. JAMA Neurol., 2020, 77(3), 309-317.
[http://dx.doi.org/10.1001/jamaneurol.2019.4200] [PMID: 31841599]
[48]
Lee, S.; Kim, S.; Park, Y.J.; Yun, S.P.; Kwon, S.H.; Kim, D.; Kim, D.Y.; Shin, J.S.; Cho, D.J.; Lee, G.Y.; Ju, H.S.; Yun, H.J.; Park, J.H.; Kim, W.R.; Jung, E.A.; Lee, S.; Ko, H.S. The c-Abl inhibitor, Radotinib HCl, is neuroprotective in a preclinical Parkinson’s disease mouse model. Hum. Mol. Genet., 2018, 27(13), 2344-2356.
[http://dx.doi.org/10.1093/hmg/ddy143] [PMID: 29897434]
[49]
Safety, tolerability, pharmacokinetics and efficacy study of radotinib in parkinson's disease NCT04691661, 2023.
[50]
A study to assess single and multiple doses of IkT-148009 in healthy elderly participants and parkinson's patients. NCT04350177, 2023.
[51]
Safety and tolerability study of K0706 in Subjects with parkinson’s disease. NCT02970019, 2020.
[52]
PROSEEK: A phase 2 study in early parkinson's disease patients evaluating the safety and efficacy of abl tyrosine kinase inhibition using K0706. NCT03655236, 2023.
[53]
Owens, H.; Gamble, G.D.; Bjornholdt, M.C.; Boyce, N.K.; Keung, L. Parkinson’s disease: Causes, symptoms, and treatments. 2007. Available from: https://ghr.nlm.nih.gov/condition/parkinson-disease
[54]
McFarthing, K.; Buff, S.; Rafaloff, G.; Dominey, T.; Wyse, R.K.; Stott, S.R.W. Parkinson’s disease drug therapies in the clinical trial pipeline: 2020. J. Parkinsons Dis., 2020, 10(3), 757-774.
[http://dx.doi.org/10.3233/JPD-202128] [PMID: 32741777]
[55]
Maruthi Prasad, E.; Hung, S.Y. Current therapies in clinical trials of parkinson’s disease: A 2021 update. Pharmaceuticals, 2021, 14(8), 717.
[56]
Meldrum, B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr., 2000, 130(4), 1007S-1015S.
[http://dx.doi.org/10.1093/jn/130.4.1007S] [PMID: 10736372]
[57]
Pagonabarraga, J.; Tinazzi, M.; Caccia, C.; Jost, W.H. The role of glutamatergic neurotransmission in the motor and non-motor symptoms in Parkinson’s disease: Clinical cases and a review of the literature. J. Clin. Neurosci., 2021, 90, 178-183.
[http://dx.doi.org/10.1016/j.jocn.2021.05.056] [PMID: 34275546]
[58]
Miladinovic, T.; Nashed, M.; Singh, G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules, 2015, 5(4), 3112-3141.
[http://dx.doi.org/10.3390/biom5043112] [PMID: 26569330]
[59]
Carrillo-Mora, P.; Silva-Adaya, D.; Villaseñor-Aguayo, K. Glutamate in Parkinson’s disease: Role of antiglutamatergic drugs. Basal Ganglia, 2013, 3(3), 147-157.
[http://dx.doi.org/10.1016/j.baga.2013.09.001]
[60]
Zhang, Z.; Zhang, S.; Fu, P.; Zhang, Z.; Lin, K.; Ka-Shun Ko, J. Molecular sciences roles of glutamate receptors in parkinson’s disease. Available from: www.mdpi.com/journal/ijms
[61]
Niciu, M.J.; Kelmendi, B.; Sanacora, G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav., 2012, 100(4), 656-664.
[http://dx.doi.org/10.1016/j.pbb.2011.08.008] [PMID: 21889952]
[62]
Awad, H.; Hubert, G.W.; Smith, Y.; Levey, A.I.; Conn, P.J. Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. J. Neurosci., 2000, 20(21), 7871-7879.
[http://dx.doi.org/10.1523/JNEUROSCI.20-21-07871.2000] [PMID: 11050106]
[63]
Buhmann, C.; Kassubek, J.; Jost, W.H. Management of Pain in Parkinson’s Disease. J. Parkinsons Dis., 2020, 10(s1), S37-S48.
[http://dx.doi.org/10.3233/JPD-202069] [PMID: 32568113]
[64]
Guo, P. Nonmotor symptoms in patients with Parkinson’s disease. Medicine, 2016, 95(50)e5400
[65]
Martinez-Martin, P.; Rodriguez-Blazquez, C.; Kurtis, M.M.; Chaudhuri, K.R. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov. Disord., 2011, 26(3), 399-406.
[http://dx.doi.org/10.1002/mds.23462] [PMID: 21264941]
[66]
Vanle, B.; Olcott, W.; Jimenez, J.; Bashmi, L.; Danovitch, I.; Ishak, W.W. NMDA antagonists for treating the non-motor symptoms of Parkinson’s disease. Trans. Psych., 2018, 8(1), 1-15.
[http://dx.doi.org/10.1038/s41398-018-0162-2]
[67]
Jewett, B.E.; Thapa, B. Physiology, NMDA Receptor; StatPearls: Treasure Island, FL, 2022.
[68]
Gö Tz, T.; Kraushaar, U.; Rg Geiger, J.; Lü, J.; Berger, T.; Jonas, P. Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J. Neurosci., 1996, 17(1), 204-215.
[69]
Stauch Slusher, B.; Rissolo, K.C.; Jackson, P.F.; Pullan, L.M. Centrally-administered glycine antagonists increase locomotion in monoamine-depleted mice. J. Neural Transm., 1994, 97(3), 175-185.
[http://dx.doi.org/10.1007/BF02336139] [PMID: 7873128]
[70]
Marti, M.; Paganini, F.; Stocchi, S.; Mela, F.; Beani, L.; Bianchi, C. Plasticity of glutamatergic control of striatal acetylcholine release in experimental parkinsonism: Opposite changes at group-II metabotropic and NMDA receptors. J. Neurochem., 2003, 844, 792-802.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01569.x]
[71]
Löschmann, P.A.; De Groote, C.; Smith, L.; Wüllner, U.; Fischer, G.; Kemp, J.A.; Jenner, P.; Klockgether, T. Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Exp. Neurol., 2004, 187(1), 86-93.
[http://dx.doi.org/10.1016/j.expneurol.2004.01.018] [PMID: 15081591]
[72]
Jourdain, V.A.; Morin, N.; Grégoire, L.; Morissette, M.; Di Paolo, T. Changes in glutamate receptors in dyskinetic parkinsonian monkeys after unilateral subthalamotomy. J. Neurosurg., 2015, 123(6), 1383-1393.
[http://dx.doi.org/10.3171/2014.10.JNS141570] [PMID: 25932606]
[73]
Greger, I.H.; Ziff, E.B.; Penn, A.C. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci., 2007, 30(8), 407-416.
[http://dx.doi.org/10.1016/j.tins.2007.06.005] [PMID: 17629578]
[74]
Twomey, E.C.; Yelshanskaya, M.V.; Grassucci, R.A.; Frank, J.; Sobolevsky, A.I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature, 2017, 549(7670), 60-65.
[http://dx.doi.org/10.1038/nature23479] [PMID: 28737760]
[75]
Nicoll, R.A.; Tomita, S. Bredt, DS Auxiliary subunits assist AMPA-Type glutamate receptors. Science, 1979, 311(5765), 1253-1256.
[76]
Greger, I.H.; Watson, J.F.; Cull-Candy, S.G. Structural and functional architecture of AMPA-Type glutamate receptors and their auxiliary proteins. Neuron, 2017, 94(4), 713-730.
[http://dx.doi.org/10.1016/j.neuron.2017.04.009] [PMID: 28521126]
[77]
Chávez, A.E.; Singer, J.H.; Diamond, J.S. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature, 2006, 443(7112), 705-708.
[http://dx.doi.org/10.1038/nature05123] [PMID: 17036006]
[78]
Hanada, T. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors. Biomolecules, 2020, 10(3), 464.
[http://dx.doi.org/10.3390/biom10030464] [PMID: 32197322]
[79]
Menuz, K.; O’Brien, J.L.; Karmizadegan, S.; Bredt, D.S.; Nicoll, R.A. TARP redundancy is critical for maintaining AMPA receptor function. J. Neurosci., 2008, 28(35), 8740-8746.
[http://dx.doi.org/10.1523/JNEUROSCI.1319-08.2008] [PMID: 18753375]
[80]
Chen, S.; Zhao, Y.; Wang, Y.; Shekhar, M.; Tajkhorshid, E.; Gouaux, E. Activation and desensitization mechanism of AMPA receptor-TARP complex by Cryo-EM. Cell, 2017, 170(6), 1234-1246.e14.
[http://dx.doi.org/10.1016/j.cell.2017.07.045] [PMID: 28823560]
[81]
Catarzi, D.; Colotta, V.; Varano, F. Competitive AMPA receptor antagonists. Med. Res. Rev., 2007, 27(2), 239-278.
[http://dx.doi.org/10.1002/med.20084] [PMID: 16892196]
[82]
Johnson, K.; Conn, P.; Niswender, C. Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2009, 8(6), 475-491.
[http://dx.doi.org/10.2174/187152709789824606] [PMID: 19702565]
[83]
Konitsiotis, S.; Blanchet, P.J.; Verhagen, L.; Lamers, E.; Chase, T.N. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology, 2000, 54(8), 1589-1595.
[http://dx.doi.org/10.1212/WNL.54.8.1589] [PMID: 10762498]
[84]
Silverdale, M.A.; Nicholson, S.L.; Crossman, A.R.; Brotchie, J.M. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson’s disease. Mov. Disord., 2005, 20(4), 403-409.
[http://dx.doi.org/10.1002/mds.20345] [PMID: 15593312]
[85]
Paquette, M.A.; Brudney, E.G.; Putterman, D.B.; Meshul, C.K.; Johnson, S.W.; Berger, S.P. Sigma ligands, but not N-methyl-D-aspartate antagonists, reduce levodopa-induced dyskinesias. Neuroreport, 2008, 19(1), 111-115.
[http://dx.doi.org/10.1097/WNR.0b013e3282f3b0d1] [PMID: 18281903]
[86]
Parsons, C.G.; Stöffler, A.; Danysz, W. Memantine: A NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system - too little activation is bad, too much is even worse. Neuropharmacology, 2007, 53(6), 699-723.
[http://dx.doi.org/10.1016/j.neuropharm.2007.07.013] [PMID: 17904591]
[87]
Levandis, G.; Bazzini, E.; Armentero, M.T.; Nappi, G.; Blandini, F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol. Dis., 2008, 29(1), 161-168.
[http://dx.doi.org/10.1016/j.nbd.2007.08.011] [PMID: 17933546]
[88]
Sebban, C.; Tesolin-Decros, B.; Ciprian-Ollivier, J.; Perret, L.; Spedding, M. Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA- α 1 - and 5-HT 2A -receptors. Br. J. Pharmacol., 2002, 135(1), 65-78.
[http://dx.doi.org/10.1038/sj.bjp.0704451] [PMID: 11786481]
[89]
Picconi, B.; Calabresi, P. Targeting metabotropic glutamate receptors as a new strategy against levodopa-induced dyskinesia in Parkinson’s disease? Mov. Disord., 2014, 29(6), 715-719.
[http://dx.doi.org/10.1002/mds.25851] [PMID: 24591264]
[90]
Rylander, D.; Iderberg, H.; Li, Q.; Dekundy, A.; Zhang, J.; Li, H.; Baishen, R.; Danysz, W.; Bezard, E.; Cenci, M.A. A mGluR5 antagonist under clinical development improves L-DOPA-induced dyskinesia in parkinsonian rats and monkeys. Neurobiol. Dis., 2010, 39(3), 352-361.
[http://dx.doi.org/10.1016/j.nbd.2010.05.001] [PMID: 20452425]
[91]
Emre, M.; Tsolaki, M.; Bonuccelli, U.; Destée, A.; Tolosa, E.; Kutzelnigg, A.; Ceballos-Baumann, A.; Zdravkovic, S.; Bladström, A.; Jones, R. Memantine for patients with Parkinson’s disease dementia or dementia with Lewy bodies: A randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2010, 9(10), 969-977.
[http://dx.doi.org/10.1016/S1474-4422(10)70194-0] [PMID: 20729148]
[92]
Raupp-Barcaro, I.F.; Vital, M.A.; Galduróz, J.C.; Andreatini, R. Potential antidepressant effect of amantadine: A review of preclinical studies and clinical trials. Br. J. Psychiatry, 2018, 40(4), 449-458.
[http://dx.doi.org/10.1590/1516-4446-2017-2393] [PMID: 29898194]
[93]
Mehta, S.H.; Pahwa, R.; Tanner, C.M.; Hauser, R.A.; Johnson, R. Effects of gocovri (Amantadine) extended release capsules on non-motor symptoms in patients with parkinson’s disease and dyskinesia. Neurol. Ther., 2021, 10(1), 307-320.
[http://dx.doi.org/10.1007/s40120-021-00246-3] [PMID: 33864229]
[94]
Paik, J.; Keam, S.J. Amantadine extended-release (GOCOVRI™): A review in levodopa-induced dyskinesia in parkinson’s disease. CNS Drugs, 2018, 32(8), 797-806.
[http://dx.doi.org/10.1007/s40263-018-0552-2] [PMID: 30088203]
[95]
Safety and Efficacy of AVP-923 in the Treatment of Levodopainduced Dyskinesia in Parkinson's Disease Patients (LID in PD). NCT01767129, 2022.
[96]
Treatment of parkinson's disease with eliprodil. NCT00001929, 2008.
[97]
The impact of pharmacological and electric modulation of NMDA pathway on the cognitive flexibility and volitional movement preparation in patients with parkinson's disease NCT01785628, 2018.
[98]
NYX-458 in subjects with mild cognitive impairment or mild dementia due to parkinson's disease or lewy body dementia (cognition, memory, attention, thinking). NCT04148391, 2022.
[99]
D-serine adjuvant treatment for parkinson's disease. NCT00215904, 2012.
[100]
Talampanel to treat parkinson’s disease. NCT00108667, 2022.
[101]
Effects of talampanel on patients with advanced parkinson's disease. NCT00036296, 2011.
[102]
Study of LY300164 for the treatment of parkinson’s disease. NCT00004576, 2008.
[103]
Topiramate as an adjunct to amantadine in the treatment of dyskinesia in parkinson's disease (TOP-DYSK). NCT01789047, 2019.
[104]
Fabbro, D.; Parkinson, D.; Matter, A. Protein tyrosine kinase inhibitors: New treatment modalities? Curr. Opin. Pharmacol., 2002, 2(4), 374-381.
[http://dx.doi.org/10.1016/S1471-4892(02)00179-0] [PMID: 12127869]
[105]
Ejma, M.; Madetko, N.; Brzecka, A.; Guranski, K.; Alster, P.; Misiuk-Hojło, M.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. The links between parkinson’s disease and cancer. Biomedicines, 2020, 8(10), 416.
[http://dx.doi.org/10.3390/biomedicines8100416] [PMID: 33066407]
[106]
Feng, D.D.; Cai, W.; Chen, X. The associations between Parkinson’s disease and cancer: The plot thickens. Transl. Neurodegener., 2015, 4(1), 20.
[http://dx.doi.org/10.1186/s40035-015-0043-z] [PMID: 26504519]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy