Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease

Author(s): Chanchal Sharma* and Avijit Mazumder

Volume 24, Issue 1, 2024

Published on: 12 January, 2024

Page: [45 - 56] Pages: 12

DOI: 10.2174/0118715249263300231116062740

Price: $65

Abstract

Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.

Keywords: Alzheimer's disease, drug targets, amyloid beta, tau hyperphosphorylation, acetylcholinesterase, GABA.

Graphical Abstract
[1]
Miran, M.; Amirshahrokhi, K.; Ajanii, Y.; Zadali, R.; Rutter, M.W.; Enayati, A. Chemical composition, traditional use in medicine, and pharmacological activities of boswellia sacra flueck; Evidence-based Complementary and Alternative Medicine. Hindawi Limited, 2022, Vol. 2022
[2]
Rudnicka, E.; Napierała, P.; Podfigurna, A.; Męczekalski, B.; Smolarczyk, R.; Grymowicz, M. The World Health Organization (WHO) approach to healthy ageing. Maturitas, 2020, 139, 6-11.
[http://dx.doi.org/10.1016/j.maturitas.2020.05.018] [PMID: 32747042]
[3]
Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s Disease: Past, present, and future. J. Int. Neuropsychol. Soc., 2017, 23(9-10), 818-831.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[4]
Breijyeh, Z.; Karaman, R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[5]
Wong, W. Economic burden of Alzheimer disease and managed care considerations. Am. J. Manag. Care, 2020, 26(8)(Suppl.), S177-S183.
[PMID: 32840331]
[6]
Shah, H.; Albanese, E.; Duggan, C.; Rudan, I.; Langa, K.M.; Carrillo, M.C.; Chan, K.Y.; Joanette, Y.; Prince, M.; Rossor, M.; Saxena, S.; Snyder, H.M.; Sperling, R.; Varghese, M.; Wang, H.; Wortmann, M.; Dua, T. Research priorities to reduce the global burden of dementia by 2025. Lancet Neurol., 2016, 15(12), 1285-1294.
[http://dx.doi.org/10.1016/S1474-4422(16)30235-6] [PMID: 27751558]
[7]
Menardi, A.; Rossi, S.; Koch, G.; Hampel, H.; Vergallo, A.; Nitsche, M.A.; Stern, Y.; Borroni, B.; Cappa, S.F.; Cotelli, M.; Ruffini, G.; El-Fakhri, G.; Rossini, P.M.; Dickerson, B.; Antal, A.; Babiloni, C.; Lefaucheur, J.P.; Dubois, B.; Deco, G.; Ziemann, U.; Pascual-Leone, A.; Santarnecchi, E. Toward noninvasive brain stimulation 2.0 in Alzheimer’s disease. Ageing Res. Rev., 2022, 75, 101555.
[http://dx.doi.org/10.1016/j.arr.2021.101555] [PMID: 34973457]
[8]
Tolar, M.; Abushakra, S.; Hey, J.A.; Porsteinsson, A.; Sabbagh, M. Aducanumab, gantenerumab, BAN2401, and ALZ-801—the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res. Ther., 2020, 12(1), 95.
[http://dx.doi.org/10.1186/s13195-020-00663-w] [PMID: 32787971]
[9]
Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s & dementia, 2011, 7, 532-539.
[10]
Harrison, C.; Sakai, K.; Johnston, D.; Holmes, C.; Boche, D.; Nicoll, J. Capillary angiopathy and aquaporin-4 after Aβ immunisation in Alzheimer’s disease: Potential relevance to Amyloid-Related Imaging Abnormalities. medRxiv, 2022.
[11]
Ahmed, H.; Haider, A.; Ametamey, S.M. N-Methyl-D-Aspartate (NMDA) receptor modulators: A patent review (2015-present). Expert Opin. Ther. Pat., 2020, 30(10), 743-767.
[12]
Wiseman, F.K.; Al-Janabi, T.; Hardy, J.; Karmiloff-Smith, A.; Nizetic, D.; Tybulewicz, V.L.J.; Fisher, E.M.C.; Strydom, A. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat. Rev. Neurosci., 2015, 16(9), 564-574.
[http://dx.doi.org/10.1038/nrn3983] [PMID: 26243569]
[13]
Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[14]
Yang, J-H; Huang, H-S; Zha, X-D; Chen, Q-F Research progress of pathogenesis, early diagnosis and therapy in Alzheimer's disease. Chinese Pharmacol Bull., 2007, 23, 847+848-850.
[15]
Baniasadi, T. risk factors associated with falls in older adults with dementia and alzheimer’s diseases among older adults in the United States. medRxiv, 2023.
[http://dx.doi.org/10.1101/2023.01.10.23284411]
[16]
Walsh, S; Merrick, R; Richard, E; Nurock, S; Brayne, C. Lecanemab for Alzheimer’s disease. bmj, 2022, 379.
[17]
Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: A focus on aducanumab and lecanemab. Front. Aging Neurosci., 2022, 14, 870517.
[http://dx.doi.org/10.3389/fnagi.2022.870517] [PMID: 35493943]
[18]
Knopman, D.S. Lecanemab reduces brain amyloid-β and delays cognitive worsening. Cell Rep. Med., 2023, 4(3), 100982.
[http://dx.doi.org/10.1016/j.xcrm.2023.100982] [PMID: 36948153]
[19]
Imbimbo, B.P.; Watling, M. What have we learned from past failures of investigational drugs for Alzheimer’s disease? Expert Opin. Investig. Drugs, 2021, 30(12), 1175-1182.
[http://dx.doi.org/10.1080/13543784.2021.2017881] [PMID: 34890262]
[20]
Marsool, M.D.M.; Prajjwal, P.; Reddy, Y.B.; Marsool, A.D.M.; Lam, J.R.; Nandwana, V. Newer modalities in the management of Alzheimer’s dementia along with the role of aducanumab and lecanemab in the treatment of its refractory cases. Dis. Mon., 2023, 69(5), 101547.
[http://dx.doi.org/10.1016/j.disamonth.2023.101547] [PMID: 36931947]
[21]
Vaz, M.; Silva, V.; Monteiro, C.; Silvestre, S.; Vaz, M.; Silvestre, S. Role of aducanumab in the treatment of alzheimer’s disease: Challenges and opportunities. Clin. Interv. Aging, 2022, 17, 797-810.
[22]
Honig, LS.; Reyderman, L.; Sabbagh, M.; Barakos, J.; Irizarry, M.; Dhadda, S ARIA in patients treated with lecanemab (BAN2401) in a phase 2 study in early Alzheimer’s disease. Alzheimers Dement., 2023, 9(1), e12377.
[23]
Wessels, AM; Dennehy, EB; Dowsett, SA Dickson, SP Meaningful Clinical Changes in Alzheimer’s Disease Measured With the iADRS and Illustrated Using the Donanemab TRAILBLAZER-ALZ Study Findings. Neurol. Clin. Pract., 2023, 13(2), e200127.
[24]
Lo, AC; Duggan, C.; Mancini, M.; Wang, H.; Shcherbinin, S.; Phase, I.I. NAVIGATE-AD study) Results of LY3202626 Effects on Patients with Mild Alzheimer’s Disease Dementia. J. Alzheimers Dis. Rep., 2021, 5(1), 321-336.
[25]
Wang, T.; Kuang, W.; Chen, W.; Xu, W.; Zhang, L.; Li, Y. A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimers Res. Ther., 2020, 12(1), 110.
[http://dx.doi.org/10.1186/s13195-020-00678-3]
[26]
Olloquequi, J.; Ettcheto, M.; Cano, A.; Sanchez-lópez, E.; Carrasco, M; Espinosa, T. Impact of new drugs for therapeutic intervention in alzheimer’s disease. Front. Biosci., 2022, 27(5), 146.
[http://dx.doi.org/10.31083/j.fbl2705146]
[27]
Panza, F.; Solfrizzi, V.; Seripa, D.; Imbimbo, B.P.; Lozupone, M. Santamato, A Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer’s Disease. BioMed Res. Int., 2016, 2016, 3245935.
[http://dx.doi.org/10.1155/2016/3245935]
[28]
Matsunaga, S.; Fujishiro, H.; Takechi, H. Efficacy and safety of glycogen synthase kinase 3 inhibitors for alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2019, 69(4), 1031-1039.
[http://dx.doi.org/10.3233/JAD-190256] [PMID: 31156177]
[29]
Boada, M.; López, O.L.; Olazarán, J.; Núñez, L.; Pfeffer, M.; Puente, O. Neuropsychological, neuropsychiatric, and quality-of-life assessments in Alzheimer’s disease patients treated with plasma exchange with albumin replacement from the randomized AMBAR study. Alzheimers Dement., 2021.
[PMID: 34726348]
[30]
Forlenza, O.V.; Radanovic, M.; Talib, L.L.; Gattaz, W.F. Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: Randomised clinical trial. Br. J. Psychiatry, 2019, 215(5), 668-674.
[http://dx.doi.org/10.1192/bjp.2019.76] [PMID: 30947755]
[31]
Hampel, H.; Williams, C.; Etcheto, A.; Goodsaid, F.; Parmentier, F.; Sallantin, J.; Kaufmann, W.E.; Missling, C.U.; Afshar, M. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an Alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2-73) Phase 2a clinical study. Alzheimers Dement., 2020, 6(1), e12013.
[http://dx.doi.org/10.1002/trc2.12013] [PMID: 32318621]
[32]
Scott, J.D.; Li, S.W.; Brunskill, A.P.J.; Chen, X.; Cox, K.; Cumming, J.N.; Forman, M.; Gilbert, E.J.; Hodgson, R.A.; Hyde, L.A.; Jiang, Q.; Iserloh, U.; Kazakevich, I.; Kuvelkar, R.; Mei, H.; Meredith, J.; Misiaszek, J.; Orth, P.; Rossiter, L.M.; Slater, M.; Stone, J.; Strickland, C.O.; Voigt, J.H.; Wang, G.; Wang, H.; Wu, Y.; Greenlee, W.J.; Parker, E.M.; Kennedy, M.E.; Stamford, A.W. Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β-site amyloid precursor protein cleaving enzyme 1 inhibitor for the treatment of alzheimer’s disease. J. Med. Chem., 2016, 59(23), 10435-10450.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00307] [PMID: 27933948]
[33]
Khalaf, K.; Tornese, P.; Cocco, A.; Albanese, A. Tauroursodeoxycholic acid: A potential therapeutic tool in neurodegenerative diseases. Transl. Neurodegener., 2022, 11(1), 33.
[http://dx.doi.org/10.1186/s40035-022-00307-z] [PMID: 35659112]
[34]
Xu, M.; Peng, Y.; Zhu, L.; Wang, S.; Ji, J.; Rakesh, K.P. Triazole derivatives as inhibitors of Alzheimer’s disease: Current developments and structure-activity relationships. Eur. J. Med. Chem., 2019, 180(October), 656-672.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.059] [PMID: 31352246]
[35]
Matsumura, K.; Ono, M.; Kitada, A.; Watanabe, H.; Yoshimura, M.; Iikuni, S.; Kimura, H.; Okamoto, Y.; Ihara, M.; Saji, H. Structure–activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as tau-imaging agents that selectively detect neurofibrillary tangles in alzheimer’s disease brains. J. Med. Chem., 2015, 58(18), 7241-7257.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00440] [PMID: 26327138]
[36]
Rehman, A.; Nafeesa, K.; Abbasi, M.A.; Siddiqui, S.Z.; Rasool, S.; Shah, S.A.A.; Ashraf, M. Synthesis of new heterocyclic 3-piperidinyl-1,3,4-oxadiazole derivatives as potential drug candidate for the treatment of Alzheimer’s disease. Cogent Chem., 2018, 4(1), 1472197.
[http://dx.doi.org/10.1080/23312009.2018.1472197]
[37]
Menu, A. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities. Catalysts, 2023, 13(2), 392.
[38]
Diaconu, D.; Antoci, V.; Mangalagiu, V.; Amariucai-Mantu, D.; Mangalagiu, I.I. Quinoline–imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep., 2022, 12(1), 16988.
[http://dx.doi.org/10.1038/s41598-022-21435-6] [PMID: 36216981]
[39]
Li, N.S.; Liang, W.; Piccirilli, J.A.; Tang, W.J. Reinvestigating the synthesis and efficacy of small benzimidazole derivatives as presequence protease enhancers. Eur. J. Med. Chem., 2019, 184(December), 111746.
[http://dx.doi.org/10.1016/j.ejmech.2019.111746] [PMID: 31610373]
[40]
Altintop, M.D.; Özdemir, A.; Kaplancikli, Z.A.; Turan-Zitouni, G.; Temel, H.E.; Çiftçi, G.A. Synthesis and biological evaluation of some pyrazoline derivatives bearing a dithiocarbamate moiety as new cholinesterase inhibitors. Arch. Pharm., 2013, 346(3), 189-199.
[http://dx.doi.org/10.1002/ardp.201200384] [PMID: 23389781]
[41]
Özkay, Y.; Özkay, Ü.D. Acetylcholine esterase inhibitory potential of some benzimidazole derivatives. Eur Int J Sci Technol., 2014, 3(7), 115-120.
[42]
Cui, M.; Ono, M.; Kimura, H.; Kawashima, H.; Liu, B.L.; Saji, H. Radioiodinated benzimidazole derivatives as single photon emission computed tomography probes for imaging of β-amyloid plaques in Alzheimer’s disease. Nucl. Med. Biol., 2011, 38(3), 313-320.
[http://dx.doi.org/10.1016/j.nucmedbio.2010.09.012] [PMID: 21492779]
[43]
Parmar, S.; Memane, K.; Gurjar, A. #42 Ligand-based drug design for the search of imidazole analogs as anti-Alzheimer agents. J Pharm Chem, 2022, 8 Available from: https://pubs.vensel.org/index.php/jphchem/article/view/161
[44]
Gouras, G.K.; Olsson, T.T.; Hansson, O. β-amyloid Peptides and Amyloid Plaques in Alzheimer’s Disease. In: Neurotherapeutics; Springer: New York, 2015; 12, pp. 3-11.
[45]
Karran, E.; De Strooper, B. The amyloid hypothesis in Alzheimer disease: New insights from new therapeutics. Nat. Rev. Drug Discov., 2022, 21(4), 306-318.
[http://dx.doi.org/10.1038/s41573-022-00391-w]
[46]
Facchinetti, R.; Bronzuoli, M.R.; Scuderi, C. An animal model of alzheimer disease based on the intrahippocampal injection of amyloid β-peptide (1–42). Methods Mol. Biol., 2018, 1727, 343-352.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_25] [PMID: 29222793]
[47]
Gerrits, E.; Brouwer, N.; Kooistra, S.M.; Woodbury, M.E.; Vermeiren, Y.; Lambourne, M.; Mulder, J.; Kummer, M.; Möller, T.; Biber, K.; Dunnen, W.F.A.; De Deyn, P.P.; Eggen, B.J.L.; Boddeke, E.W.G.M. Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease. Acta Neuropathol., 2021, 141(5), 681-696.
[http://dx.doi.org/10.1007/s00401-021-02263-w] [PMID: 33609158]
[48]
Rosenberg, R.N. Explaining the cause of the amyloid burden in Alzheimer disease. Arch. Neurol., 2002, 59(9), 1367-1368.
[http://dx.doi.org/10.1001/archneur.59.9.1367] [PMID: 12223021]
[49]
Long, J.M.; Maloney, B.; Rogers, J.T.; Lahiri, D.K. Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region: Implications in Alzheimer’s disease. Mol. Psychiatry, 2019, 24(3), 345-363.
[http://dx.doi.org/10.1038/s41380-018-0266-3] [PMID: 30470799]
[50]
Villegas, S.; Roda, A.R.; Serra-Mir, G.; Montoliu-Gaya, L.; Tiessler, L. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen. Res., 2022, 17(8), 1666-1674.
[http://dx.doi.org/10.4103/1673-5374.332127] [PMID: 35017413]
[51]
Blokland, A. Brain research reviews acetylcholine: A neurotransmitter for learning and memory? Brain Res. Brain Res. Rev., 1996, 21.
[52]
Hoskin, J.L.; Al-Hasan, Y.; Sabbagh, M.N. Nicotinic acetylcholine receptor agonists for the treatment of Alzheimer’s dementia: An update. Nicotine Tob. Res., 2019, 21(3), 370-376.
[http://dx.doi.org/10.1093/ntr/nty116] [PMID: 30137524]
[53]
Lombardo, S.; Maskos, U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. In: Neuropharmacology; Elsevier Ltd, 2015; 96, pp. 255-262.
[54]
Koch, H.; Haas, S.; Jürgens, T. On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer’s disease. Curr. Med. Chem., 2005, 12(24), 2915-2921.
[http://dx.doi.org/10.2174/092986705774454742] [PMID: 16305479]
[55]
Zhou, S.; Huang, G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother., 2022, 146, 112556.
[http://dx.doi.org/10.1016/j.biopha.2021.112556] [PMID: 34953393]
[56]
Shih, C.C.; Chen, P.Y.; Chen, M.F.; Lee, T.J.F. Differential blockade by huperzine A and donepezil of sympathetic nicotinic acetylcholine receptor-mediated nitrergic neurogenic dilations in porcine basilar arteries. Eur. J. Pharmacol., 2020, 868, 172851.
[http://dx.doi.org/10.1016/j.ejphar.2019.172851] [PMID: 31836535]
[57]
Barone, E.; Di Domenico, F.; Perluigi, M.; Butterfield, D.A. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic. Biol. Med., 2021, 176, 16-33.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.09.006] [PMID: 34530075]
[58]
Rehman, S.; Ikram, M.; Ullah, N.; Alam, S.; Park, H.; Badshah, H.; Choe, K.; Ok Kim, M. Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB Signaling. Cells, 2019, 8(7), 760.
[http://dx.doi.org/10.3390/cells8070760] [PMID: 31330909]
[59]
Yang, L.; Jiang, Y.; Shi, L.; Zhong, D.; Li, Y.; Li, J.; Jin, R. AMPK: Potential therapeutic target for alzheimer’s disease. Curr. Protein Pept. Sci., 2020, 21(1), 66-77.
[http://dx.doi.org/10.2174/1389203720666190819142746] [PMID: 31424367]
[60]
Nikbakhtzadeh, M.; Shaerzadeh, F.; Ashabi, G. Highlighting the protective or degenerative role of AMPK activators in dementia experimental models. CNS Neurol. Disord. Drug Targets, 2021, 20(9), 786-801.
[http://dx.doi.org/10.2174/1871527320666210526160214] [PMID: 34042039]
[61]
Adak, T.; Samadi, A.; Ünal, A.Z.; Sabuncuoğlu, S. A reappraisal on metformin. Regul. Toxicol. Pharmacol., 2018, 92, 324-332.
[http://dx.doi.org/10.1016/j.yrtph.2017.12.023] [PMID: 29291990]
[62]
Masuyer, G.; Yates, C.J.; Sturrock, E.D.; Acharya, K.R. Angiotensin-I converting enzyme (ACE): Structure, biological roles, and molecular basis for chloride ion dependence. In: Biological Chemistry; Walter de Gruyter GmbH, 2014; pp. 1135-1149.
[63]
Le, D.; Brown, L.; Malik, K.; Murakami, S. Two opposing functions of angiotensin-converting enzyme (ACE) that links hypertension, dementia, and aging. Int. J. Mol. Sci., 2021, 22(24), 13178.
[http://dx.doi.org/10.3390/ijms222413178] [PMID: 34947975]
[64]
Nassan, M.; Piras, I.; Rogalski, E.J.; Geula, C.; Mesulam, M-M.; Dashti, H.; Saxena, R.; Huentelman, M.J. Genetically proxied angiotensin-converting-enzyme inhibition is potentially causal for alzheimer disease: A mendelian randomization study. Alzheimers Dement., 2022, 18(S4), e069349.
[http://dx.doi.org/10.1002/alz.069349]
[65]
Balu, D.; Karstens, A.J.; Loukenas, E.; Maldonado Weng, J.; York, J.M.; Valencia-Olvera, A.C. The role of APOE in transgenic mouse models of AD.Neuroscience Letters; Elsevier Ireland Ltd, 2019, p. 707.
[66]
Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; Pasquier, F.; Dubois, B.; Tognoni, G.; Fiévet, N.; Brouwers, N.; Bettens, K.; Arosio, B.; Coto, E.; Del Zompo, M.; Mateo, I.; Epelbaum, J.; Frank-Garcia, A.; Helisalmi, S.; Porcellini, E.; Pilotto, A.; Forti, P.; Ferri, R.; Scarpini, E.; Siciliano, G.; Solfrizzi, V.; Sorbi, S.; Spalletta, G.; Valdivieso, F.; Vepsäläinen, S.; Alvarez, V.; Bosco, P.; Mancuso, M.; Panza, F.; Nacmias, B.; Bossù, P.; Hanon, O.; Piccardi, P.; Annoni, G.; Seripa, D.; Galimberti, D.; Licastro, F.; Soininen, H.; Dartigues, J-F.; Kamboh, M.I.; Van Broeckhoven, C.; Lambert, J.C.; Amouyel, P.; Campion, D. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Mol. Psychiatry, 2011, 16(9), 903-907.
[http://dx.doi.org/10.1038/mp.2011.52] [PMID: 21556001]
[67]
Lanfranco, M.F.; Ng, C.A.; Rebeck, G.W. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(17), 6336.
[http://dx.doi.org/10.3390/ijms21176336] [PMID: 32882843]
[68]
Butini, S.; Brogi, S.; Novellino, E.; Campiani, G.; Ghosh, A.; Brindisi, M.; Gemma, S. The structural evolution of β-secretase inhibitors: A focus on the development of small-molecule inhibitors. Curr. Top. Med. Chem., 2013, 13(15), 1787-1807.
[http://dx.doi.org/10.2174/15680266113139990137] [PMID: 23931442]
[69]
Citron, M. β‐secretase as a target for the treatment of Alzheimer’s disease J. Neurosci. Res., 2002, 70(3), 373-379.
[http://dx.doi.org/10.1002/jnr.10393] [PMID: 12391600]
[70]
Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potentialTranslational Neurodegeneration; BioMed Central Ltd, 2022, p. 11.
[71]
Lin, T.W.; Harward, S.C.; Huang, Y.Z.; McNamara, J.O. Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. In: Neuropharmacology; Elsevier Ltd, 2020. 167
[72]
Shi, A. Effects of BDNF and ANK3 in bipolar disorder. AIP Conf. Proc., 2022, 2511, 020029.
[http://dx.doi.org/10.1063/5.0094319]
[73]
Schmidt, F. Inflammatory caspases. Inflammasome Biology, 2023, 205-214.
[http://dx.doi.org/10.1016/B978-0-323-91802-2.00018-9]
[74]
Thawkar, B.S.; Kaur, G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J. Neuroimmunol., 2019, 326, 62-74.
[http://dx.doi.org/10.1016/j.jneuroim.2018.11.010] [PMID: 30502599]
[75]
Rohn, T.T. The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis, 2010, 15(11), 1403-1409.
[http://dx.doi.org/10.1007/s10495-010-0463-2] [PMID: 20127416]
[76]
Sharma, P.; Tripathi, M.K.; Shrivastava, S.K. Cholinesterase as a target for drug development in alzheimer’s disease. Methods Mol. Biol., 2020, 2089, 257-286.
[77]
Hosoi, M.; Hori, K.; Konishi, K.; Tani, M.; Tomioka, H.; Kitajima, Y.; Akashi, N.; Inamoto, A.; Minami, S.; Izuno, T.; Umezawa, K.; Horiuchi, K.; Hachisu, M. Plasma cholinesterase activity in alzheimer’s disease. Neurodegener. Dis., 2015, 15(3), 188-190.
[http://dx.doi.org/10.1159/000381532] [PMID: 26138498]
[78]
Li, Q.; He, S.; Chen, Y.; Feng, F.; Qu, W.; Sun, H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 158, 463-477.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.031] [PMID: 30243151]
[79]
Chianella, C.; Gragnaniello, D.; Maisano Delser, P.; Visentini, M.F.; Sette, E.; Tola, M.R.; Barbujani, G.; Fuselli, S. BCHE and CYP2D6 genetic variation in Alzheimer’s disease patients treated with cholinesterase inhibitors. Eur. J. Clin. Pharmacol., 2011, 67(11), 1147-1157.
[http://dx.doi.org/10.1007/s00228-011-1064-x] [PMID: 21630031]
[80]
Sharma, V.K.; Singh, T.G. CREB: A multifaceted target for alzheimer’s disease. Curr. Alzheimer Res., 2021, 17(14), 1280-1293.
[http://dx.doi.org/10.2174/1567205018666210218152253] [PMID: 33602089]
[81]
Shengkai, D.; Qianqian, L.; Yazhen, S. The effects and regulatory mechanism of flavonoids from stems and leaves of Scutellaria baicalensis georgi in promoting neurogenesis and improving memory impairment mediated by the BDNF-ERK-CREB signaling pathway in rats. CNS Neurol. Disord. Drug Targets, 2022, 21(4), 354-366.
[http://dx.doi.org/10.2174/1871527320666210827112048] [PMID: 34455975]
[82]
Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.K. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci., 2020, 257, 118020.
[http://dx.doi.org/10.1016/j.lfs.2020.118020] [PMID: 32603820]
[83]
Teich, A.F.; Nicholls, R.E.; Puzzo, D.; Fiorito, J.; Purgatorio, R.; Fa’, M.; Arancio, O. Synaptic therapy in Alzheimer’s disease: A CREB-centric approach. Neurotherapeutics, 2015, 12(1), 29-41.
[http://dx.doi.org/10.1007/s13311-014-0327-5] [PMID: 25575647]
[84]
Tang, M.; Shi, S.; Guo, Y.; Xu, W.; Wang, L.; Chen, Y.; Wang, Z.; Qiao, Z. GSK-3/CREB pathway involved in the gx-50's effect on Alzheimer’s disease. Neuropharmacology, 2014, 81, 256-266.
[http://dx.doi.org/10.1016/j.neuropharm.2014.02.008] [PMID: 24565641]
[85]
Pariyar, R.; Jungwon, S. The Neuroprotective effect of DPP4 inhibitor in in-vitro and in-vivo neurodegenerative disease models. Int. J. Mol. Sci., 2019, 23(4), 2388.
[86]
Matteucci, E.; Giampietro, O. Mechanisms of neurodegeration in type 2 diabetes and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors. Curr. Med. Chem., 2015, 22(13), 1573-1581.
[http://dx.doi.org/10.2174/0929867322666150227153308] [PMID: 25723507]
[87]
Torioge, T.; Willcox, D.C.; Shimabukuro, M.; Donlon, T.; Chen, R.; Allsopp, R.; Willcox, B. The foxo3 longevity genotype protects against mechanisms of cellular aging in Okinawans. Innov. Aging, 2022, 6(Suppl. 1), 443.
[http://dx.doi.org/10.1093/geroni/igac059.1736]
[88]
Shi, C.; Zhu, J.; Leng, S.; Long, D.; Luo, X. Mitochondrial FOXO3a is involved in amyloid β peptide-induced mitochondrial dysfunction. J. Bioenerg. Biomembr., 2016, 48(3), 189-196.
[http://dx.doi.org/10.1007/s10863-016-9645-0] [PMID: 26782277]
[89]
Sanchez, A.M.J.; Candau, R.; Bernardi, H. AMP-activated protein kinase stabilizes FOXO3 in primary myotubes. Biochem. Biophys. Res. Commun., 2018, 499(3), 493-498.
[http://dx.doi.org/10.1016/j.bbrc.2018.03.176] [PMID: 29580989]
[90]
Li, Q.; Liu, Y.; Sun, M. Autophagy and Alzheimer’s Disease. Cell. Mol. Neurobiol., 2017, 37(3), 377-388.
[http://dx.doi.org/10.1007/s10571-016-0386-8] [PMID: 27260250]
[91]
Sengupta, A.; Molkentin, J.D.; Yutzey, K.E. FoxO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem., 2009, 284(41), 28319-28331.
[http://dx.doi.org/10.1074/jbc.M109.024406] [PMID: 19696026]
[92]
Pan, Q.; Ma, J.; Guo, K. miR-223 enhances the neuroprotection of estradiol against oxidative stress injury by inhibiting the FOXO3/TXNIP axis. Neurochem. Res., 2022, 47(7), 1865-1877.
[http://dx.doi.org/10.1007/s11064-021-03490-z] [PMID: 34843004]
[93]
Salazar, A.M.; Leisgang, A.M.; Ortiz, A.A.; Murtishaw, A.S.; Kinney, J.W. Alterations of GABA B receptors in the APP/PS1 mouse model of Alzheimer’s disease. Neurobiol. Aging, 2021, 97, 129-143.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.10.013] [PMID: 33232936]
[94]
Jo, S.; Yarishkin, O.; Hwang, Y.J.; Chun, Y.E.; Park, M.; Woo, D.H. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease; Nature Medicine. Nature Publishing Group, 2014, 20, 886-896.
[95]
Bhalla, M.; Shin, J.; Ju, Y.; Park, Y.; Yoo, S. Lee, H Molecular identification of ALDH1A1 and SIRT2 in the astrocytic putrescine-to-GABA metabolic pathway. biorxiv, 2023.
[http://dx.doi.org/10.1101/2023.01.11.523573]
[96]
Peeters, M.A.; Salabelle, A.; Attal, N.; Rethore, M.O.; Mircher, C.; Laplane, D.; Lejeune, J. Excessive glutamine sensitivity in Alzheimer’s disease and Down syndrome lymphocytes. J. Neurol. Sci., 1995, 133(1-2), 31-41.
[http://dx.doi.org/10.1016/0022-510X(95)00135-O] [PMID: 8583230]
[97]
Takeuchi, H.; Jin, S.; Wang, J.; Zhang, G.; Kawanokuchi, J.; Kuno, R.; Sonobe, Y.; Mizuno, T.; Suzumura, A. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem., 2006, 281(30), 21362-21368.
[http://dx.doi.org/10.1074/jbc.M600504200] [PMID: 16720574]
[98]
Butterfield, D.A.; Pocernich, C.B. The glutamatergic system and alzheimer’s disease therapeutic implications. CNS Drugs, 2003, 17(9), 641-652.
[99]
Olivares, D.; Deshpande, V.K.; Shi, Y.; Lahiri, D.K.; Greig, N.H.; Rogers, J.T.; Huang, X. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer’s disease, vascular dementia and Parkinson’s disease. Curr. Alzheimer Res., 2012, 9(6), 746-758.
[http://dx.doi.org/10.2174/156720512801322564] [PMID: 21875407]
[100]
Zheng, J.; Xie, Y.; Ren, L.; Qi, L.; Wu, L.; Pan, X.; Zhou, J.; Chen, Z.; Liu, L. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol. Metab., 2021, 47, 101180.
[http://dx.doi.org/10.1016/j.molmet.2021.101180] [PMID: 33556642]
[101]
Yildirim Simsir, I.; Soyaltin, U.E.; Cetinkalp, S. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes Metab. Syndr., 2018, 12(3), 469-475.
[http://dx.doi.org/10.1016/j.dsx.2018.03.002] [PMID: 29598932]
[102]
Ma, T. GSK3 in Alzheimer’s disease: Mind the isoforms. J. Alzheimers Diseases , 2014, 39, 707-710.
[103]
Mandlik, D.S.; Mandlik, S.K. S, A. Therapeutic implications of glycogen synthase kinase-3β in Alzheimer’s disease: A novel therapeutic target. Int. J. Neurosci., 2022, 1-17.
[http://dx.doi.org/10.1080/00207454.2022.2130297] [PMID: 36178363]
[104]
Lauretti, E.; Dincer, O.; Praticò, D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(5), 118664.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118664] [PMID: 32006534]
[105]
Saeedi Saravi, S.S.; Saeedi Saravi, S.S.; Arefidoust, A.; Dehpour, A.R. The beneficial effects of HMG-CoA reductase inhibitors in the processes of neurodegeneration. In: Metabolic Brain Disease; Springer: New York, 2017; 32, pp. 949-965.
[106]
Shahbazi, S.; Kaur, J.; Kuanar, A.; Kar, D.; Singh, S.; Sobti, R.C. Risk of late-onset alzheimer’s disease by plasma cholesterol: Rational In Silico drug investigation of pyrrole-based HMG-CoA reductase inhibitors. Assay Drug Dev. Technol., 2017, 15(7), 342-351.
[http://dx.doi.org/10.1089/adt.2017.804] [PMID: 29077483]
[107]
Huglund, K.; Blennow, K. Effect of HMG-CoA Reductase Inhibitors on?? -Amyloid Peptide Levels. CNS Drugs, 2007, 21(6), 449-462.
[http://dx.doi.org/10.2165/00023210-200721060-00002] [PMID: 17521225]
[108]
Kellar, D.; Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol., 2020, 19(9), 758-766.
[http://dx.doi.org/10.1016/S1474-4422(20)30231-3] [PMID: 32730766]
[109]
Kleinridders, A.; Ferris, H.A.; Cai, W.; Kahn, C.R. Insulin action in brain regulates systemic metabolism and brain function. Diabetes, 2014, 63(7), 2232-2243.
[http://dx.doi.org/10.2337/db14-0568] [PMID: 24931034]
[110]
Bogoyevitch, M.A.; Ngoei, K.R.W.; Zhao, T.T.; Yeap, Y.Y.C.; Ng, D.C.H. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 463-475.
[http://dx.doi.org/10.1016/j.bbapap.2009.11.002] [PMID: 19900593]
[111]
Mehan, S.; Meena, H.; Sharma, D.; Sankhla, R. JNK: A stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. J. Mol. Neurosci., 2011, 43(3), 376-390.
[http://dx.doi.org/10.1007/s12031-010-9454-6] [PMID: 20878262]
[112]
Orejana, L.; Barros-Miñones, L.; Aguirre, N.; Puerta, E. Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model. Exp. Gerontol., 2013, 48(6), 565-571.
[http://dx.doi.org/10.1016/j.exger.2013.03.001] [PMID: 23501261]
[113]
Li, G.; Qi, W.; Li, X.; Zhao, J.; Luo, M.; Chen, J. Recent Advances in c-Jun N-Terminal Kinase (JNK) Inhibitors. Curr. Med. Chem., 2021, 28(3), 607-627.
[http://dx.doi.org/10.2174/1875533XMTA0tMzUv4] [PMID: 32039671]
[114]
Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol., 2007, 19(2), 142-149.
[http://dx.doi.org/10.1016/j.ceb.2007.02.001] [PMID: 17303404]
[115]
D Bruce, K.; Tang, M.; Reigan, P.; H Eckel, R. Genetic variants of lipoprotein lipase and regulatory factors associated with Alzheimer’s disease risk. Int. J. Mol. Sci., 2020, 21(21), 1-15.
[http://dx.doi.org/10.3390/ijms21218338] [PMID: 33172164]
[116]
Shinohara, M.; Tachibana, M.; Kanekiyo, T.; Bu, G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: evidence from clinical and preclinical studies. J. Lipid Res., 2017, 58(7), 1267-1281.
[http://dx.doi.org/10.1194/jlr.R075796] [PMID: 28381441]
[117]
Bortolato, M.; Chen, K.; Shih, J.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv. Drug Deliv. Rev., 2008, 60(13-14), 1527-1533.
[http://dx.doi.org/10.1016/j.addr.2008.06.002] [PMID: 18652859]
[118]
Wei, Z.; Satram-Maharaj, T.; Chaharyn, B.; Kuski, K.; Pennington, P.R.; Cao, X.; Chlan, J.; Mousseau, D.D. Aspartic acid substitutions in monoamine oxidase-A reveal both catalytic-dependent and -independent influences on cell viability and proliferation. J. Neural Transm., 2012, 119(11), 1285-1294.
[http://dx.doi.org/10.1007/s00702-012-0779-x] [PMID: 22382901]
[119]
Jiang, B.; Meng, L.; Zou, N.; Wang, H.; Li, S.; Huang, L.; Cheng, X.; Wang, Z.; Chen, W.; Wang, C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine, 2019, 62, 152967.
[http://dx.doi.org/10.1016/j.phymed.2019.152967] [PMID: 31154274]
[120]
Jiang, S.; Li, Y.; Zhang, C.; Zhao, Y.; Bu, G.; Xu, H.; Zhang, Y.W. M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci. Bull., 2014, 30(2), 295-307.
[http://dx.doi.org/10.1007/s12264-013-1406-z] [PMID: 24590577]
[121]
Maiese, K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr. Neurovasc. Res., 2017, 14(3), 299-304.
[PMID: 28721811]
[122]
Oddo, S. The role of mTOR signaling in Alzheimer disease. Front. Biosci., 2012, S4(3), 941-952.
[http://dx.doi.org/10.2741/s310]
[123]
Querfurth, H.; Lee, H.K. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol. Neurodegener., 2021, 16(1), 44.
[http://dx.doi.org/10.1186/s13024-021-00428-5] [PMID: 34215308]
[124]
Blaikie, L.; Kay, G.; Kong Thoo Lin, P. Current and emerging therapeutic targets of alzheimer’s disease for the design of multi-target directed ligands. MedChemComm, 2019, 10(12), 2052-2072.
[http://dx.doi.org/10.1039/C9MD00337A] [PMID: 32206241]
[125]
Pollegioni, L.; Sacchi, S. Metabolism of the neuromodulator d-serine. Cell. Mol. Life Sci., 2010, 67(14), 2387-2404.
[http://dx.doi.org/10.1007/s00018-010-0307-9] [PMID: 20195697]
[126]
Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[127]
Ali, A.; Shah, S.A.; Zaman, N.; Uddin, M.N.; Khan, W.; Ali, A.; Riaz, M.; Kamil, A. Vitamin D exerts neuroprotection via SIRT1/nrf-2/NF-kB signaling pathways against D-galactose-induced memory impairment in adult mice. Neurochem. Int., 2021, 142, 104893.
[http://dx.doi.org/10.1016/j.neuint.2020.104893] [PMID: 33159979]
[128]
Wang, Y.; Lian, M.; Zhou, J.; Wu, S. Brain dicer1 is down-regulated in a mouse model of alzheimer’s disease via Aβ42-induced repression of nuclear factor erythroid 2-related factor 2. Mol. Neurobiol., 2020, 57(11), 4417-4437.
[http://dx.doi.org/10.1007/s12035-020-02036-8] [PMID: 32737764]
[129]
Fão, L.; Mota, S.I.; Rego, A.C. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res. Rev., 2019, 54, 100942.
[http://dx.doi.org/10.1016/j.arr.2019.100942] [PMID: 31415806]
[130]
Osama, A.; Zhang, J.; Yao, J.; Yao, X.; Fang, J. Nrf2: a dark horse in Alzheimer’s disease treatment. Ageing Res. Rev., 2020, 64, 101206.
[http://dx.doi.org/10.1016/j.arr.2020.101206] [PMID: 33144124]
[131]
Wójtowicz, S.; Strosznajder, A.K.; Jeżyna, M.; Strosznajder, J.B. The Novel Role of PPAR Alpha in the Brain: Promising target in therapy of alzheimer’s disease and other neurodegenerative disorders. Neurochem. Res., 2020, 45(5), 972-988.
[http://dx.doi.org/10.1007/s11064-020-02993-5] [PMID: 32170673]
[132]
Aguirre-Rueda, D.; Guerra-Ojeda, S.; Aldasoro, M.; Iradi, A.; Obrador, E.; Ortega, A.; Mauricio, M.D.; Vila, J.M.; Valles, S.L. Astrocytes protect neurons from Aβ1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-γ and SIRT-1. Int. J. Med. Sci., 2015, 12(1), 48-56.
[http://dx.doi.org/10.7150/ijms.10035] [PMID: 25552918]
[133]
Onyango, I.G.; Bennett, J.P.; Stokin, G.B. Mitochondrially-Targeted Therapeutic Strategies for Alzheimer’s Disease. Curr. Alzheimer Res., 2021, 18(10), 753-771.
[http://dx.doi.org/10.2174/1567205018666211208125855] [PMID: 34879805]
[134]
Corona, J.C.; Duchen, M.R. PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem. Res., 2015, 40(2), 308-316.
[http://dx.doi.org/10.1007/s11064-014-1377-0] [PMID: 25007880]
[135]
Bazan, N.G. Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot. Essent. Fatty Acids, 2009, 81(2-3), 205-211.
[http://dx.doi.org/10.1016/j.plefa.2009.05.024] [PMID: 19520558]
[136]
Re, F.; Airoldi, C.; Zona, C.; Masserini, M.; Ferla, B.L.; Quattrocchi, N.; Nicotra, F. Beta amyloid aggregation inhibitors: small molecules as candidate drugs for therapy of Alzheimer’s disease. Curr. Med. Chem., 2010, 17(27), 2990-3006.
[http://dx.doi.org/10.2174/092986710791959729] [PMID: 20629631]
[137]
Leuba, G.; Walzer, C.; Vernay, A.; Carnal, B.; Kraftsik, R.; Piotton, F.; Marin, P.; Bouras, C.; Savioz, A. Postsynaptic density protein PSD-95 expression in Alzheimer’s disease and okadaic acid induced neuritic retraction. Neurobiol. Dis., 2008, 30(3), 408-419.
[http://dx.doi.org/10.1016/j.nbd.2008.02.012] [PMID: 18424056]
[138]
Ripoli, C.; Piacentini, R.; Riccardi, E.; Leone, L.; Li, Puma D.D.; Bitan, G.; Grassi, C. Effects of different amyloid β-protein analogues on synaptic function. Neurobiol. Aging, 2013, 34(4), 1032-1044.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.027] [PMID: 23046860]
[139]
Thomas, M.H.; Paris, C.; Magnien, M.; Colin, J.; Pelleïeux, S.; Coste, F.; Escanyé, M.C.; Pillot, T.; Olivier, J.L. Dietary arachidonic acid increases deleterious effects of amyloid-β oligomers on learning abilities and expression of AMPA receptors: putative role of the ACSL4-cPLA2 balance. Alzheimers Res. Ther., 2017, 9(1), 69.
[http://dx.doi.org/10.1186/s13195-017-0295-1] [PMID: 28851448]
[140]
Haugaard-Kedström, L.M.; Fernandes, E.F.A.; Strømgaard, K. Targeting PSD-95 as a Novel Approach in the Treatment of Stroke.Neuroprotective Therapy for Stroke and Ischemic Disease; Lapchak, P.A.; Zhang, J.H., Eds.; Springer International Publishing: Cham, 2017, pp. 157-184.
[http://dx.doi.org/10.1007/978-3-319-45345-3_6]
[141]
Das, US; Paul, A; Banerjee, S SGLT2 inhibitors in heart failure with reduced ejection fraction. Egypt Hear J., 2021, 73(1)
[http://dx.doi.org/10.1186/s43044-021-00218-w]
[142]
Neuen, BL; Young, T; Heerspink, HJL; Neal, B; Perkovic, V; Billot, L SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and metaanalysis. lancet Diabetes Endocrinol., 2019, 7(11), 845-854.
[143]
Kamel, A.S.; Wahid, A.; Abdelkader, N.F.; Ibrahim, W.W. Boosting amygdaloid GABAergic and neurotrophic machinery via dapagliflozin-enhanced LKB1/AMPK signaling in anxious demented rats. Life Sci., 2022, 310, 121002.
[http://dx.doi.org/10.1016/j.lfs.2022.121002] [PMID: 36191679]
[144]
Mohamad Nasir, N.F.; Zainuddin, A.; Shamsuddin, S. Emerging Roles of Sirtuin 6 in Alzheimer’s Disease. J. Mol. Neurosci., 2018, 64(2), 157-161.
[http://dx.doi.org/10.1007/s12031-017-1005-y] [PMID: 29260452]
[145]
Eto, K.; Asada, T.; Arima, K.; Makifuchi, T.; Kimura, H. Brain hydrogen sulfide is severely decreased in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2002, 293(5), 1485-1488.
[http://dx.doi.org/10.1016/S0006-291X(02)00422-9] [PMID: 12054683]
[146]
Scatena, R. Mitochondria and Drugs. Adv. Exp. Med. Biol., 2012, 942, 329-346.
[http://dx.doi.org/10.1007/978-94-007-2869-1_15] [PMID: 22399430]
[147]
Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and its roles in inflammation. Front. Immunol., 2022, 13, 831168.
[http://dx.doi.org/10.3389/fimmu.2022.831168] [PMID: 35359990]
[148]
Zhang, Y.; Anoopkumar-Dukie, S.; Arora, D.; Davey, A.K. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur. J. Pharmacol., 2020, 867, 172847.
[http://dx.doi.org/10.1016/j.ejphar.2019.172847] [PMID: 31812544]
[149]
Quadros Gomes, BA; Bastos Silva, JP; Rodrigues Romeiro, CF; dos Santos, SM; Rodrigues, CA; Gonçalves, PR Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev., 2018, 2018
[150]
Wegmann, S.; Biernat, J.; Mandelkow, E. A current view on Tau protein phosphorylation in Alzheimer’s disease. Curr. Opin. Neurobiol., 2021, 69, 131-138.
[http://dx.doi.org/10.1016/j.conb.2021.03.003] [PMID: 33892381]
[151]
Guzman-Martinez, L.; Maccioni, R.B.; Farías, G.A.; Fuentes, P.; Navarrete, L.P. Biomarkers for Alzheimer’s Disease. Curr. Alzheimer Res., 2019, 16(6), 518-528.
[http://dx.doi.org/10.2174/1567205016666190517121140] [PMID: 31099321]
[152]
Gao, Y.; Tan, L.; Yu, J.T.; Tan, L. Tau in alzheimer’s disease: Mechanisms and therapeutic strategies. Curr. Alzheimer Res., 2018, 15(3), 283-300.
[http://dx.doi.org/10.2174/1567205014666170417111859] [PMID: 28413986]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy