Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of Some Novel 4-bromobenzoic Acid Clubbed Hydrazone Schiff Base Derivatives as Potent α-amylase Inhibitors: In vitro and In silico Studies

Author(s): Momin Khan*, Faima Alam, Aftab Alam, Abdul Wadood, Sulaiman Shams, Mahboob Ali, Sana Shah, Abdullah F. AlAsmari, Metab Alharbi and Fawaz Alasmari

Volume 21, Issue 15, 2024

Published on: 10 January, 2024

Page: [3186 - 3197] Pages: 12

DOI: 10.2174/0115701808262821231114114237

Price: $65

Abstract

Aims: Synthesis of novel 4-bromobenzoic acid-based hydrazone-Schiff base derivatives and to screen them for their α-amylase inhibitory activity.

Background: The most often employed organic compounds are derivatives of the hydrazone- Schiff base. Numerous biological actions, such as antipyretic, antiviral, anti-inflammatory, antiproliferative, anti-malarial, antibacterial, and anti-fungal ones, have been linked to them.

Objective: The biological activities of hydrazone-Schiff base compounds encouraged us to evaluate the synthesized derivatives (4-32) for in-vitro inhibition activity against the α-amylase enzyme.

Methods: In current research work twenty-nine Schiff base derivatives (4-32) of 4-bromobenzoic acid were synthesized in worthy yields by treating various replaced aldehydes with 4- bromobenzohydrazide using methanol solvent in catalytic quantity of acetic acid. The products were structurally described through the support of several spectroscopic methods (EI-MS and 1HNMR) and finally evaluated against α-amylase enzyme.

Results: All the made derivatives exhibited worthy inhibition potential from IC50 = 0.21 ± 0.01 to 5.50 ± 0.01 μM when equated to the usual acarbose drug having IC50 = 1.34 ± 0.01 μM. Compound 21 (IC50 = 0.21 ± 0.01 μM) was established as the most active inhibitor among the series better than standard. The structure-activity relationship study showed that the alteration in the activity of the produced products might be due to the attached position and nature of the substituents. Furthermore, in-silico study supported the effects of groups attached on the binding interaction with α-amylase enzyme.

Conclusion: A series of substituted hydrazone Schiff bases based on 4-bromobenzoic acid were produced, confirmed the structures by EI-MS and 1H-NMR spectroscopic methods and lastly tested for their in-vitro α-amylase inhibitory potential. Among the series, twenty-four products indicated brilliant inhibition potential having IC50 values from 0.21 ± 0.01 to 1.30 ± 0.01 μM. The structure-activity relationship study showed that the alteration in the activity of the synthesized products might be due to the attached position and nature of the substituents. On the other hand, in silico studies advocated that the synthesized Schiff base derivatives have prevalent interactions of binding within the active site of the α-amylase enzyme, and because of their various attached substituent, their conformation is altered in the active site of the enzyme. The current study recognized a number of lead candidates derived from 4-bromobenzoic acid. Additional investigation of the synthesized derivatives for coming research to get novel α-amylase inhibitors.

Keywords: Synthesis, α-amylase inhibition, 4-bromobenzoic acid, structure activity relationship, in-vitro, and molecular docking study.

Graphical Abstract
[1]
Khan, M.; Alam, A.; Khan, K.M.; Salar, U.; Chigurupati, S.; Wadood, A.; Ali, F.; Mohammad, J.I.; Riaz, M.; Perveen, S. Flurbiprofen derivatives as novel α-amylase inhibitors: Biology-oriented drug synthesis (BIODS), in vitro, and in silico evaluation. Bioorg. Chem., 2018, 81, 157-167.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.038] [PMID: 30125730]
[2]
Akande, A.A.; Salar, U.; Khan, K.M.; Syed, S.; Aboaba, S.A.; Chigurupati, S.; Wadood, A.; Riaz, M.; Taha, M.; Bhatia, S.; Kanwal; Shamim, S.; Perveen, S. Substituted benzimidazole analogues as potential α-amylase inhibitors and radical scavengers. ACS Omega, 2021, 6(35), 22726-22739.
[http://dx.doi.org/10.1021/acsomega.1c03056] [PMID: 34514244]
[3]
Jhong, C.H.; Riyaphan, J.; Lin, S.H.; Chia, Y.C.; Weng, C.F. S creening alpha‐glucosidase and alpha‐amylase inhibitors from natural compounds by molecular docking in silico. Biofactors, 2015, 41(4), 242-251.
[http://dx.doi.org/10.1002/biof.1219] [PMID: 26154585]
[4]
Rana, N.; Walia, A.; Gaur, A. α-Amylases from microbial sources and its potential applications in various industries. Natl. Acad. Sci. Lett., 2013, 36(1), 9-17.
[http://dx.doi.org/10.1007/s40009-012-0104-0]
[5]
Yonemoto, R.; Shimada, M.; Gunawan-Puteri, M.D.P.T.; Kato, E.; Kawabata, J. α-Amylase inhibitory triterpene from Abrus precatorius leaves. J. Agric. Food Chem., 2014, 62(33), 8411-8414.
[http://dx.doi.org/10.1021/jf502667z] [PMID: 25089582]
[6]
Kumari, V.S.; Basha, S.K. In vitro α-glucosidase and α-amylase inhibitory activity of Psidium guajava extracts. J. Pharm. Res., 2014, 8(3), 349-351.
[7]
Mahmood, N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp. Clin. Pathol., 2016, 25(6), 1253-1264.
[http://dx.doi.org/10.1007/s00580-014-1967-x]
[8]
Tarling, C.A.; Woods, K.; Zhang, R.; Brastianos, H.C.; Brayer, G.D.; Andersen, R.J.; Withers, S.G. The search for novel human pancreatic α-amylase inhibitors: High-throughput screening of terrestrial and marine natural product extracts. ChemBioChem, 2008, 9(3), 433-438.
[http://dx.doi.org/10.1002/cbic.200700470] [PMID: 18214874]
[9]
Bashary, R.; Vyas, M.; Nayak, S.K.; Suttee, A.; Verma, S.; Narang, R.; Khatik, G.L. An insight of alpha-amylase inhibitors as a valuable tool in the management of type 2 diabetes mellitus. Curr. Diabetes Rev., 2020, 16(2), 117-136.
[http://dx.doi.org/10.2174/18756417OTg5lMTI0TcVY] [PMID: 31237215]
[10]
Khan, S.; Iqbal, S.; Rahim, F.; Shah, M.; Hussain, R.; Alrbyawi, H.; Rehman, W.; Dera, A.A.; Rasheed, L.; Somaily, H.H.; Pashameah, R.A.; Alzahrani, E.; Farouk, A.E. New biologically hybrid pharmacophore thiazolidinone-based indole derivatives: Synthesis, in vitro alpha-amylase and alpha-glucosidase along with molecular docking investigations. Molecules, 2022, 27(19), 6564.
[http://dx.doi.org/10.3390/molecules27196564] [PMID: 36235098]
[11]
Salar, U.; Khan, K.M.; Chigurupati, S.; Taha, M.; Wadood, A.; Vijayabalan, S.; Ghufran, M.; Perveen, S. New hybrid hydrazinyl thiazole substituted chromones: As potential α-amylase inhibitors and radical (DPPH & ABTS) scavengers. Sci. Rep., 2017, 7(1), 16980.
[http://dx.doi.org/10.1038/s41598-017-17261-w] [PMID: 29209017]
[12]
Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci, 2016, 5(4), 1-8.
[13]
Shahidpour, S.; Panahi, F.; Yousefi, R.; Nourisefat, M.; Nabipoor, M.; Khalafi-Nezhad, A. Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Med. Chem. Res., 2015, 24(7), 3086-3096.
[http://dx.doi.org/10.1007/s00044-015-1356-2]
[14]
Imran, S.; Taha, M.; Selvaraj, M.; Ismail, N.H.; Chigurupati, S.; Mohammad, J.I. Synthesis and biological evaluation of indole derivatives as α-amylase inhibitor. Bioorg. Chem., 2017, 73, 121-127.
[http://dx.doi.org/10.1016/j.bioorg.2017.06.007] [PMID: 28648924]
[15]
Nguyen, T.H.; Wang, S.L.; Nguyen, A.D.; Doan, M.D.; Tran, T.N.; Doan, C.T.; Nguyen, V.B. Novel α-amylase inhibitor hemi-pyocyanin produced by microbial conversion of chitinous discards. Mar. Drugs, 2022, 20(5), 283.
[http://dx.doi.org/10.3390/md20050283] [PMID: 35621934]
[16]
Duhan, M.; Sindhu, J.; Kumar, P.; Devi, M.; Singh, R.; Kumar, R.; Lal, S.; Kumar, A.; Kumar, S.; Hussain, K. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J. Biomol. Struct. Dyn., 2022, 40(11), 4933-4953.
[http://dx.doi.org/10.1080/07391102.2020.1863861] [PMID: 33357037]
[17]
Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci., 2012, 15(1), 141-183.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[18]
Sena, C.M.; Bento, C.F.; Pereira, P.; Seiça, R. Diabetes mellitus: New challenges and innovative therapies. EPMA J., 2010, 1(1), 138-163.
[http://dx.doi.org/10.1007/s13167-010-0010-9] [PMID: 23199048]
[19]
Sena, C. M.; Bento, C. F.; Pereira, P.; Marques, F.; Seiça, R. Diabetes mellitus: New challenges and innovative therapies. New Strategies to Advance Pre/Diabetes Care: Integrative Approach by PPPM, 2013, 29-87.
[20]
Avilés-Santa, M.L.; Monroig-Rivera, A.; Soto-Soto, A.; Lindberg, N.M. Current state of diabetes mellitus prevalence, awareness, treatment, and control in Latin America: challenges and innovative solutions to improve health outcomes across the continent. Curr. Diab. Rep., 2020, 20(11), 62.
[http://dx.doi.org/10.1007/s11892-020-01341-9] [PMID: 33037442]
[21]
Rahim, F.; Taha, M.; Ullah, H.; Wadood, A.; Selvaraj, M.; Rab, A.; Sajid, M.; Shah, S.A.A.; Uddin, N.; Gollapalli, M. Synthesis of new arylhydrazide bearing Schiff bases/thiazolidinone: α-Amylase, urease activities and their molecular docking studies. Bioorg. Chem., 2019, 91, 103112.
[http://dx.doi.org/10.1016/j.bioorg.2019.103112] [PMID: 31349115]
[22]
Aslam, M.A.S.; Mahmood, S.; Shahid, M.; Saeed, A.; Iqbal, J. Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5473-5479.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.009] [PMID: 21981981]
[23]
Ahmad, R.; Khan, M.; Alam, A.; Elhenawy, A.A.; Qadeer, A.; AlAsmari, A.F.; Alharbi, M.; Alasmari, F.; Ahmad, M. Synthesis, molecular structure and urease inhibitory activity of novel bis-Schiff bases of benzyl phenyl ketone: A combined theoretical and experimental approach. Saudi Pharm. J., 2023, 31(8), 101688.
[http://dx.doi.org/10.1016/j.jsps.2023.06.021] [PMID: 37457366]
[24]
Ahmad, S.; Khan, M.; Rehman, N.U.; Ikram, M.; Rehman, S.; Ali, M.; Uddin, J.; Khan, A.; Alam, A.; Al-Harrasi, A. Design, synthesis, crystal structure, in vitro and in silico evaluation of new N′-Benzylidene-4-tert-butylbenzohydrazide derivatives as potent urease inhibitors. Molecules, 2022, 27(20), 6906.
[http://dx.doi.org/10.3390/molecules27206906] [PMID: 36296497]
[25]
Hayat, M.; Khan, K.M.; Saeed, S.; Salar, U.; Khan, M.; Baig, T.; Ahmad, A.; Parveen, S.; Taha, M. Antimicrobial activities of synthetic arylidine nicotinic and isonicotinic hydrazones. Lett. Drug Des. Discov., 2018, 15(10), 1057-1067.
[http://dx.doi.org/10.2174/1570180814666170914120337]
[26]
Zainab; Yu, H.; Rehman, N.U.; Ali, M.; Alam, A.; Latif, A.; Shahab, N.; Amir Khan, I.; Jabbar Shah, A.; Khan, M.; Al-Ghafri, A.; Al-Harrasi, A.; Ahmad, M. Novel Polyhydroquinoline-Hydrazide-Linked Schiff’s Base derivatives: Multistep synthesis, antimicrobial, and calcium-channel-blocking activities. Antibiotics, 2022, 11(11), 1568.
[http://dx.doi.org/10.3390/antibiotics11111568] [PMID: 36358223]
[27]
Shahab, N.; Kong, D.; Ali, M.; Alam, A.; Ur Rehman, N.; Ullah, S.; Zainab, Z.; Khan, M.; Latif, A.; Shah, M.; Khan, A.; Al-Harrasi, A.; Ahmad, M. Novel polyhydroquinoline Schiff’s base derivatives: Synthesis, characterization, in vitro α-glucosidase inhibitory, and molecular docking studies. Res. Chem. Intermed., 2023, 49(7), 3005-3028.
[http://dx.doi.org/10.1007/s11164-023-05038-y]
[28]
Ahmad, S.; Khan, M.; Shah, M.I.A.; Ali, M.; Alam, A.; Riaz, M.; Khan, K.M. Synthetic transformation of 2-2-Fluoro[1,1′-biphenyl]-4-yl Propanoic Acid into Hydrazide–Hydrazone derivatives: In vitro urease inhibition and in silico study. ACS Omega, 2022, 7(49), 45077-45087.
[http://dx.doi.org/10.1021/acsomega.2c05498] [PMID: 36530251]
[29]
Khan, M.; Ahad, G.; Manaf, A.; Naz, R.; Hussain, S.R.; Deeba, F.; Shah, S.; Khan, A.; Ali, M.; Zaman, K.; Zafar, S.; Salar, U.; Hameed, A.; Khan, K.M. Synthesis, in vitro urease inhibitory activity, and molecular docking studies of (perfluorophenyl)hydrazone derivatives. Med. Chem. Res., 2019, 28(6), 873-883.
[http://dx.doi.org/10.1007/s00044-019-02341-5]
[30]
Omidi, S.; Kakanejadifard, A. A review on biological activities of Schiff base, hydrazone, and oxime derivatives of curcumin. RSC Advances, 2020, 10(50), 30186-30202.
[http://dx.doi.org/10.1039/D0RA05720G] [PMID: 35518272]
[31]
Rakesh, K.P.; Manukumar, H.M.; Gowda, D.C. Schiff’s bases of quinazolinone derivatives: Synthesis and SAR studies of a novel series of potential anti-inflammatory and antioxidants. Bioorg. Med. Chem. Lett., 2015, 25(5), 1072-1077.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.010] [PMID: 25638040]
[32]
Alam, A.; Ali, M.; Rehman, N.U.; Ullah, S.; Halim, S.A.; Latif, A.; Zainab; Khan, A.; Ullah, O.; Ahmad, S.; Al-Harrasi, A.; Ahmad, M.; Khan, Z.A.; Ullah, O.; Ahmad, S. Bio-oriented synthesis of novel (S)-flurbiprofen clubbed hydrazone schiff’s bases for diabetic management: In vitro and in silico studies. Pharmaceuticals, 2022, 15(6), 672.
[http://dx.doi.org/10.3390/ph15060672] [PMID: 35745591]
[33]
Singh, G.; Kalra, P.; Singh, A.; Sharma, G.; Sanchita; Pawan; Mohit; Espinosa-Ruíz, C.; Esteban, M.A. A quick microwave preparation of isatin hydrazone schiff base conjugated organosilicon compounds: Exploration of their antibacterial, antifungal, and antioxidative potentials. J. Organomet. Chem., 2021, 953, 122051.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122051]
[34]
Angelova, V.; Karabeliov, V.; Andreeva-Gateva, P.A.; Tchekalarova, J. Recent developments of hydrazide/hydrazone derivatives and their analogs as anticonvulsant agents in animal models. Drug Dev. Res., 2016, 77(7), 379-392.
[http://dx.doi.org/10.1002/ddr.21329] [PMID: 27775155]
[35]
Kostova, I.; Saso, L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr. Med. Chem., 2013, 20(36), 4609-4632.
[http://dx.doi.org/10.2174/09298673113209990149] [PMID: 23834186]
[36]
Fekri, R.; Salehi, M.; Asadi, A.; Kubicki, M. Synthesis, characterization, anticancer and antibacterial evaluation of Schiff base ligands derived from hydrazone and their transition metal complexes. Inorg. Chim. Acta, 2019, 484, 245-254.
[http://dx.doi.org/10.1016/j.ica.2018.09.022]
[37]
Sharma, M.; Chauhan, K.; Srivastava, R.K.; Singh, S.V.; Srivastava, K.; Saxena, J.K.; Puri, S.K.; Chauhan, P.M.S. Design and synthesis of a new class of 4-aminoquinolinyl- and 9-anilinoacridinyl Schiff base hydrazones as potent antimalarial agents. Chem. Biol. Drug Des., 2014, 84(2), 175-181.
[http://dx.doi.org/10.1111/cbdd.12289] [PMID: 24444074]
[38]
Alam, A.; Ali, M.; Latif, A.; Rehman, N.U.; Saher, S.; Zainab; Faryal; Khan, A.; Ullah, S.; Ullah, O.; Halim, S.A.; Sani, F.; Al-Harrasi, A.; Ahmad, M. Novel Bis-Schiff’s base derivatives of 4-nitroacetophenone as potent α-glucosidase agents: Design, synthesis and in silico approach. Bioorg. Chem., 2022, 128, 106058.
[http://dx.doi.org/10.1016/j.bioorg.2022.106058] [PMID: 35917750]
[39]
Piantadosi, C.; Skulason, V.G.; Irvin, J.L.; Powell, J.M.; Hall, L. Potential anticancer agents. I. Schiff bases and hydrazone derivatives of Pyrimidine-4-carboxaldehydes. J. Med. Chem., 1964, 7(3), 337-342.
[http://dx.doi.org/10.1021/jm00333a019] [PMID: 14204971]
[40]
Liang, C.; Xia, J.; Lei, D.; Li, X.; Yao, Q.; Gao, J. Synthesis, in vitro and in vivo antitumor activity of symmetrical bis-Schiff base derivatives of isatin. Eur. J. Med. Chem., 2014, 74, 742-750.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.040] [PMID: 24176732]
[41]
Valaparla, V.K. Purification and properties of a thermostable [alpha]-amylase by acremonium sporosulcatum. International Journal of Biotechnology & Biochemistry, 2010, 6(1), 25-35.
[42]
Molecular operating environment (MOE); Chemical Computing Group Inc.: Montreal, QC, Canada, 2016.
[43]
Jayaraj, J.M.; Jothimani, M.; Palanisamy, C.P.; Pentikäinen, O.T.; Pannipara, M.; Al-Sehemi, A.G.; Muthusamy, K.; Gopinath, K. Computational study on the inhibitory effect of natural compounds against the SARS-CoV-2 proteins. Bioinorg. Chem. Appl., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/8635054] [PMID: 35340421]
[44]
Chinnasamy, S.; Chinnasamy, S.; Nagamani, S.; Muthusamy, K. Identification of potent inhibitors against snake venom metalloproteinase (SVMP) using molecular docking and molecular dynamics studies. J. Biomol. Struct. Dyn., 2015, 33(7), 1516-1527.
[http://dx.doi.org/10.1080/07391102.2014.963146] [PMID: 25192471]
[45]
Samad, A.; Ajmal, A.; Mahmood, A.; Khurshid, B.; Li, P.; Jan, S.M.; Rehman, A.U.; He, P.; Abdalla, A.N.; Umair, M.; Hu, J.; Wadood, A. Identification of novel inhibitors for SARS-CoV-2 as therapeutic options using machine learning-based virtual screening, molecular docking and MD simulation. Front. Mol. Biosci., 2023, 10, 1060076.
[http://dx.doi.org/10.3389/fmolb.2023.1060076] [PMID: 36959979]

© 2024 Bentham Science Publishers | Privacy Policy