Review Article

靶向NLRP3炎性小体:结构、功能和抑制剂

卷 31, 期 15, 2024

发表于: 02 January, 2024

页: [2021 - 2051] 页: 31

弟呕挨: 10.2174/0109298673289984231127062528

价格: $65

Open Access Journals Promotions 2
摘要

炎性小体是一种多聚体蛋白复合物,可以检测各种生理刺激和危险信号。因此,它们在先天免疫反应中起着至关重要的作用。NLRP3炎性小体作为炎性小体家族的重要组成部分,在防御病原体入侵和保持细胞稳态方面具有重要意义。NLRP3炎性小体失调与多种病理状况有关,包括炎症性疾病、癌症、心血管和神经退行性疾病。这使得NLRP3成为治疗相关疾病的适用靶点,因此,越来越多的NLRP3抑制剂被披露用于治疗。在此,我们总结了NLRP3炎症小体的结构、功能和抑制剂的最新进展。并对现有产品及未来药物研发方向进行了综述。

关键词: NLRP3,炎性体,功能,抑制剂,药物发现,蛋白复合物。

[1]
Martinon, F.; Burns, K.; Tschopp, J. The Inflammasome. Mol. Cell, 2002, 10(2), 417-426.
[http://dx.doi.org/10.1016/S1097-2765(02)00599-3] [PMID: 12191486]
[2]
Zheng, D.; Liwinski, T.; Elinav, E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov., 2020, 6(1), 36.
[http://dx.doi.org/10.1038/s41421-020-0167-x] [PMID: 32550001]
[3]
Singh, P.; Kumar, N.; Singh, M.; Kaur, M.; Singh, G.; Narang, A.; Kanwal, A.; Sharma, K.; Singh, B.; Napoli, M.D.; Mastana, S. Neutrophil extracellular traps and NLRP3 inflammasome: A disturbing duo in atherosclerosis, inflammation and atherothrombosis. Vaccines, 2023, 11(2), 261.
[http://dx.doi.org/10.3390/vaccines11020261] [PMID: 36851139]
[4]
Sharma, D.; Kanneganti, T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol., 2016, 213(6), 617-629.
[http://dx.doi.org/10.1083/jcb.201602089] [PMID: 27325789]
[5]
Christgen, S.; Place, D.E.; Kanneganti, T.D. Toward targeting inflammasomes: Insights into their regulation and activation. Cell Res., 2020, 30(4), 315-327.
[http://dx.doi.org/10.1038/s41422-020-0295-8] [PMID: 32152420]
[6]
Xu, J.; Núñez, G. The NLRP3 inflammasome: Activation and regulation. Trends Biochem. Sci., 2023, 48(4), 331-344.
[http://dx.doi.org/10.1016/j.tibs.2022.10.002] [PMID: 36336552]
[7]
Ohto, U.; Kamitsukasa, Y.; Ishida, H.; Zhang, Z.; Murakami, K.; Hirama, C.; Maekawa, S.; Shimizu, T. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. Proc. Natl. Acad. Sci., 2022, 119(11), e2121353119.
[http://dx.doi.org/10.1073/pnas.2121353119] [PMID: 35254907]
[8]
Tapia-Abellán, A.; Angosto-Bazarra, D.; Alarcón-Vila, C.; Baños, M. C; Hafner-Bratkovič, I.; Oliva, B.; Pelegrín, P. Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation. Sci. Adv., 2021, 7, eabf44.
[http://dx.doi.org/10.1126/sciadv.abf4468]
[9]
Dekker, C.; Mattes, H.; Wright, M.; Boettcher, A.; Hinniger, A.; Hughes, N.; Kapps-Fouthier, S.; Eder, J.; Erbel, P.; Stiefl, N.; Mackay, A.; Farady, C.J. Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition. J. Mol. Biol., 2021, 433(24), 167309.
[http://dx.doi.org/10.1016/j.jmb.2021.167309] [PMID: 34687713]
[10]
Sharif, H.; Wang, L.; Wang, W.L.; Magupalli, V.G.; Andreeva, L.; Qiao, Q.; Hauenstein, A.V.; Wu, Z.; Núñez, G.; Mao, Y.; Wu, H. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature, 2019, 570(7761), 338-343.
[http://dx.doi.org/10.1038/s41586-019-1295-z] [PMID: 31189953]
[11]
Andreeva, L.; David, L.; Rawson, S.; Shen, C.; Pasricha, T.; Pelegrin, P.; Wu, H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021, 184(26), 6299-6312.e22.
[http://dx.doi.org/10.1016/j.cell.2021.11.011] [PMID: 34861190]
[12]
Hafner-Bratkovič, I. NLRP3 is its own gatekeeper: A group hug of NLRP3 monomers controls inflammation. Trends Biochem. Sci., 2022, 47(8), 635-637.
[http://dx.doi.org/10.1016/j.tibs.2022.03.014] [PMID: 35382945]
[13]
Hochheiser, I.V.; Pilsl, M.; Hagelueken, G.; Moecking, J.; Marleaux, M.; Brinkschulte, R.; Latz, E.; Engel, C.; Geyer, M. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature, 2022, 604(7904), 184-189.
[http://dx.doi.org/10.1038/s41586-022-04467-w] [PMID: 35114687]
[14]
Xiao, L.; Magupalli, V.G.; Wu, H. Cryo-EM structures of the active NLRP3 inflammasome disc. Nature, 2023, 613(7944), 595-600.
[http://dx.doi.org/10.1038/s41586-022-05570-8] [PMID: 36442502]
[15]
Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol., 2019, 19(8), 477-489.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[16]
Li, Y.; Fu, T.M.; Lu, A.; Witt, K.; Ruan, J.; Shen, C.; Wu, H. Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc. Natl. Acad. Sci., 2018, 115(43), 10845-10852.
[http://dx.doi.org/10.1073/pnas.1810524115] [PMID: 30279182]
[17]
Vong, C.T.; Tseng, H.H.L.; Yao, P.; Yu, H.; Wang, S.; Zhong, Z.; Wang, Y. Specific NLRP3 inflammasome inhibitors: Promising therapeutic agents for inflammatory diseases. Drug Discov. Today, 2021, 26(6), 1394-1408.
[http://dx.doi.org/10.1016/j.drudis.2021.02.018] [PMID: 33636340]
[18]
Fu, J.; Wu, H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol., 2023, 41(1), 301-316.
[http://dx.doi.org/10.1146/annurev-immunol-081022-021207] [PMID: 36750315]
[19]
Lamkanfi, M.; Dixit, V.M. A new lead to NLRP3 inhibition. J. Exp. Med., 2017, 214(11), 3147-3149.
[http://dx.doi.org/10.1084/jem.20171848] [PMID: 29061692]
[20]
Mangan, M.S.J.; Olhava, E.J.; Roush, W.R.; Seidel, H.M.; Glick, G.D.; Latz, E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov., 2018, 17(8), 588-606.
[http://dx.doi.org/10.1038/nrd.2018.97] [PMID: 30026524]
[21]
Accogli, T.; Hibos, C.; Vegran, F. Canonical and non-canonical functions of NLRP3. J. Adv. Res., 2023, 53, 137-151.
[http://dx.doi.org/10.1016/j.jare.2023.01.001] [PMID: 36610670]
[22]
Yang, Y.; Wang, H.; Kouadir, M.; Song, H.; Shi, F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis., 2019, 10(2), 128.
[http://dx.doi.org/10.1038/s41419-019-1413-8] [PMID: 30755589]
[23]
Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell. Mol. Immunol., 2021, 18(5), 1141-1160.
[http://dx.doi.org/10.1038/s41423-021-00670-3] [PMID: 33850310]
[24]
Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Zhan, X.Y.; Han, Q.Y.; Wang, H.; Chen, Y.; Li, H.Y.; Li, A.L.; Zhang, X.M.; Zhou, T.; Li, T. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell, 2017, 68(1), 185-197.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.08.017] [PMID: 28943315]
[25]
Xu, T.; Yu, W.; Fang, H.; Wang, Z.; Chi, Z.; Guo, X.; Jiang, D.; Zhang, K.; Chen, S.; Li, M.; Guo, Y.; Zhang, J.; Yang, D.; Yu, Q.; Wang, D.; Zhang, X. Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation. Cell Death Differ., 2022, 29(8), 1582-1595.
[http://dx.doi.org/10.1038/s41418-022-00947-8] [PMID: 35110683]
[26]
Ge, Q.; Chen, X.; Zhao, Y.; Mu, H.; Zhang, J. Modulatory mechanisms of NLRP3: Potential roles in inflammasome activation. Life Sci., 2021, 267, 118918.
[http://dx.doi.org/10.1016/j.lfs.2020.118918] [PMID: 33352170]
[27]
Gong, T.; Yang, Y.; Jin, T.; Jiang, W.; Zhou, R. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol., 2018, 39(5), 393-406.
[http://dx.doi.org/10.1016/j.it.2018.01.009] [PMID: 29452983]
[28]
Chen, M.; Ye, X.; He, X.; Ouyang, D. The signaling pathways regulating NLRP3 inflammasome activation. Inflammation, 2021, 44(4), 1229-1245.
[http://dx.doi.org/10.1007/s10753-021-01439-6] [PMID: 34009550]
[29]
Wang, L.; Sharif, H.; Vora, S.M.; Zheng, Y.; Wu, H. Structures and functions of the inflammasome engine. J. Allergy Clin. Immunol., 2021, 147(6), 2021-2029.
[http://dx.doi.org/10.1016/j.jaci.2021.04.018] [PMID: 34092352]
[30]
Dowling, J.K.; O’Neill, L.A.J. Biochemical regulation of the inflammasome. Crit. Rev. Biochem. Mol. Biol., 2012, 47(5), 424-443.
[http://dx.doi.org/10.3109/10409238.2012.694844] [PMID: 22681257]
[31]
Haneklaus, M.; O’Neill, L.A.J.; Coll, R.C. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: Recent developments. Curr. Opin. Immunol., 2013, 25(1), 40-45.
[http://dx.doi.org/10.1016/j.coi.2012.12.004] [PMID: 23305783]
[32]
Kayagaki, N.; Warming, S.; Lamkanfi, M.; Walle, L.V.; Louie, S.; Dong, J.; Newton, K.; Qu, Y.; Liu, J.; Heldens, S.; Zhang, J.; Lee, W.P.; Roose-Girma, M.; Dixit, V.M. Non-canonical inflammasome activation targets caspase-11. Nature, 2011, 479(7371), 117-121.
[http://dx.doi.org/10.1038/nature10558] [PMID: 22002608]
[33]
Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521), 187-192.
[http://dx.doi.org/10.1038/nature13683] [PMID: 25119034]
[34]
Moretti, J.; Jia, B.; Hutchins, Z.; Roy, S.; Yip, H.; Wu, J.; Shan, M.; Jaffrey, S.R.; Coers, J.; Blander, J.M. Caspase-11 interaction with NLRP3 potentiates the noncanonical activation of the NLRP3 inflammasome. Nat. Immunol., 2022, 23(5), 705-717.
[http://dx.doi.org/10.1038/s41590-022-01192-4] [PMID: 35487985]
[35]
Yang, Z.H.; Han, J. Dual ligand engagement for noncanonical inflammasome activation. Nat. Immunol., 2022, 23(5), 651-653.
[http://dx.doi.org/10.1038/s41590-022-01188-0] [PMID: 35487984]
[36]
Gaidt, M.M.; Ebert, T.S.; Chauhan, D.; Schmidt, T.; Schmid-Burgk, J.L.; Rapino, F.; Robertson, A.A.B.; Cooper, M.A.; Graf, T.; Hornung, V. Human monocytes engage an alternative inflammasome pathway. Immunity, 2016, 44(4), 833-846.
[http://dx.doi.org/10.1016/j.immuni.2016.01.012] [PMID: 27037191]
[37]
Huang, Y.; Xu, W.; Zhou, R. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol., 2021, 18(9), 2114-2127.
[http://dx.doi.org/10.1038/s41423-021-00740-6] [PMID: 34321623]
[38]
Li, Y.; Huang, H.; Liu, B.; Zhang, Y.; Pan, X.; Yu, X.Y.; Shen, Z.; Song, Y.H. Inflammasomes as therapeutic targets in human diseases. Signal Transduct. Target. Ther., 2021, 6(1), 247.
[http://dx.doi.org/10.1038/s41392-021-00650-z] [PMID: 34210954]
[39]
Moltrasio, C.; Romagnuolo, M.; Marzano, A.V. NLRP3 inflammasome and NLRP3-related autoinflammatory diseases: From cryopyrin function to targeted therapies. Front. Immunol., 2022, 13, 1007705.
[http://dx.doi.org/10.3389/fimmu.2022.1007705] [PMID: 36275641]
[40]
de Torre-Minguela, C.; Mesa del Castillo, P.; Pelegrín, P. The NLRP3 and pyrin inflammasomes: Implications in the pathophysiology of autoinflammatory diseases. Front. Immunol., 2017, 8, 43.
[http://dx.doi.org/10.3389/fimmu.2017.00043] [PMID: 28191008]
[41]
de Jesus, A.A.; Canna, S.W.; Liu, Y.; Goldbach-Mansky, R. Molecular mechanisms in genetically defined autoinflammatory diseases: Disorders of amplified danger signaling. Annu. Rev. Immunol., 2015, 33(1), 823-874.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112227] [PMID: 25706096]
[42]
Booshehri, L.M.; Hoffman, H.M. CAPS and NLRP3. J. Clin. Immunol., 2019, 39(3), 277-286.
[http://dx.doi.org/10.1007/s10875-019-00638-z] [PMID: 31077002]
[43]
Cuisset, L.; Jeru, I.; Dumont, B.; Fabre, A.; Cochet, E.; Le Bozec, J.; Delpech, M.; Amselem, S.; Touitou, I. Mutations in the autoinflammatory cryopyrin-associated periodic syndrome gene: Epidemiological study and lessons from eight years of genetic analysis in France. Ann. Rheum. Dis., 2011, 70(3), 495-499.
[http://dx.doi.org/10.1136/ard.2010.138420] [PMID: 21109514]
[44]
Theodoropoulou, K.; Spel, L.; Zaffalon, L.; Delacrétaz, M.; Hofer, M.; Martinon, F. NLRP3 leucine-rich repeats control induced and spontaneous inflammasome activation in cryopyrin-associated periodic syndrome. J. Allergy Clin. Immunol., 2023, 151(1), 222-232.e9.
[http://dx.doi.org/10.1016/j.jaci.2022.08.019] [PMID: 36075321]
[45]
Guan, Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/7247238] [PMID: 31886308]
[46]
Bauer, C.; Duewell, P.; Mayer, C.; Lehr, H.A.; Fitzgerald, K.A.; Dauer, M.; Tschopp, J.; Endres, S.; Latz, E.; Schnurr, M. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut, 2010, 59(9), 1192-1199.
[http://dx.doi.org/10.1136/gut.2009.197822] [PMID: 20442201]
[47]
Liu, L.; Dong, Y.; Ye, M.; Jin, S.; Yang, J.; Joosse, M.E.; Sun, Y.; Zhang, J.; Lazarev, M.; Brant, S.R.; Safar, B.; Marohn, M.; Mezey, E.; Li, X. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. J. Crohn’s Colitis, 2017, 11(6), 737-750.
[PMID: 27993998]
[48]
Wang, S.L.; Zhang, M.M.; Zhou, H.; Su, G.Q.; Ding, Y.; Xu, G.H.; Wang, X.; Li, C.F.; Huang, W.F.; Yi, L.T. Inhibition of NLRP3 attenuates sodium dextran sulfate-induced inflammatory bowel disease through gut microbiota regulation. Biomed. J., 2023, 46(5), 100580.
[http://dx.doi.org/10.1016/j.bj.2023.01.004] [PMID: 36758943]
[49]
Chen, Q.L.; Yin, H.R.; He, Q.Y.; Wang, Y. Targeting the NLRP3 inflammasome as new therapeutic avenue for inflammatory bowel disease. Biomed. Pharmacother., 2021, 138, 111442.
[http://dx.doi.org/10.1016/j.biopha.2021.111442] [PMID: 33667791]
[50]
Zaki, M.H.; Boyd, K.L.; Vogel, P.; Kastan, M.B.; Lamkanfi, M.; Kanneganti, T.D. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity, 2010, 32(3), 379-391.
[http://dx.doi.org/10.1016/j.immuni.2010.03.003] [PMID: 20303296]
[51]
Song, Y.; Zhao, Y.; Ma, Y.; Wang, Z.; Rong, L.; Wang, B.; Zhang, N. Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine Growth Factor Rev., 2021, 60, 61-75.
[http://dx.doi.org/10.1016/j.cytogfr.2021.03.003] [PMID: 33773897]
[52]
Zhen, Y.; Zhang, H. NLRP3 inflammasome and inflammatory bowel disease. Front. Immunol., 2019, 10, 276.
[http://dx.doi.org/10.3389/fimmu.2019.00276] [PMID: 30873162]
[53]
Toldo, S.; Mezzaroma, E.; Buckley, L.F.; Potere, N.; Di Nisio, M.; Biondi-Zoccai, G.; Van Tassell, B.W.; Abbate, A. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol. Ther., 2022, 236, 108053.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108053] [PMID: 34906598]
[54]
Grebe, A.; Hoss, F.; Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res., 2018, 122(12), 1722-1740.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[55]
Baldrighi, M.; Mallat, Z.; Li, X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis, 2017, 267, 127-138.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.10.027] [PMID: 29126031]
[56]
Poznyak, A.V.; Melnichenko, A.A.; Wetzker, R.; Gerasimova, E.V.; Orekhov, A.N. NLPR3 inflammasomes and their significance for atherosclerosis. Biomedicines, 2020, 8(7), 205.
[http://dx.doi.org/10.3390/biomedicines8070205] [PMID: 32664349]
[57]
Jiang, C.; Xie, S.; Yang, G.; Wang, N. Spotlight on NLRP3 inflammasome: Role in pathogenesis and therapies of atherosclerosis. J. Inflamm. Res., 2021, 14, 7143-7172.
[http://dx.doi.org/10.2147/JIR.S344730] [PMID: 34992411]
[58]
Hoseini, Z.; Sepahvand, F.; Rashidi, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J. Cell. Physiol., 2018, 233(3), 2116-2132.
[http://dx.doi.org/10.1002/jcp.25930] [PMID: 28345767]
[59]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[60]
Zheng, F.; Xing, S.; Gong, Z.; Mu, W.; Xing, Q. Cancer statistics. Cancer J. Clin., 2014, 73, 17-48.
[61]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[62]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[63]
Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158.
[http://dx.doi.org/10.1186/s12943-018-0900-3] [PMID: 30447690]
[64]
Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677.
[http://dx.doi.org/10.1126/science.1156995] [PMID: 18403674]
[65]
Cox, L.A., Jr Dose-response modeling of NLRP3 inflammasome-mediated diseases: Asbestos, lung cancer, and malignant mesothelioma as examples. Crit. Rev. Toxicol., 2019, 49(7), 614-635.
[http://dx.doi.org/10.1080/10408444.2019.1692779] [PMID: 31905042]
[66]
Wang, Y.; Kong, H.; Zeng, X.; Liu, W.; Wang, Z.; Yan, X.; Wang, H.; Xie, W. Activation of NLRP3 inflammasome enhances the proliferation and migration of A549 lung cancer cells. Oncol. Rep., 2016, 35(4), 2053-2064.
[http://dx.doi.org/10.3892/or.2016.4569] [PMID: 26782741]
[67]
Faria, S.S.; Costantini, S.; de Lima, V.C.C.; de Andrade, V.P.; Rialland, M.; Cedric, R.; Budillon, A.; Magalhães, K.G. NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. J. Biomed. Sci., 2021, 28(1), 26.
[http://dx.doi.org/10.1186/s12929-021-00724-8] [PMID: 33840390]
[68]
Ershaid, N.; Sharon, Y.; Doron, H.; Raz, Y.; Shani, O.; Cohen, N.; Monteran, L.; Leider-Trejo, L.; Ben-Shmuel, A.; Yassin, M.; Gerlic, M.; Ben-Baruch, A.; Pasmanik-Chor, M.; Apte, R.; Erez, N. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat. Commun., 2019, 10(1), 4375.
[http://dx.doi.org/10.1038/s41467-019-12370-8] [PMID: 31558756]
[69]
Wang, Y.; Zhang, H.; Xu, Y.; Peng, T.; Meng, X.; Zou, F. NLRP3 induces the autocrine secretion of IL-1β to promote epithelial–mesenchymal transition and metastasis in breast cancer. Biochem. Biophys. Res. Commun., 2021, 560, 72-79.
[http://dx.doi.org/10.1016/j.bbrc.2021.04.122] [PMID: 33975248]
[70]
Guo, B.; Fu, S.; Zhang, J.; Liu, B.; Li, Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci. Rep., 2016, 6(1), 36107.
[http://dx.doi.org/10.1038/srep36107] [PMID: 27786298]
[71]
Missiroli, S.; Perrone, M.; Boncompagni, C.; Borghi, C.; Campagnaro, A.; Marchetti, F.; Anania, G.; Greco, P.; Fiorica, F.; Pinton, P.; Giorgi, C. Targeting the NLRP3 inflammasome as a new therapeutic option for overcoming cancer. Cancers, 2021, 13(10), 2297.
[http://dx.doi.org/10.3390/cancers13102297] [PMID: 34064909]
[72]
Peek, R.M., Jr Orchestration of aberrant epithelial signaling by Helicobacter pylori CagA. Sci. STKE, 2005, 2005(277), pe14.
[http://dx.doi.org/10.1126/stke.2772005pe14] [PMID: 15798102]
[73]
Lamb, A.; Chen, L.F. Role of the Helicobacter pylori -induced inflammatory response in the development of gastric cancer. J. Cell. Biochem., 2013, 114(3), 491-497.
[http://dx.doi.org/10.1002/jcb.24389] [PMID: 22961880]
[74]
Semper, R.P.; Mejías-Luque, R.; Groß, C.; Anderl, F.; Müller, A.; Vieth, M.; Busch, D.H.; Prazeres da Costa, C.; Ruland, J.; Groß, O.; Gerhard, M. Helicobacter pylori-induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag pathogenicity island. J. Immunol., 2014, 193(7), 3566-3576.
[http://dx.doi.org/10.4049/jimmunol.1400362] [PMID: 25172489]
[75]
Deans, D A C.; Wigmore, S.J.; Gilmour, H.; Paterson-Brown, S.; Ross, J.A.; Fearon, K.C.H. Elevated tumour interleukin-1β is associated with systemic inflammation: a marker of reduced survival in gastro-oesophageal cancer. Br. J. Cancer, 2006, 95(11), 1568-1575.
[http://dx.doi.org/10.1038/sj.bjc.6603446] [PMID: 17088911]
[76]
Bagheri, V.; Memar, B.; Momtazi, A.A.; Sahebkar, A.; Gholamin, M.; Abbaszadegan, M.R. Cytokine networks and their association with Helicobacter pylori infection in gastric carcinoma. J. Cell. Physiol., 2018, 233(4), 2791-2803.
[http://dx.doi.org/10.1002/jcp.25822] [PMID: 28121015]
[77]
Li, S.; Liang, X.; Ma, L.; Shen, L.; Li, T.; Zheng, L.; Sun, A.; Shang, W.; Chen, C.; Zhao, W.; Jia, J. MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene, 2018, 37(7), 884-896.
[http://dx.doi.org/10.1038/onc.2017.381] [PMID: 29059152]
[78]
Karki, R.; Kanneganti, T.D. Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer, 2019, 19(4), 197-214.
[http://dx.doi.org/10.1038/s41568-019-0123-y] [PMID: 30842595]
[79]
Hamarsheh, S.; Zeiser, R. NLRP3 inflammasome activation in cancer: A double-edged sword. Front. Immunol., 2020, 11, 1444.
[http://dx.doi.org/10.3389/fimmu.2020.01444] [PMID: 32733479]
[80]
Zaki, M.H.; Vogel, P.; Body-Malapel, M.; Lamkanfi, M.; Kanneganti, T.D. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J. Immunol., 2010, 185(8), 4912-4920.
[http://dx.doi.org/10.4049/jimmunol.1002046] [PMID: 20855874]
[81]
Sharma, B.R.; Kanneganti, T.D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol., 2021, 22(5), 550-559.
[http://dx.doi.org/10.1038/s41590-021-00886-5] [PMID: 33707781]
[82]
McCarron, R.M.; Shapiro, B.; Rawles, J. Luo, J. Depression. Ann. Intern. Med., 2021, 174(5), ITC65-ITC80.
[http://dx.doi.org/10.7326/AITC202105180] [PMID: 33971098]
[83]
Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry, 2009, 65(9), 732-741.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[84]
Iwata, M.; Ota, K.T.; Duman, R.S. The inflammasome: Pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun., 2013, 31, 105-114.
[http://dx.doi.org/10.1016/j.bbi.2012.12.008] [PMID: 23261775]
[85]
Zhang, Y.; Liu, L.; Peng, Y.L.; Liu, Y.Z.; Wu, T.Y.; Shen, X.L.; Zhou, J.R.; Sun, D.Y.; Huang, A.J.; Wang, X.; Wang, Y.X.; Jiang, C.L. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci. Ther., 2014, 20(2), 119-124.
[http://dx.doi.org/10.1111/cns.12170] [PMID: 24279434]
[86]
Alcocer-Gómez, E.; Ulecia-Morón, C.; Marín-Aguilar, F.; Rybkina, T.; Casas-Barquero, N.; Ruiz-Cabello, J.; Ryffel, B.; Apetoh, L.; Ghiringhelli, F.; Bullón, P.; Sánchez-Alcazar, J.A.; Carrión, A.M.; Cordero, M.D. Stress-induced depressive behaviors require a functional NLRP3 inflammasome. Mol. Neurobiol., 2016, 53(7), 4874-4882.
[http://dx.doi.org/10.1007/s12035-015-9408-7] [PMID: 26362308]
[87]
Kaufmann, F.N.; Costa, A.P.; Ghisleni, G.; Diaz, A.P.; Rodrigues, A.L.S.; Peluffo, H.; Kaster, M.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav. Immun., 2017, 64, 367-383.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[88]
Liang, T.; Zhang, Y.; Wu, S.; Chen, Q.; Wang, L. The role of NLRP3 inflammasome in Alzheimer’s disease and potential therapeutic targets. Front. Pharmacol., 2022, 13, 845185.
[http://dx.doi.org/10.3389/fphar.2022.845185] [PMID: 35250595]
[89]
Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678.
[http://dx.doi.org/10.1038/nature11729] [PMID: 23254930]
[90]
Saresella, M.; La Rosa, F.; Piancone, F.; Zoppis, M.; Marventano, I.; Calabrese, E.; Rainone, V.; Nemni, R.; Mancuso, R.; Clerici, M. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener., 2016, 11(1), 23.
[http://dx.doi.org/10.1186/s13024-016-0088-1] [PMID: 26939933]
[91]
Ahmed, M.E.; Iyer, S.; Thangavel, R.; Kempuraj, D.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.; Zaheer, A. Co-Localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J. Alzheimers Dis., 2017, 60(3), 1143-1160.
[http://dx.doi.org/10.3233/JAD-170634] [PMID: 28984607]
[92]
Milner, M.T.; Maddugoda, M.; Götz, J.; Burgener, S.S.; Schroder, K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease. Curr. Opin. Immunol., 2021, 68, 116-124.
[http://dx.doi.org/10.1016/j.coi.2020.10.011] [PMID: 33181351]
[93]
Feng, Y.S.; Tan, Z.X.; Wu, L.Y.; Dong, F.; Zhang, F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res. Rev., 2020, 64, 101192.
[http://dx.doi.org/10.1016/j.arr.2020.101192] [PMID: 33059089]
[94]
Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules, 2019, 9(12), 850.
[http://dx.doi.org/10.3390/biom9120850] [PMID: 31835423]
[95]
Esser, N.; L’homme, L.; De Roover, A.; Kohnen, L.; Scheen, A.J.; Moutschen, M.; Piette, J.; Legrand-Poels, S.; Paquot, N. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia, 2013, 56(11), 2487-2497.
[http://dx.doi.org/10.1007/s00125-013-3023-9]
[96]
Gora, I.M.; Ciechanowska, A.; Ladyzynski, P. NLRP3 inflammasome at the interface of inflammation, endothelial dysfunction, and type 2 diabetes. Cells, 2021, 10(2), 314.
[http://dx.doi.org/10.3390/cells10020314] [PMID: 33546399]
[97]
Lamkanfi, M.; Mueller, J.L.; Vitari, A.C.; Misaghi, S.; Fedorova, A.; Deshayes, K.; Lee, W.P.; Hoffman, H.M.; Dixit, V.M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol., 2009, 187(1), 61-70.
[http://dx.doi.org/10.1083/jcb.200903124] [PMID: 19805629]
[98]
Carvalho, A.M.; Novais, F.O.; Paixão, C.S.; de Oliveira, C.I.; Machado, P.R.L.; Carvalho, L.P.; Scott, P.; Carvalho, E.M. Glyburide, a NLRP3 inhibitor, decreases inflammatory response and is a candidate to reduce pathology in leishmania Braziliensis infection. J. Invest. Dermatol., 2020, 140(1), 246-249.e2.
[http://dx.doi.org/10.1016/j.jid.2019.05.025] [PMID: 31252034]
[99]
Zhang, G.; Lin, X.; Zhang, S.; Xiu, H.; Pan, C.; Cui, W. A protective role of glibenclamide in inflammation-associated injury. Mediat. Inflamm., 2017, 3578702.
[100]
Marchetti, C.; Chojnacki, J.; Toldo, S.; Mezzaroma, E.; Tranchida, N.; Rose, S.W.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J. Cardiovasc. Pharmacol., 2014, 63(4), 316-322.
[http://dx.doi.org/10.1097/FJC.0000000000000053] [PMID: 24336017]
[101]
Marchetti, C.; Toldo, S.; Chojnacki, J.; Mezzaroma, E.; Liu, K.; Salloum, F.N.; Nordio, A.; Carbone, S.; Mauro, A.G.; Das, A.; Zalavadia, A.A.; Halquist, M.S.; Federici, M.; Van Tassell, B.W.; Zhang, S.; Abbate, A. Pharmacologic inhibition of the NLRP3 inflammasome preserves cardiac function after ischemic and nonischemic injury in the mouse. J. Cardiovasc. Pharmacol., 2015, 66(1), 1-8.
[http://dx.doi.org/10.1097/FJC.0000000000000247] [PMID: 25915511]
[102]
Guo, C.; Fulp, J.W.; Jiang, Y.; Li, X.; Chojnacki, J.E.; Wu, J.; Wang, X.Y.; Zhang, S. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci., 2017, 8(10), 2194-2201.
[http://dx.doi.org/10.1021/acschemneuro.7b00124] [PMID: 28653829]
[103]
Yin, J.; Zhao, F.; Chojnacki, J.E.; Fulp, J.; Klein, W.L.; Zhang, S.; Zhu, X. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2018, 55(3), 1977-1987.
[http://dx.doi.org/10.1007/s12035-017-0467-9] [PMID: 28255908]
[104]
Kuwar, R.; Rolfe, A.; Di, L.; Xu, H.; He, L.; Jiang, Y.; Zhang, S.; Sun, D. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J. Neuroinflammation, 2019, 16(1), 81.
[http://dx.doi.org/10.1186/s12974-019-1471-y] [PMID: 30975164]
[105]
Fulp, J.; He, L.; Toldo, S.; Jiang, Y.; Boice, A.; Guo, C.; Li, X.; Rolfe, A.; Sun, D.; Abbate, A.; Wang, X.Y.; Zhang, S. Structural insights of benzenesulfonamide analogues as NLRP3 inflammasome inhibitors: Design, synthesis, and biological characterization. J. Med. Chem., 2018, 61(12), 5412-5423.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00733] [PMID: 29877709]
[106]
Jiang, Y.; He, L.; Green, J.; Blevins, H.; Guo, C.; Patel, S.H.; Halquist, M.S.; McRae, M.; Venitz, J.; Wang, X.Y.; Zhang, S. Discovery of second-generation NLRP3 inflammasome inhibitors: Design, synthesis, and biological characterization. J. Med. Chem., 2019, 62(21), 9718-9731.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01155] [PMID: 31626545]
[107]
Xu, Y.; Xu, Y.; Blevins, H.; Guo, C.; Biby, S.; Wang, X.Y.; Wang, C.; Zhang, S. Development of sulfonamide-based NLRP3 inhibitors: Further modifications and optimization through structure-activity relationship studies. Eur. J. Med. Chem., 2022, 238, 114468.
[http://dx.doi.org/10.1016/j.ejmech.2022.114468] [PMID: 35635948]
[108]
Perregaux, D.G.; McNiff, P.; Laliberte, R.; Hawryluk, N.; Peurano, H.; Stam, E.; Eggler, J.; Griffiths, R.; Dombroski, M.A.; Gabel, C.A. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther., 2001, 299(1), 187-197.
[PMID: 11561079]
[109]
Laliberte, R.E.; Perregaux, D.G.; Hoth, L.R.; Rosner, P.J.; Jordan, C.K.; Peese, K.M.; Eggler, J.F.; Dombroski, M.A.; Geoghegan, K.F.; Gabel, C.A. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β posttranslational processing. J. Biol. Chem., 2003, 278(19), 16567-16578.
[http://dx.doi.org/10.1074/jbc.M211596200] [PMID: 12624100]
[110]
Coll, R.C.; O’Neill, L.A.J.; Butler, M.; Cooper, M.; O’Neill, L.A. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One, 2011, 6(12), e29539.
[http://dx.doi.org/10.1371/journal.pone.0029539] [PMID: 22216309]
[111]
Tapia-Abellán, A.; Angosto-Bazarra, D.; Martínez-Banaclocha, H.; de Torre-Minguela, C.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H.; Arostegui, J.I.; Pelegrin, P. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol., 2019, 15(6), 560-564.
[http://dx.doi.org/10.1038/s41589-019-0278-6] [PMID: 31086329]
[112]
Coll, R.C.; Hill, J.R.; Day, C.J.; Zamoshnikova, A.; Boucher, D.; Massey, N.L.; Chitty, J.L.; Fraser, J.A.; Jennings, M.P.; Robertson, A.A.B.; Schroder, K. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat. Chem. Biol., 2019, 15(6), 556-559.
[http://dx.doi.org/10.1038/s41589-019-0277-7] [PMID: 31086327]
[113]
Corcoran, S.E.; Halai, R.; Cooper, M.A. Pharmacological inhibition of the Nod-Like receptor family pyrin domain containing 3 inflammasome with MCC950. Pharmacol. Rev., 2021, 73(3), 968-1000.
[http://dx.doi.org/10.1124/pharmrev.120.000171] [PMID: 34117094]
[114]
Salla, M.; Butler, M.S.; Pelingon, R.; Kaeslin, G.; Croker, D.E.; Reid, J.C.; Baek, J.M.; Bernhardt, P.V.; Gillam, E.M.J.; Cooper, M.A.; Robertson, A.A.B. Identification, synthesis, and biological evaluation of the major human metabolite of NLRP3 inflammasome inhibitor MCC950. ACS Med. Chem. Lett., 2016, 7(12), 1034-1038.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00198] [PMID: 27994733]
[115]
Li, H.; Guan, Y.; Liang, B.; Ding, P.; Hou, X.; Wei, W.; Ma, Y. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur. J. Pharmacol., 2022, 928, 175091.
[http://dx.doi.org/10.1016/j.ejphar.2022.175091] [PMID: 35714692]
[116]
Hill, J.R.; Coll, R.C.; Sue, N.; Reid, J.C.; Dou, J.; Holley, C.L.; Pelingon, R.; Dickinson, J.B.; Biden, T.J.; Schroder, K.; Cooper, M.A.; Robertson, A.A.B. Sulfonylureas as concomitant insulin secretagogues and NLRP3 inflammasome inhibitors. ChemMedChem, 2017, 12(17), 1449-1457.
[http://dx.doi.org/10.1002/cmdc.201700270] [PMID: 28703484]
[117]
Agarwal, S.; Pethani, J.P.; Shah, H.A.; Vyas, V.; Sasane, S.; Bhavsar, H.; Bandyopadhyay, D.; Giri, P.; Viswanathan, K.; Jain, M.R.; Sharma, R. Identification of a novel orally bioavailable NLRP3 inflammasome inhibitor. Bioorg. Med. Chem. Lett., 2020, 30(21), 127571.
[http://dx.doi.org/10.1016/j.bmcl.2020.127571] [PMID: 32980515]
[118]
McBride, C.; Trzoss, L.; Povero, D.; Lazic, M.; Ambrus-Aikelin, G.; Santini, A.; Pranadinata, R.; Bain, G.; Stansfield, R.; Stafford, J.A.; Veal, J.; Takahashi, R.; Ly, J.; Chen, S.; Liu, L.; Nespi, M.; Blake, R.; Katewa, A.; Kleinheinz, T.; Sujatha-Bhaskar, S.; Ramamoorthi, N.; Sims, J.; McKenzie, B.; Chen, M.; Ultsch, M.; Johnson, M.; Murray, J.; Ciferri, C.; Staben, S.T.; Townsend, M.J.; Stivala, C.E. Overcoming Preclinical Safety Obstacles to Discover (S)- N -((1,2,3,5,6,7-Hexahydro- s -indacen-4-yl)carbamoyl)-6-(methylamino)-6,7-dihydro-5 H -pyrazolo[5,1- b][1,3]oxazine-3-sulfonamide (GDC-2394): A Potent and Selective NLRP3 Inhibitor. J. Med. Chem., 2022, 65(21), 14721-14739.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01250] [PMID: 36279149]
[119]
Agarwal, S.; Sasane, S.; Shah, H.A.; Pethani, J.P.; Deshmukh, P.; Vyas, V.; Iyer, P.; Bhavsar, H.; Viswanathan, K.; Bandyopadhyay, D.; Giri, P.; Mahapatra, J.; Chatterjee, A.; Jain, M.R.; Sharma, R. Discovery of N-cyano-sulfoximineurea derivatives as potent and orally bioavailable NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett., 2020, 11(4), 414-418.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00433] [PMID: 32292543]
[120]
Harrison, D.; Boutard, N.; Brzozka, K.; Bugaj, M.; Chmielewski, S.; Cierpich, A.; Doedens, J.R.; Fabritius, C.H.R.Y.; Gabel, C.A.; Galezowski, M.; Kowalczyk, P.; Levenets, O.; Mroczkowska, M.; Palica, K.; Porter, R.A.; Schultz, D.; Sowinska, M.; Topolnicki, G.; Urbanski, P.; Woyciechowski, J.; Watt, A.P. Discovery of a series of ester-substituted NLRP3 inflammasome inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(23), 127560.
[http://dx.doi.org/10.1016/j.bmcl.2020.127560] [PMID: 32956781]
[121]
Albanese, V.; Missiroli, S.; Perrone, M.; Fabbri, M.; Boncompagni, C.; Pacifico, S.; De Ventura, T.; Ciancetta, A.; Dondio, G.; Kricek, F.; Pinton, P.; Guerrini, R.; Preti, D.; Giorgi, C. Novel aryl sulfonamide derivatives as NLRP3 inflammasome inhibitors for the potential treatment of cancer. J. Med. Chem., 2023, 66(7), 5223-5241.
[http://dx.doi.org/10.1021/acs.jmedchem.3c00175] [PMID: 36972104]
[122]
Li, W.; Cao, Z.; Cheng, J.; Chen, F.; Li, S.; Huang, Y.; Zheng, L.T.; Ye, N. Discovery of N-phenyl-1-(phenylsulfonamido)cyclopropane-1-carboxamide analogs as NLRP3 inflammasome inhibitors. Med. Chem. Res., 2021, 30(6), 1294-1308.
[http://dx.doi.org/10.1007/s00044-021-02740-7]
[123]
Narros-Fernández, P.; Chioua, M.; Petcu, S.A.; Diez-Iriepa, D.; Cerrada-Gálvez, L.; Decouty-Pérez, C.; Palomino-Antolín, A.; Ramos, E.; Farré-Alins, V.; López-Rodríguez, A.B.; Romero, A.; Marco-Contelles, J.; Egea, J. Synthesis and pharmacological evaluation of new N-sulfonylureas as NLRP3 inflammasome inhibitors: Identification of a hit compound to treat gout. J. Med. Chem., 2022, 65(8), 6250-6260.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00149] [PMID: 35403430]
[124]
Harrison, D.; Bock, M.G.; Doedens, J.R.; Gabel, C.A.; Holloway, M.K.; Lewis, A.; Scanlon, J.; Sharpe, A.; Simpson, I.D.; Smolak, P.; Wishart, G.; Watt, A.P. Discovery and optimization of triazolopyrimidinone derivatives as selective NLRP3 inflammasome inhibitors. ACS Med. Chem. Lett., 2022, 13(8), 1321-1328.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00242] [PMID: 35978696]
[125]
Ma, T.; Thiagarajah, J.R.; Yang, H.; Sonawane, N.D.; Folli, C.; Galietta, L.J.V.; Verkman, A.S. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin–induced intestinal fluid secretion. J. Clin. Invest., 2002, 110(11), 1651-1658.
[http://dx.doi.org/10.1172/JCI0216112] [PMID: 12464670]
[126]
Jiang, H.; He, H.; Chen, Y.; Huang, W.; Cheng, J.; Ye, J.; Wang, A.; Tao, J.; Wang, C.; Liu, Q.; Jin, T.; Jiang, W.; Deng, X.; Zhou, R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, 214(11), 3219-3238.
[http://dx.doi.org/10.1084/jem.20171419] [PMID: 29021150]
[127]
Chen, Y.; He, H.; Jiang, H.; Li, L.; Hu, Z.; Huang, H.; Xu, Q.; Zhou, R.; Deng, X. Discovery and optimization of 4-oxo-2-thioxo-thiazolidinones as NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(7), 127021.
[http://dx.doi.org/10.1016/j.bmcl.2020.127021] [PMID: 32057583]
[128]
Zuo, D.; Do, N.; Hwang, I.; Ann, J.; Yu, J.W.; Lee, J. Design and synthesis of an N-benzyl 5-(4-sulfamoylbenzylidene-2-thioxothiazolidin-4-one scaffold as a novel NLRP3 inflammasome inhibitor. Bioorg. Med. Chem. Lett., 2022, 65, 128693.
[http://dx.doi.org/10.1016/j.bmcl.2022.128693] [PMID: 35314328]
[129]
Liu, W.; Guo, W.; Wu, J.; Luo, Q.; Tao, F.; Gu, Y.; Shen, Y.; Li, J.; Tan, R.; Xu, Q.; Sun, Y. A novel benzo[d]imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem. Pharmacol., 2013, 85(10), 1504-1512.
[http://dx.doi.org/10.1016/j.bcp.2013.03.008] [PMID: 23506741]
[130]
Pan, L.; Hang, N.; Zhang, C.; Chen, Y.; Li, S.; Sun, Y.; Li, Z.; Meng, X. Synthesis and biological evaluation of novel benzimidazole derivatives and analogs targeting the NLRP3 inflammasome. Molecules, 2017, 22(2), 213.
[http://dx.doi.org/10.3390/molecules22020213] [PMID: 28146092]
[131]
Chen, H.; Chen, X.; Sun, P.; Wu, D.; Yue, H.; Pan, J.; Li, X.; Zhang, C.; Wu, X.; Hua, L.; Hu, W.; Yang, Z. Discovery of dronedarone and its analogues as NLRP3 inflammasome inhibitors with potent anti-inflammation activity. Bioorg. Med. Chem. Lett., 2021, 46, 128160.
[http://dx.doi.org/10.1016/j.bmcl.2021.128160] [PMID: 34062252]
[132]
Huang, Y.; Jiang, H.; Chen, Y.; Wang, X.; Yang, Y.; Tao, J.; Deng, X.; Liang, G.; Zhang, H.; Jiang, W.; Zhou, R. Tranilast directly targets NLRP 3 to treat inflammasome-driven diseases. EMBO Mol. Med., 2018, 10(4), e8689.
[http://dx.doi.org/10.15252/emmm.201708689] [PMID: 29531021]
[133]
Zhuang, T.; Li, S.; Yi, X.; Guo, S.; Wang, Y.; Chen, J.; Liu, L.; Jian, Z.; Gao, T.; Kang, P.; Li, C. Tranilast directly targets NLRP3 to protect melanocytes from keratinocyte-derived IL-1β under oxidative stress. Front. Cell Dev. Biol., 2020, 8, 588.
[http://dx.doi.org/10.3389/fcell.2020.00588] [PMID: 32754591]
[134]
Abdullaha, M.; Ali, M.; Kour, D.; Kumar, A.; Bharate, S.B. Discovery of benzo[cd]indol-2-one and benzylidene-thiazolidine-2,4-dione as new classes of NLRP3 inflammasome inhibitors via ER-β structure based virtual screening. Bioorg. Chem., 2020, 95, 103500.
[http://dx.doi.org/10.1016/j.bioorg.2019.103500] [PMID: 31869665]
[135]
Abdullaha, M.; Ali, M.; Kour, D.; Mudududdla, R.; Khajuria, P.; Kumar, A.; Bharate, S.B. Tetramethoxystilbene inhibits NLRP3 inflammasome assembly via blocking the oligomerization of apoptosis-associated speck-like protein containing caspase recruitment domain: In vitro and in vivo evaluation. ACS Pharmacol. Transl. Sci., 2021, 4(4), 1437-1448.
[http://dx.doi.org/10.1021/acsptsci.1c00126] [PMID: 34423275]
[136]
Sebastian-Valverde, M.; Wu, H.; Al Rahim, M.; Sanchez, R.; Kumar, K.; De Vita, R.J.; Pasinetti, G.M. Discovery and characterization of small-molecule inhibitors of NLRP3 and NLRC4 inflammasomes. J. Biol. Chem., 2021, 296, 100597.
[http://dx.doi.org/10.1016/j.jbc.2021.100597] [PMID: 33781745]
[137]
Dai, Z.; Chen, X.; An, L.; Li, C.; Zhao, N.; Yang, F.; You, S.; Hou, C.; Li, K.; Jiang, C.; You, Q.; Di, B.; Xu, L. Development of novel tetrahydroquinoline inhibitors of NLRP3 inflammasome for potential treatment of DSS-induced mouse colitis. J. Med. Chem., 2021, 64(1), 871-889.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01924] [PMID: 33332136]
[138]
Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.011] [PMID: 28943355]
[139]
Jiao, Y.; Nan, J.; Mu, B.; Zhang, Y.; Zhou, N.; Yang, S.; Zhang, S.; Lin, W.; Wang, F.; Xia, A.; Cao, Z.; Chen, P.; Pan, Z.; Lin, G.; Pan, S.; Bin, H.; Li, L.; Yang, S. Discovery of a novel and potent inhibitor with differential species-specific effects against NLRP3 and AIM2 inflammasome-dependent pyroptosis. Eur. J. Med. Chem., 2022, 232, 114194.
[http://dx.doi.org/10.1016/j.ejmech.2022.114194] [PMID: 35183871]
[140]
Abdullaha, M.; Mohammed, S.; Ali, M.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Discovery of quinazolin-4(3H)-ones as NLRP3 inflammasome inhibitors: Computational design, metal-free synthesis, and in vitro biological evaluation. J. Org. Chem., 2019, 84(9), 5129-5140.
[http://dx.doi.org/10.1021/acs.joc.9b00138] [PMID: 30896160]
[141]
Liao, K.C.; Sandall, C.F.; Carlson, D.A.; Ulke-Lemée, A.; Platnich, J.M.; Hughes, P.F.; Muruve, D.A.; Haystead, T.A.J.; MacDonald, J.A. Application of immobilized ATP to the study of NLRP inflammasomes. Arch. Biochem. Biophys., 2019, 670, 104-115.
[http://dx.doi.org/10.1016/j.abb.2018.12.031] [PMID: 30641048]
[142]
Gastaldi, S.; Boscaro, V.; Gianquinto, E.; Sandall, C.F.; Giorgis, M.; Marini, E.; Blua, F.; Gallicchio, M.; Spyrakis, F.; MacDonald, J.A.; Bertinaria, M. Chemical modulation of the 1-(piperidin-4-yl)-1,3-dihydro-2H-benzo[d] imidazole-2-one scaffold as a novel NLRP3 inhibitor. Molecules, 2021, 26(13), 3975.
[http://dx.doi.org/10.3390/molecules26133975] [PMID: 34209843]
[143]
Haseeb, M.; Javaid, N.; Yasmeen, F.; Jeong, U.; Han, J.H.; Yoon, J.; Seo, J.Y.; Heo, J.K.; Shin, H.C.; Kim, M.S.; Kim, W.; Choi, S. Novel small-molecule inhibitor of NLRP3 inflammasome reverses cognitive impairment in an Alzheimer’s disease model. ACS Chem. Neurosci., 2022, 13(6), 818-833.
[http://dx.doi.org/10.1021/acschemneuro.1c00831] [PMID: 35196855]
[144]
Cocco, M.; Garella, D.; Di Stilo, A.; Borretto, E.; Stevanato, L.; Giorgis, M.; Marini, E.; Fantozzi, R.; Miglio, G.; Bertinaria, M. Electrophilic warhead-based design of compounds preventing NLRP3 inflammasome-dependent pyroptosis. J. Med. Chem., 2014, 57(24), 10366-10382.
[http://dx.doi.org/10.1021/jm501072b] [PMID: 25418070]
[145]
Cocco, M.; Miglio, G.; Giorgis, M.; Garella, D.; Marini, E.; Costale, A.; Regazzoni, L.; Vistoli, G.; Orioli, M.; Massulaha-Ahmed, R.; Détraz-Durieux, I.; Groslambert, M.; Py, B.F.; Bertinaria, M. Design, synthesis, and evaluation of acrylamide derivatives as direct NLRP3 inflammasome inhibitors. ChemMedChem, 2016, 11(16), 1790-1803.
[http://dx.doi.org/10.1002/cmdc.201600055] [PMID: 26990578]
[146]
Cocco, M.; Pellegrini, C.; Martínez-Banaclocha, H.; Giorgis, M.; Marini, E.; Costale, A.; Miglio, G.; Fornai, M.; Antonioli, L.; López-Castejón, G.; Tapia-Abellán, A.; Angosto, D.; Hafner-Bratkovič, I.; Regazzoni, L.; Blandizzi, C.; Pelegrín, P.; Bertinaria, M. Development of an acrylate derivative targeting the NLRP3 inflammasome for the treatment of inflammatory bowel disease. J. Med. Chem., 2017, 60(9), 3656-3671.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01624] [PMID: 28410442]
[147]
Juliana, C.; Fernandes-Alnemri, T.; Wu, J.; Datta, P.; Solorzano, L.; Yu, J.W.; Meng, R.; Quong, A.A.; Latz, E.; Scott, C.P.; Alnemri, E.S. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem., 2010, 285(13), 9792-9802.
[http://dx.doi.org/10.1074/jbc.M109.082305] [PMID: 20093358]
[148]
Zhang, X.; Xu, A.; Ran, Y.; Wei, C.; Xie, F.; Wu, J. Design, synthesis and biological evaluation of phenyl vinyl sulfone based NLRP3 inflammasome inhibitors. Bioorg. Chem., 2022, 128, 106010.
[http://dx.doi.org/10.1016/j.bioorg.2022.106010] [PMID: 35914391]
[149]
Marchetti, C.; Swartzwelter, B.; Gamboni, F.; Neff, C.P.; Richter, K.; Azam, T.; Carta, S.; Tengesdal, I.; Nemkov, T.; D’Alessandro, A.; Henry, C.; Jones, G.S.; Goodrich, S.A.; St Laurent, J.P.; Jones, T.M.; Scribner, C.L.; Barrow, R.B.; Altman, R.D.; Skouras, D.B.; Gattorno, M.; Grau, V.; Janciauskiene, S.; Rubartelli, A.; Joosten, L.A.B.; Dinarello, C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl. Acad. Sci., 2018, 115(7), E1530-E1539.
[http://dx.doi.org/10.1073/pnas.1716095115] [PMID: 29378952]
[150]
Lunding, L.P.; Skouras, D.B.; Vock, C.; Dinarello, C.A.; Wegmann, M. The NLRP3 inflammasome inhibitor, OLT1177®, ameliorates experimental allergic asthma in mice. Allergy, 2022, 77(3), 1035-1038.
[http://dx.doi.org/10.1111/all.15164] [PMID: 34716997]
[151]
Marchetti, C.; Swartzwelter, B.; Koenders, M.I.; Azam, T.; Tengesdal, I.W.; Powers, N.; de Graaf, D.M.; Dinarello, C.A.; Joosten, L.A.B. NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Res. Ther., 2018, 20(1), 169.
[http://dx.doi.org/10.1186/s13075-018-1664-2] [PMID: 30075804]
[152]
Lonnemann, N.; Hosseini, S.; Marchetti, C.; Skouras, D.B.; Stefanoni, D.; D’Alessandro, A.; Dinarello, C.A.; Korte, M. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci., 2020, 117(50), 32145-32154.
[http://dx.doi.org/10.1073/pnas.2009680117] [PMID: 33257576]
[153]
He, Y.; Varadarajan, S.; Muñoz-Planillo, R.; Burberry, A.; Nakamura, Y.; Núñez, G. 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem., 2014, 289(2), 1142-1150.
[http://dx.doi.org/10.1074/jbc.M113.515080] [PMID: 24265316]
[154]
Xiao, M.; Li, L.; Li, C.; Liu, L.; Yu, Y.; Ma, L. 3,4-Methylenedioxy-β-Nitrostyrene ameliorates experimental burn wound progression by inhibiting the NLRP3 inflammasome activation. Plast. Reconstr. Surg., 2016, 137(3), 566e-575e.
[http://dx.doi.org/10.1097/01.prs.0000479972.06934.83] [PMID: 26910701]
[155]
Chen, Y.; He, H.; Lin, B.; Chen, Y.; Deng, X.; Jiang, W.; Zhou, R. RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor. Cell. Mol. Immunol., 2021, 18(6), 1425-1436.
[http://dx.doi.org/10.1038/s41423-021-00683-y] [PMID: 33972740]
[156]
Jayabalan, N.; Oronsky, B.; Cabrales, P.; Reid, T.; Caroen, S.; Johnson, A.M.; Birch, N.A.; O’Sullivan, J.D.; Gordon, R. A review of RRx-001: A late-stage multi-indication inhibitor of NLRP3 activation and chronic inflammation. Drugs, 2023, 83(5), 389-402.
[http://dx.doi.org/10.1007/s40265-023-01838-z] [PMID: 36920652]
[157]
Shim, D.W.; Shin, W.Y.; Yu, S.H.; Kim, B.H.; Ye, S.K.; Koppula, S.; Won, H.S.; Kang, T.B.; Lee, K.H. BOT-4-one attenuates NLRP3 inflammasome activation: NLRP3 alkylation leading to the regulation of its ATPase activity and ubiquitination. Sci. Rep., 2017, 7(1), 15020.
[http://dx.doi.org/10.1038/s41598-017-15314-8] [PMID: 29118366]
[158]
Ou, Y.; Sun, P.; Wu, N.; Chen, H.; Wu, D.; Hu, W.; Yang, Z. Synthesis and biological evaluation of parthenolide derivatives with reduced toxicity as potential inhibitors of the NLRP3 inflammasome. Bioorg. Med. Chem. Lett., 2020, 30(17), 127399.
[http://dx.doi.org/10.1016/j.bmcl.2020.127399] [PMID: 32738997]
[159]
Chen, L.Z.; Zhang, X.X.; Liu, M.M.; Wu, J.; Ma, D.; Diao, L.Z.; Li, Q.; Huang, Y.S.; Zhang, R.; Ruan, B.F.; Liu, X.H. Discovery of novel pterostilbene-based derivatives as potent and orally active NLRP3 inflammasome inhibitors with inflammatory activity for colitis. J. Med. Chem., 2021, 64(18), 13633-13657.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01007] [PMID: 34506712]
[160]
Zhang, X.X.; Diao, L.Z.; Chen, L.Z.; Ma, D.; Wang, Y.M.; Jiang, H.; Ruan, B.F.; Liu, X.H. Discovery of 4-((E)-3,5-dimethoxy-2-((E)-2-nitrovinyl)styryl)aniline derivatives as potent and orally active NLRP3 inflammasome inhibitors for colitis. Eur. J. Med. Chem., 2022, 236, 114357.
[http://dx.doi.org/10.1016/j.ejmech.2022.114357] [PMID: 35428012]
[161]
Ruan, B.; Rong, M.; Ming, Z.; Wang, K.; Liu, X.; Deng, L.; Zhang, X.; Xu, K.; Shi, C.; Gao, T.; Liu, X.; Chen, L. Discovery of pterostilbene analogs as novel NLRP3 inflammasome inhibitors for potential treatment of DSS-induced colitis in mice. Bioorg. Chem., 2023, 133, 106429.
[http://dx.doi.org/10.1016/j.bioorg.2023.106429] [PMID: 36841048]
[162]
Zeng, Q.; Deng, H.; Li, Y.; Fan, T.; Liu, Y.; Tang, S.; Wei, W.; Liu, X.; Guo, X.; Jiang, J.; Wang, Y.; Song, D. Berberine directly targets the NEK7 protein to block the NEK7–NLRP3 interaction and exert anti-inflammatory activity. J. Med. Chem., 2021, 64(1), 768-781.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01743] [PMID: 33440945]
[163]
Li, J.; Sheng, H.; Wang, Y.; Lai, Z.; Wang, Y.; Cui, S. Scaffold hybrid of the natural product tanshinone I with piperidine for the discovery of a potent NLRP3 inflammasome inhibitor. J. Med. Chem., 2023, 66(4), 2946-2963.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01967] [PMID: 36786612]
[164]
He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550.
[http://dx.doi.org/10.1038/s41467-018-04947-6] [PMID: 29959312]
[165]
Pang, L.; Liu, H.; Quan, H.; Sui, H.; Jia, Y. Development of novel oridonin analogs as specifically targeted NLRP3 inflammasome inhibitors for the treatment of dextran sulfate sodium-induced colitis. Eur. J. Med. Chem., 2023, 245(Pt 2), 114919.
[http://dx.doi.org/10.1016/j.ejmech.2022.114919] [PMID: 36399877]
[166]
Thapa, P.; Upadhyay, S.P.; Singh, V.; Boinpelly, V.C.; Zhou, J.; Johnson, D.K.; Gurung, P.; Lee, E.S.; Sharma, R.; Sharma, M. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors. Europ. J. Med. Chem. Rep., 2023, 7, 100100.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100100] [PMID: 37033416]
[167]
Wang, K.; Lv, Q.; Miao, Y.; Qiao, S.; Dai, Y.; Wei, Z. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem. Pharmacol., 2018, 155, 494-509.
[http://dx.doi.org/10.1016/j.bcp.2018.07.039] [PMID: 30071202]
[168]
Leu, W.J.; Chu, J.C.; Hsu, J.L.; Du, C.M.; Jiang, Y.H.; Hsu, L.C.; Huang, W.J.; Guh, J.H. Chalcones display anti-NLRP3 inflammasome activity in macrophages through inhibition of both priming and activation Steps-structure-activity-relationship and mechanism studies. Molecules, 2020, 25(24), 5960.
[http://dx.doi.org/10.3390/molecules25245960] [PMID: 33339319]
[169]
Tang, Y.L.; Zheng, X.; Qi, Y.; Pu, X.J.; Liu, B.; Zhang, X.; Li, X.S.; Xiao, W.L.; Wan, C.P.; Mao, Z.W. Synthesis and anti-inflammatory evaluation of new chalcone derivatives bearing bispiperazine linker as IL-1β inhibitors. Bioorg. Chem., 2020, 98, 103748.
[http://dx.doi.org/10.1016/j.bioorg.2020.103748] [PMID: 32179281]
[170]
Zhang, C.; Yue, H.; Sun, P.; Hua, L.; Liang, S.; Ou, Y.; Wu, D.; Wu, X.; Chen, H.; Hao, Y.; Hu, W.; Yang, Z. Discovery of chalcone analogues as novel NLRP3 inflammasome inhibitors with potent anti-inflammation activities. Eur. J. Med. Chem., 2021, 219, 113417.
[http://dx.doi.org/10.1016/j.ejmech.2021.113417] [PMID: 33845232]
[171]
Ma, X.; Zhao, M.; Tang, M.H.; Xue, L.L.; Zhang, R.J.; Liu, L.; Ni, H.F.; Cai, X.Y.; Kuang, S.; Hong, F.; Wang, L.; Chen, K.; Tang, H.; Li, Y.; Peng, A.H.; Yang, J.H.; Pei, H.Y.; Ye, H.Y.; Chen, L.J. Flavonoids with inhibitory effects on NLRP3 inflammasome activation from millettia velutina. J. Nat. Prod., 2020, 83(10), 2950-2959.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00478] [PMID: 32989985]
[172]
Zhang, R.; Hong, F.; Zhao, M.; Cai, X.; Jiang, X.; Ye, N.; Su, K.; Li, N.; Tang, M.; Ma, X.; Ni, H.; Wang, L.; Wan, L.; Chen, L.; Wu, W.; Ye, H. New highly potent NLRP3 inhibitors: Furanochalcone velutone F analogues. ACS Med. Chem. Lett., 2022, 13(4), 560-569.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00597] [PMID: 35450356]
[173]
Li, Q.; Feng, H.; Wang, H.; Wang, Y.; Mou, W.; Xu, G.; Zhang, P.; Li, R.; Shi, W.; Wang, Z.; Fang, Z.; Ren, L.; Wang, Y.; Lin, L.; Hou, X.; Dai, W.; Li, Z.; Wei, Z.; Liu, T.; Wang, J.; Guo, Y.; Li, P.; Zhao, X.; Zhan, X.; Xiao, X.; Bai, Z. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7-NLRP3 interaction. EMBO Rep., 2022, 23(2), e53499.
[http://dx.doi.org/10.15252/embr.202153499] [PMID: 34882936]
[174]
Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol., 2018, 104, 11-19.
[http://dx.doi.org/10.1016/j.molimm.2018.09.004] [PMID: 30396035]
[175]
Zhang, X.; Hu, L.; Xu, S.; Ye, C.; Chen, A. Erianin: A direct NLRP3 inhibitor with remarkable anti-Inflammatory activity. Front. Immunol., 2021, 12, 739953.
[http://dx.doi.org/10.3389/fimmu.2021.739953] [PMID: 34745110]
[176]
Wang, H.; Lin, X.; Huang, G.; Zhou, R.; Lei, S.; Ren, J.; Zhang, K.; Feng, C.; Wu, Y.; Tang, W. Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacol. Sin., 2023, 44(8), 1687-1700.
[http://dx.doi.org/10.1038/s41401-023-01054-1] [PMID: 36964308]
[177]
Xu, H.; Chen, J.; Chen, P.; Li, W.; Shao, J.; Hong, S.; Wang, Y.; Chen, L.; Luo, W.; Liang, G. Costunolide covalently targets NACHT domain of NLRP3 to inhibit inflammasome activation and alleviate NLRP3-driven inflammatory diseases. Acta Pharm. Sin. B, 2023, 13(2), 678-693.
[http://dx.doi.org/10.1016/j.apsb.2022.09.014] [PMID: 36873170]
[178]
Xu, H.; Li, W.; Hong, S.; Shao, J.; Chen, J.; Chattipakorn, N.; Wu, D.; Luo, W.; Liang, G. Tabersonine, a natural NLRP3 inhibitor, suppresses inflammasome activation in macrophages and attenuate NLRP3-driven diseases in mice. Acta Pharmacol. Sin., 2022, 0, 1-10.
[PMID: 36627344]
[179]
Li, W.; Xu, H.; Shao, J.; Chen, J.; Lin, Y.; Zheng, Z.; Wang, Y.; Luo, W.; Liang, G. Discovery of alantolactone as a naturally occurring NLRP3 inhibitor to alleviate NLRP3‐driven inflammatory diseases in mice. Br. J. Pharmacol., 2023, 180(12), 1634-1647.
[http://dx.doi.org/10.1111/bph.16036] [PMID: 36668704]
[180]
Zhang, A.H.; Liu, W.; Jiang, N.; Xu, Q.; Tan, R.X. Spirodalesol, an NLRP3 inflammasome activation inhibitor. Org. Lett., 2016, 18(24), 6496-6499.
[http://dx.doi.org/10.1021/acs.orglett.6b03435] [PMID: 27978645]
[181]
Liu, W.; Yang, J.; Fang, S.; Jiao, C.; Gao, J.; Zhang, A.; Wu, T.; Tan, R.; Xu, Q.; Guo, W. Spirodalesol analog 8A inhibits NLRP3 inflammasome activation and attenuates inflammatory disease by directly targeting adaptor protein ASC. J. Biol. Chem., 2022, 298(12), 102696.
[http://dx.doi.org/10.1016/j.jbc.2022.102696] [PMID: 36379253]
[182]
Cui, W.; Chen, S.; Chi, Z.; Guo, X.; Zhang, X.; Zhong, Y.; Han, H.; Yao, K. Screening-based identification of xanthone as a novel NLRP3 inflammasome inhibitor via metabolic reprogramming. Clin. Transl. Med., 2021, 11(7), e496.
[http://dx.doi.org/10.1002/ctm2.496] [PMID: 34323410]
[183]
Ahmed, S.; Kwatra, M.; Ranjan Panda, S.; Murty, U.S.N.; Naidu, V.G.M. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav. Immun., 2021, 91, 142-158.
[http://dx.doi.org/10.1016/j.bbi.2020.09.017] [PMID: 32971182]
[184]
González-Cofrade, L.; Oramas-Royo, S.; Cuadrado, I.; Amesty, Á.; Hortelano, S.; Estevez-Braun, A.; de las Heras, B. Dehydrohispanolone derivatives attenuate the inflammatory response through the modulation of inflammasome activation. J. Nat. Prod., 2020, 83(7), 2155-2164.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00200] [PMID: 32584575]
[185]
Bi, D.W.; Xiong, F.; Cheng, B.; Zhou, Y.L.; Zeb, M.A.; Tang, P.; Pang, W.H.; Zhang, R.H.; Li, X.L.; Zhang, X.J.; Xiao, W.L. Callintegers A and B, unusual tricyclo [4.4.0.09,10]tetradecane clerodane diterpenoids from callicarpa integerrima with inhibitory effects on NLRP3 inflammasome activation. J. Nat. Prod., 2022, 85(11), 2675-2681.
[http://dx.doi.org/10.1021/acs.jnatprod.2c00568] [PMID: 36286259]
[186]
Pu, D.B.; Zhang, X.J.; Bi, D.W.; Gao, J.B.; Yang, Y.; Li, X.L.; Lin, J.; Li, X.N.; Zhang, R.H.; Xiao, W.L. Callicarpins, Two classes of rearranged ent-clerodane diterpenoids from callicarpa plants blocking NLRP3 inflammasome-induced pyroptosis. J. Nat. Prod., 2020, 83(7), 2191-2199.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00288] [PMID: 32628479]
[187]
González-Cofrade, L.; P Green, J.; Cuadrado, I.; Amesty, Á.; Oramas-Royo, S.; David, Brough; Estévez-Braun, A.; Hortelano, S.; de Las Heras, B. Phenolic and quinone methide nor-triterpenes as selective NLRP3 inflammasome inhibitors. Bioorg. Chem., 2023, 132, 106362.
[http://dx.doi.org/10.1016/j.bioorg.2023.106362] [PMID: 36657273]
[188]
Chen, C.; Liu, X.; Gong, L.; Zhu, T.; Zhou, W.; Kong, L.; Luo, J. Identification of Tubocapsanolide A as a novel NLRP3 inhibitor for potential treatment of colitis. Biochem. Pharmacol., 2021, 190, 114645.
[http://dx.doi.org/10.1016/j.bcp.2021.114645] [PMID: 34090877]
[189]
Lin, G.; Li, N.; Li, D.; Chen, L.; Deng, H.; Wang, S.; Tang, J.; Ouyang, W. Carnosic acid inhibits NLRP3 inflammasome activation by targeting both priming and assembly steps. Int. Immunopharmacol., 2023, 116, 109819.
[http://dx.doi.org/10.1016/j.intimp.2023.109819] [PMID: 36738671]
[190]
Shi, J.; Xia, Y.; Wang, H.; Yi, Z.; Zhang, R.; Zhang, X. Piperlongumine is an NLRP3 inhibitor with anti-inflammatory activity. Front. Pharmacol., 2022, 12, 818326.
[http://dx.doi.org/10.3389/fphar.2021.818326] [PMID: 35095532]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy