Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Ivermectin Inhibits Bladder Cancer Cell Growth and Induces Oxidative Stress and DNA Damage

Author(s): Ning Fan, Lixiu Zhang, Zhiping Wang*, Hui Ding* and Zhongjin Yue*

Volume 24, Issue 5, 2024

Published on: 01 January, 2024

Page: [348 - 357] Pages: 10

DOI: 10.2174/0118715206274095231106042833

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Bladder cancer is the most common malignant tumor of the urinary system. Nevertheless, current therapies do not provide satisfactory results. It is imperative that novel strategies should be developed for treating bladder cancer.

Objectives: To evaluate the effect of a broad-spectrum anti-parasitic agent, Ivermectin, on bladder cancer cells in vitro and in vivo.

Methods: CCK-8 and EdU incorporation assays were used to evaluate cell proliferation. Apoptosis was detected by flow cytometry, TUNEL assay, and western blotting. Flow cytometry and DCFH-DA assay were used to analyze the reactive oxygen species (ROS) levels. DNA damage was determined by Neutral COMET assay and γ H2AX expression. Proteins related to apoptosis and DNA damage pathways were determined by WB assay. Xenograft tumor models in nude mice were used to investigate the anti-cancer effect of Ivermectin in vivo.

Results: Our study showed that in vitro and in vivo, Ivermectin inhibited the growth of bladder cancer cells. In addition, Ivermectin could induce apoptosis, ROS production, DNA damage, and activate ATM/P53 pathwayrelated proteins in bladder cancer cells.

Conclusion: According to these findings, Ivermectin may be a potential therapeutic candidate against bladder cancer due to its significant anti-cancer effect.

Keywords: Bladder cancer, ivermectin, apoptosis, ROS, DNA damage, malignant tumor, anti-cancer effect.

Graphical Abstract
[1]
Kamat, A.M.; Hahn, N.M.; Efstathiou, J.A.; Lerner, S.P.; Malmström, P.U.; Choi, W.; Guo, C.C.; Lotan, Y.; Kassouf, W. Bladder cancer. Lancet, 2016, 388(10061), 2796-2810.
[http://dx.doi.org/10.1016/S0140-6736(16)30512-8] [PMID: 27345655]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Tan, W.S.; Tan, W.P.; Tan, M.Y.; Khetrapal, P.; Dong, L.; deWinter, P.; Feber, A.; Kelly, J.D. Novel urinary biomarkers for the detection of bladder cancer: A systematic review. Cancer Treat. Rev., 2018, 69, 39-52.
[http://dx.doi.org/10.1016/j.ctrv.2018.05.012] [PMID: 29902678]
[4]
Abufaraj, M.; Dalbagni, G.; Daneshmand, S.; Horenblas, S.; Kamat, A.M.; Kanzaki, R.; Zlotta, A.R.; Shariat, S.F. The role of surgery in metastatic bladder cancer: A systematic review. Eur. Urol., 2018, 73(4), 543-557.
[http://dx.doi.org/10.1016/j.eururo.2017.09.030] [PMID: 29122377]
[5]
Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol., 2017, 71(1), 96-108.
[http://dx.doi.org/10.1016/j.eururo.2016.06.010] [PMID: 27370177]
[6]
Rizzo, A.; Mollica, V.; Massari, F. Expression of programmed cell death ligand 1 as a predictive biomarker in metastatic urothelial carcinoma patients treated with first-line Immune checkpoint inhibitors versus chemotherapy: A systematic review and meta-analysis. Eur. Urol. Focus, 2022, 8(1), 152-159.
[http://dx.doi.org/10.1016/j.euf.2021.01.003] [PMID: 33516645]
[7]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[8]
Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol., 2020, 72(9), 1145-1151.
[http://dx.doi.org/10.1111/jphp.13273] [PMID: 32301512]
[9]
Crump, A.; Ōmura, S. Ivermectin, ‘Wonder drug’ from Japan: the human use perspective. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2011, 87(2), 13-28.
[http://dx.doi.org/10.2183/pjab.87.13] [PMID: 21321478]
[10]
Molyneux, D.H.; Ward, S.A. Reflections on the Nobel Prize for Medicine 2015 – The Public Health Legacy and Impact of Avermectin and Artemisinin. Trends Parasitol., 2015, 31(12), 605-607.
[http://dx.doi.org/10.1016/j.pt.2015.10.008] [PMID: 26552892]
[11]
Dou, Q.; Chen, H.N.; Wang, K.; Yuan, K.; Lei, Y.; Li, K.; Lan, J.; Chen, Y.; Huang, Z.; Xie, N.; Zhang, L.; Xiang, R.; Nice, E.C.; Wei, Y.; Huang, C. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res., 2016, 76(15), 4457-4469.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2887] [PMID: 27302166]
[12]
Liu, Y.; Fang, S.; Sun, Q.; Liu, B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2016, 480(3), 415-421.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.064] [PMID: 27771251]
[13]
Sharmeen, S.; Skrtic, M.; Sukhai, M.A.; Hurren, R.; Gronda, M.; Wang, X.; Fonseca, S.B.; Sun, H.; Wood, T.E.; Ward, R.; Minden, M.D.; Batey, R.A.; Datti, A.; Wrana, J.; Kelley, S.O.; Schimmer, A.D. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood, 2010, 116(18), 3593-3603.
[http://dx.doi.org/10.1182/blood-2010-01-262675] [PMID: 20644115]
[14]
Hashimoto, H.; Messerli, S.M.; Sudo, T.; Maruta, H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov. Ther., 2009, 3(6), 243-246.
[PMID: 22495656]
[15]
Zhang, P.; Zhang, Y.; Liu, K.; Liu, B.; Xu, W.; Gao, J.; Ding, L.; Tao, L. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif., 2019, 52(2), e12543.
[http://dx.doi.org/10.1111/cpr.12543] [PMID: 30515909]
[16]
Nambara, S.; Masuda, T.; Nishio, M.; Kuramitsu, S.; Tobo, T.; Ogawa, Y.; Hu, Q.; Iguchi, T.; Kuroda, Y.; Ito, S.; Eguchi, H.; Sugimachi, K.; Saeki, H.; Oki, E.; Maehara, Y.; Suzuki, A.; Mimori, K. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget, 2017, 8(64), 107666-107677.
[http://dx.doi.org/10.18632/oncotarget.22587] [PMID: 29296196]
[17]
Melotti, A.; Mas, C.; Kuciak, M.; Lorente-Trigos, A.; Borges, I.; Ruiz i Altaba, A. The river blindness drug I vermectin and related macrocyclic lactones inhibit WNT - TCF pathway responses in human cancer. EMBO Mol. Med., 2014, 6(10), 1263-1278.
[http://dx.doi.org/10.15252/emmm.201404084] [PMID: 25143352]
[18]
Liu, J.; Zhang, K.; Cheng, L.; Zhu, H.; Xu, T. Progress in understanding the molecular mechanisms underlying the antitumour effects of ivermectin. Drug Des. Devel. Ther., 2020, 14, 285-296.
[http://dx.doi.org/10.2147/DDDT.S237393] [PMID: 32021111]
[19]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[20]
Dhuppar, S.; Roy, S.; Mazumder, A. γ H2AX in the S Phase after UV irradiation corresponds to DNA replication and does not report on the extent of DNA damage. Mol. Cell. Biol., 2020, 40(20), e00328-e20.
[http://dx.doi.org/10.1128/MCB.00328-20] [PMID: 32778572]
[21]
Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191.
[http://dx.doi.org/10.1016/0014-4827(88)90265-0] [PMID: 3345800]
[22]
Yin, J.; Park, G.; Lee, J.E.; Choi, E.Y.; Park, J.Y.; Kim, T.H.; Park, N.; Jin, X.; Jung, J.E.; Shin, D.; Hong, J.H.; Kim, H.; Yoo, H.; Lee, S.H.; Kim, Y.J.; Park, J.B.; Kim, J.H. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis. Brain, 2015, 138(9), 2553-2570.
[http://dx.doi.org/10.1093/brain/awv167] [PMID: 26121981]
[23]
Juarez, M.; Schcolnik-Cabrera, A.; Dueñas-Gonzalez, A. The multitargeted drug ivermectin: From an antiparasitic agent to a repositioned cancer drug. Am. J. Cancer Res., 2018, 8(2), 317-331.
[PMID: 29511601]
[24]
Guzzo, C.A.; Furtek, C.I.; Porras, A.G.; Chen, C.; Tipping, R.; Clineschmidt, C.M.; Sciberras, D.G.; Hsieh, J.Y.K.; Lasseter, K.C. Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. J. Clin. Pharmacol., 2002, 42(10), 1122-1133.
[http://dx.doi.org/10.1177/009127002237994] [PMID: 12362927]
[25]
Cotter, T.G.; Al-Rubeai, M. Cell death (apoptosis) in cell culture systems. Trends Biotechnol., 1995, 13(4), 150-155.
[http://dx.doi.org/10.1016/S0167-7799(00)88926-X] [PMID: 7766111]
[26]
Call, J.A.; Eckhardt, S.G.; Camidge, D.R. Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol., 2008, 9(10), 1002-1011.
[http://dx.doi.org/10.1016/S1470-2045(08)70209-2] [PMID: 18760670]
[27]
Zhang, Y.; Yang, X.; Ge, X.; Zhang, F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother., 2019, 109, 726-733.
[http://dx.doi.org/10.1016/j.biopha.2018.10.161] [PMID: 30551525]
[28]
Chen, C.M.; Chung, Y.P.; Liu, C.H.; Huang, K.T.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. Withaferin A protects against endoplasmic reticulum stress-associated apoptosis, inflammation, and fibrosis in the kidney of a mouse model of unilateral ureteral obstruction. Phytomedicine, 2020, 79, 153352.
[http://dx.doi.org/10.1016/j.phymed.2020.153352] [PMID: 33007732]
[29]
Mazumder, S.; Plesca, D.; Almasan, A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol. Biol., 2008, 414, 13-21.
[http://dx.doi.org/10.1007/978-1-59745-339-4_2] [PMID: 18175808]
[30]
Oliver, F.J.; de la Rubia, G.; Rolli, V.; Ruiz-Ruiz, M.C.; de Murcia, G.; Murcia, J.M. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J. Biol. Chem., 1998, 273(50), 33533-33539.
[http://dx.doi.org/10.1074/jbc.273.50.33533] [PMID: 9837934]
[31]
Soldani, C.; Lazzè, M.C.; Bottone, M.G.; Tognon, G.; Biggiogera, M.; Pellicciari, C.E.; Scovassi, A.I. Poly(ADP-ribose) polymerase cleavage during apoptosis: When and where? Exp. Cell Res., 2001, 269(2), 193-201.
[http://dx.doi.org/10.1006/excr.2001.5293] [PMID: 11570811]
[32]
Song, D.; Liang, H.; Qu, B.; Li, Y.; Liu, J.; Zhang, Y.; Li, L.; Hu, L.; Zhang, X.; Gao, A. Ivermectin inhibits the growth of glioma cells by inducing cell cycle arrest and apoptosis in vitro and in vivo. J. Cell. Biochem., 2019, 120(1), 622-633.
[http://dx.doi.org/10.1002/jcb.27420] [PMID: 30596403]
[33]
Xu, N.; Lu, M.; Wang, J.; Li, Y.; Yang, X.; Wei, X.; Si, J.; Han, J.; Yao, X.; Zhang, J.; Liu, J.; Li, Y.; Yang, H.; Bao, D. Ivermectin induces apoptosis of esophageal squamous cell carcinoma via mitochondrial pathway. BMC Cancer, 2021, 21(1), 1307.
[http://dx.doi.org/10.1186/s12885-021-09021-x] [PMID: 34876051]
[34]
Wu, W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev., 2012, 25, 695-705.
[http://dx.doi.org/10.1007/s10555-006-9037-8]
[35]
Mercer, J.R.; Gray, K.; Figg, N.; Kumar, S.; Bennett, M.R. The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE(-/-) mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(10), 2461-2467.
[http://dx.doi.org/10.1161/ATVBAHA.112.251322] [PMID: 22859494]
[36]
Wang, J.; Xu, Y.; Wan, H.; Hu, J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2018, 497(1), 241-247.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.063] [PMID: 29428725]
[37]
Zhu, M.; Li, Y.; Zhou, Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem. Biophys. Res. Commun., 2017, 492(3), 373-378.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.097] [PMID: 28847725]
[38]
Zhou, S.; Wu, H.; Ning, W.; Wu, X.; Xu, X.; Ma, Y.; Li, X.; Hu, J.; Wang, C.; Wang, J. Ivermectin has new application in inhibiting colorectal cancer cell growth. Front. Pharmacol., 2021, 12, 717529.
[http://dx.doi.org/10.3389/fphar.2021.717529] [PMID: 34483925]
[39]
Zhang, P.; Ni, H.; Zhang, Y.; Xu, W.; Gao, J.; Cheng, J.; Tao, L. Ivermectin confers its cytotoxic effects by inducing AMPK/mTOR-mediated autophagy and DNA damage. Chemosphere, 2020, 259, 127448.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127448] [PMID: 32593828]
[40]
Lv, S.; Wu, Z.; Luo, M.; Zhang, Y.; Zhang, J.; Pascal, L.E.; Wang, Z.; Wei, Q. Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death Dis., 2022, 13(9), 754.
[http://dx.doi.org/10.1038/s41419-022-05182-0] [PMID: 36050295]
[41]
Natale, F.; Rapp, A.; Yu, W.; Maiser, A.; Harz, H.; Scholl, A.; Grulich, S.; Anton, T.; Hörl, D.; Chen, W.; Durante, M.; Taucher-Scholz, G.; Leonhardt, H.; Cardoso, M.C. Identification of the elementary structural units of the DNA damage response. Nat. Commun., 2017, 8(1), 15760.
[http://dx.doi.org/10.1038/ncomms15760] [PMID: 28604675]
[42]
Ogawa, L.M.; Baserga, S.J. Crosstalk between the nucleolus and the DNA damage response. Mol. Biosyst., 2017, 13(3), 443-455.
[http://dx.doi.org/10.1039/C6MB00740F] [PMID: 28112326]
[43]
Mouw, K.W.; Goldberg, M.S.; Konstantinopoulos, P.A.; D’Andrea, A.D. DNA damage and repair biomarkers of immunotherapy response. Cancer Discov., 2017, 7(7), 675-693.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0226] [PMID: 28630051]
[44]
Georgakilas, A.G.; Martin, O.A.; Bonner, W.M. p21: A two-faced genome guardian. Trends Mol. Med., 2017, 23(4), 310-319.
[http://dx.doi.org/10.1016/j.molmed.2017.02.001] [PMID: 28279624]
[45]
Speidel, D. The role of DNA damage responses in p53 biology. Arch. Toxicol., 2015, 89(4), 501-517.
[http://dx.doi.org/10.1007/s00204-015-1459-z] [PMID: 25618545]
[46]
Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med., 2016, 6(3), a026104.
[http://dx.doi.org/10.1101/cshperspect.a026104] [PMID: 26931810]
[47]
Jiang, L.; Wang, P.; Sun, Y.J.; Wu, Y.J. Ivermectin reverses the drug resistance in cancer cells through EGFR/ERK/Akt/NF-κB pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 265.
[http://dx.doi.org/10.1186/s13046-019-1251-7] [PMID: 31215501]
[48]
Intuyod, K.; Hahnvajanawong, C.; Pinlaor, P.; Pinlaor, S. Anti-parasitic drug ivermectin exhibits potent anticancer activity against gemcitabine-resistant cholangiocarcinoma in vitro. Anticancer Res., 2019, 39(9), 4837-4843.
[http://dx.doi.org/10.21873/anticanres.13669] [PMID: 31519586]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy