Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Galectin-3 in Blood Serum and Lymphocytes as a Marker of Myocardial Damage in Patients with Arterial Hypertension and COVID-19

Author(s): Nataliia Pokrovska, Nataliia Denysenko, Iryna Fomenko, Helen Sklyarova, Andrii Basylevych, Eugene Sklyarov, Sandor G. Vari and Lesya Kobylinska*

Volume 22, Issue 4, 2023

Published on: 14 December, 2023

Page: [250 - 260] Pages: 11

DOI: 10.2174/0118715230273606231103075632

Price: $65

Abstract

Background: The constant increase of arterial hypertension and the development of pathology at an earlier age are global healthcare problems that cause damage to vital organs and worsen patient prognosis. In recent years, studies have shown that galectin-3 plays a role in the development and progression of arterial hypertension and coronavirus disease (COVID-19).

Objective: The explanatory research study aimed to analyze the prognostic value of galectin-3 determination in the serum blood and lymphocytes of patients with arterial hypertension and coronavirus disease (COVID-19).

Methods: The patients were divided into two groups: Group 1 consisted of 36 individuals with AH, Group 2 included 35 patients with arterial hypertension and polysegmental COVID-19 pneumonia, and 16 practically healthy individuals were included in the control group. All patients underwent anthropometry, biochemical blood analysis, determination of galectin-3, level in serum and lymphocytes, IL-1β, IL-6, and echocardiography.

Results: The highest level of galectin-3 was found in patients of Group 1, while in patients of Group 2, the concentration of galectin-3 was significantly decreased, mostly due to the treatment of COVID-19, in addition to prolonged antihypertensive therapy.

Conclusion: The level of galectin-3 in serum and lymphocytes was significantly higher in patients of both groups compared to the control group (p<0.05). Arterial hypertension causes structural changes in the cardiovascular system that are associated with elevated levels of galectin-3 in serum and lymphocytes. It can be used as a marker of myocardial damage in the context of arterial hypertension and COVID-19.

Keywords: COVID-19, arterial hypertension, galectin-3, inflammation, myocardial remodeling, proinflammatory marker, interleukin- 1β, interleukin-6.

Graphical Abstract
[1]
Hengel, F.E.; Sommer, C.; Wenzel, U. Arterielle Hypertonie - Eine Übersicht für den ärztlichen Alltag. Dtsch. Med. Wochenschr., 2022, 147(7), 414-428.
[http://dx.doi.org/10.1055/a-1577-8663] [PMID: 35345049]
[2]
Al Ghorani, H.; Götzinger, F.; Böhm, M.; Mahfoud, F. Arterial hypertension - Clinical trials update 2021. Nutr. Metab. Cardiovasc. Dis., 2022, 32(1), 21-31.
[http://dx.doi.org/10.1016/j.numecd.2021.09.007] [PMID: 34690044]
[3]
Mills, K.T.; Stefanescu, A.; He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol., 2020, 16(4), 223-237.
[http://dx.doi.org/10.1038/s41581-019-0244-2] [PMID: 32024986]
[4]
Tackling, G.; Borhade, M.B. Hypertensive. Heart Dis. 2023.
[PMID: 30969622]
[5]
Kučera, T.; Jedličková, K.; Šramko, M.; Peichl, P.; Cvek, J.; Knybel, L.; Hurník, P.; Neuwirth, R.; Jiravský, O.; Voska, L.; Kautzner, J. Inflammation and fibrosis characterize different stages of myocardial remodeling in patients after stereotactic body radiotherapy of ventricular myocardium for recurrent ventricular tachycardia. Cardiovasc. Pathol., 2023, 62, 107488.
[http://dx.doi.org/10.1016/j.carpath.2022.107488] [PMID: 36206914]
[6]
Yao, Y.; Shen, D.; Chen, R.; Ying, C.; Wang, C.; Guo, J.; Zhang, G. Galectin-3 predicts left ventricular remodeling of hypertension. J. Clin. Hypertens. (Greenwich), 2016, 18(6), 506-511.
[http://dx.doi.org/10.1111/jch.12757] [PMID: 26693954]
[7]
Liu, M.; López de Juan Abad, B.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev., 2021, 173, 504-519.
[http://dx.doi.org/10.1016/j.addr.2021.03.021] [PMID: 33831476]
[8]
Segura, A.M.; Frazier, O.H.; Buja, L.M. Fibrosis and heart failure. Heart Fail. Rev., 2014, 19(2), 173-185.
[http://dx.doi.org/10.1007/s10741-012-9365-4] [PMID: 23124941]
[9]
Weber, K.T.; Sun, Y.; Bhattacharya, S.K.; Ahokas, R.A.; Gerling, I.C. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat. Rev. Cardiol., 2013, 10(1), 15-26.
[http://dx.doi.org/10.1038/nrcardio.2012.158] [PMID: 23207731]
[10]
Liu, H.; Liu, Y. Letter: Galectin-3: An important but insufficiently explored biomarker in cardiovascular disease. Angiology, 2023, 74(9), 897-898.
[http://dx.doi.org/10.1177/00033197231163699] [PMID: 36897306]
[11]
Bouffette, S.; Botez, I.; De Ceuninck, F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol. Sci., 2023, 44(8), 519-531.
[http://dx.doi.org/10.1016/j.tips.2023.06.001] [PMID: 37391294]
[12]
Yaluri, N. Stančáková Yaluri, A.; Žeňuch, P.; Žeňuchová, Z.; Tóth, Š.; Kalanin, P. Cardiac biomarkers and their role in identifying increased risk of cardiovascular complications in COVID-19 patients. Diagnostics (Basel), 2023, 13(15), 2508.
[http://dx.doi.org/10.3390/diagnostics13152508] [PMID: 37568870]
[13]
Wang, W.H.; Lin, C.Y.; Chang, M.R.; Urbina, A.N.; Assavalapsakul, W.; Thitithanyanont, A.; Chen, Y.H.; Liu, F.T.; Wang, S.F. The role of galectins in virus infection - A systemic literature review. J. Microbiol. Immunol. Infect., 2020, 53(6), 925-935.
[http://dx.doi.org/10.1016/j.jmii.2019.09.005] [PMID: 31630962]
[14]
Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med. , 2018, 41(2), 599-614. [Review].
[PMID: 29207027]
[15]
Blanda, V.; Bracale, U.M.; Di Taranto, M.D.; Fortunato, G. Galectin-3 in cardiovascular diseases. Int. J. Mol. Sci., 2020, 21(23), 9232.
[http://dx.doi.org/10.3390/ijms21239232] [PMID: 33287402]
[16]
Suthahar, N.; Meijers, W.C.; Silljé, H.H.W.; Ho, J.E.; Liu, F.T.; de Boer, R.A. Galectin-3 activation and inhibition in heart failure and cardiovascular disease: An update. Theranostics, 2018, 8(3), 593-609.
[http://dx.doi.org/10.7150/thno.22196] [PMID: 29344292]
[17]
Zaborska, B.; Sikora-Frąc, M.; Smarż, K.; Pilichowska-Paszkiet, E.; Budaj, A.; Sitkiewicz, D.; Sygitowicz, G. The role of galectin-3 in heart failure—the diagnostic, prognostic and therapeutic potential—where do we stand? Int. J. Mol. Sci., 2023, 24(17), 13111.
[http://dx.doi.org/10.3390/ijms241713111] [PMID: 37685918]
[18]
Screever, E.M.; Gorter, T.M.; Willems, T.P.; Aboumsallem, J.P.; Suthahar, N.; Mahmoud, B.; van Veldhuisen, D.J.; de Boer, R.A.; Meijers, W.C. Diffuse myocardial fibrosis on cardiac magnetic resonance imaging is related to galectin-3 and predicts outcome in heart failure. Biomolecules, 2023, 13(3), 410.
[http://dx.doi.org/10.3390/biom13030410] [PMID: 36979345]
[19]
de Boer, R.A.; van der Velde, A.R.; Mueller, C.; van Veldhuisen, D.J.; Anker, S.D.; Peacock, W.F.; Adams, K.F.; Maisel, A. Galectin-3: a modifiable risk factor in heart failure. Cardiovasc. Drugs Ther., 2014, 28(3), 237-246.
[http://dx.doi.org/10.1007/s10557-014-6520-2] [PMID: 24789662]
[20]
López, B.; González, A.; Querejeta, R.; Zubillaga, E.; Larman, M.; Díez, J. Galectin-3 and histological, molecular and biochemical aspects of myocardial fibrosis in heart failure of hypertensive origin. Eur. J. Heart Fail., 2015, 17(4), 385-392.
[http://dx.doi.org/10.1002/ejhf.246] [PMID: 25684565]
[21]
Portacci, A.; Diaferia, F.; Santomasi, C.; Dragonieri, S.; Boniello, E.; Di Serio, F.; Carpagnano, G.E. Galectin-3 as prognostic biomarker in patients with COVID-19 acute respiratory failure. Respir. Med., 2021, 187, 106556.
[http://dx.doi.org/10.1016/j.rmed.2021.106556] [PMID: 34375925]
[22]
Turnic, T.N.; Popadic, V.; Klasnja, S.; Sekulic, A.; Nikolic, N.; Zivkovic, V.; Jeremic, N.; Andjic, M.; Draginic, N.; Srejovic, I.; Jeremic, J.; Zdravkovic, M.; Jakovljevic, V. Bradykinin and galectin-3 in survived and deceased patients with COVID-19 pneumonia: An increasingly promising biochemical target. Oxid. Med. Cell. Longev., 2022, 2022, 1-14.
[http://dx.doi.org/10.1155/2022/7920915] [PMID: 36338343]
[23]
Sygitowicz, G. Maciejak-Jastrzębska, A.; Sitkiewicz, D. The diagnostic and therapeutic potential of galectin-3 in cardiovascular diseases. Biomolecules, 2021, 12(1), 46.
[http://dx.doi.org/10.3390/biom12010046] [PMID: 35053194]
[24]
Liu, H.; Hwang, S.Y.; Lee, S.S. Role of galectin in cardiovascular conditions including cirrhotic cardiomyopathy. Pharmaceuticals (Basel), 2023, 16(7), 978.
[http://dx.doi.org/10.3390/ph16070978] [PMID: 37513890]
[25]
Kazancioglu, S.; Yilmaz, F.M.; Bastug, A.; Ozbay, B.O.; Aydos, O.; Yücel, Ç.; Bodur, H.; Yilmaz, G. Assessment of galectin-1, galectin-3, and prostaglandin e2 levels in patients with COVID-19. Jpn. J. Infect. Dis., 2021, 74(6), 530-536.
[http://dx.doi.org/10.7883/yoken.JJID.2021.020] [PMID: 33790073]
[26]
de Boer, R.A.; Edelmann, F.; Cohen-Solal, A.; Mamas, M.A.; Maisel, A.; Pieske, B. Galectin‐3 in heart failure with preserved ejection fraction. Eur. J. Heart Fail., 2013, 15(10), 1095-1101.
[http://dx.doi.org/10.1093/eurjhf/hft077] [PMID: 23650131]
[27]
Florido, R.; Kwak, L.; Echouffo-Tcheugui, J.B.; Zhang, S.; Michos, E.D.; Nambi, V.; Goldberg, R.B.; Hoogeveen, R.C.; Lazo, M.; Gerstenblith, G.; Post, W.S.; Blumenthal, R.S.; Coresh, J.; Folsom, A.R.; Selvin, E.; Ballantyne, C.; Ndumele, C.E. Obesity, Galectin‐3, and Incident Heart Failure: The ARIC Study. J. Am. Heart Assoc., 2022, 11(9), e023238.
[http://dx.doi.org/10.1161/JAHA.121.023238] [PMID: 35491999]
[28]
Zhang, Z.; Wang, Y. Management of cardiovascular diseases in chronic hemodialysis patients. Rev. Cardiovasc. Med., 2023, 24(7), 185.
[http://dx.doi.org/10.31083/j.rcm2407185]
[29]
van Kimmenade, R.R.; Januzzi, J.L., Jr; Ellinor, P.T.; Sharma, U.C.; Bakker, J.A.; Low, A.F.; Martinez, A.; Crijns, H.J.; MacRae, C.A.; Menheere, P.P.; Pinto, Y.M. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J. Am. Coll. Cardiol., 2006, 48(6), 1217-1224.
[http://dx.doi.org/10.1016/j.jacc.2006.03.061] [PMID: 16979009]
[30]
Aleksova, A.; Sinagra, G.; Beltrami, A.P.; Pierri, A.; Ferro, F.; Janjusevic, M.; Gagno, G. Biomarkers in the management of acute heart failure: state of the art and role in COVID‐19 era. ESC Heart Fail., 2021, 8(6), 4465-4483.
[http://dx.doi.org/10.1002/ehf2.13595] [PMID: 34609075]
[31]
Hogas, S.; Bilha, S.C.; Branisteanu, D.; Hogas, M.; Gaipov, A.; Kanbay, M.; Covic, A. Potential novel biomarkers of cardiovascular dysfunction and disease: cardiotrophin-1, adipokines and galectin-3. Arch. Med. Sci., 2017, 4(4), 897-913.
[http://dx.doi.org/10.5114/aoms.2016.58664] [PMID: 28721158]
[32]
Stojanovic, B.S.; Stojanovic, B.; Milovanovic, J.; Arsenijević, A.; Dimitrijevic Stojanovic, M.; Arsenijevic, N.; Milovanovic, M. The pivotal role of galectin-3 in viral infection: a multifaceted player in host-pathogen interactions. Int. J. Mol. Sci., 2023, 24(11), 9617.
[http://dx.doi.org/10.3390/ijms24119617] [PMID: 37298569]
[33]
Garcia-Revilla, J.; Deierborg, T.; Venero, J.L.; Boza-Serrano, A. Hyperinflammation and Fibrosis in Severe COVID-19 Patients: Galectin-3, a Target Molecule to Consider. Front. Immunol., 2020, 11, 2069.
[http://dx.doi.org/10.3389/fimmu.2020.02069] [PMID: 32973815]
[34]
Grewal, T.; Buechler, C. Adipokines as diagnostic and prognostic markers for the severity of COVID-19. Biomedicines, 2023, 11(5), 1302.
[http://dx.doi.org/10.3390/biomedicines11051302] [PMID: 37238973]
[35]
Kuśnierz-Cabala, B.; Maziarz, B.; Dumnicka, P.; Dembiński, M.; Kapusta, M.; Bociąga-Jasik, M.; Winiarski, M.; Garlicki, A.; Grodzicki, T.; Kukla, M. Diagnostic significance of serum galectin-3 in hospitalized patients with COVID-19—A preliminary study. Biomolecules, 2021, 11(8), 1136.
[http://dx.doi.org/10.3390/biom11081136] [PMID: 34439802]
[36]
Tawiah, K.; Jackson, L.; Omosule, C.; Ballman, C.; Shahideh, B.; Scott, M.G.; Murtagh, G.; Farnsworth, C.W. Serial cardiac biomarkers for risk stratification of patients with COVID-19. Clin. Biochem., 2022, 107, 24-32.
[http://dx.doi.org/10.1016/j.clinbiochem.2022.06.002] [PMID: 35691587]
[37]
Cervantes-Alvarez, E.; la Rosa, N.L. Galectin-3 as a potential prognostic biomarker of severe COVID-19 in SARS-CoV-2 infected patients. Sci. Reports., 2022, 12, 1-9.
[38]
Kartal Baykan, E. ; ŞEBİN, E.E.; Karaşahı̇n, Ö.; Baykan, A.R. Galectin- 3: can it be a diagnostic tool for pneumonia in covid-19 patients? TURKISH J. Med. Sci., , 2021, 51, 2256-2262.
[39]
Liu, F.T.; Stowell, S.R. The role of galectins in immunity and infection. Nat. Rev. Immunol., 2023, 23(8), 479-494.
[http://dx.doi.org/10.1038/s41577-022-00829-7] [PMID: 36646848]
[40]
Reddy, K.; Nichol, A.; McAuley, D.F. Galectin-3 Inhibition in COVID-19. Am. J. Respir. Crit. Care Med., 2023, 207(2), 118-120.
[http://dx.doi.org/10.1164/rccm.202209-1758ED] [PMID: 36154818]
[41]
Mendes-Frias, A.; Gallo, V.; Iacobelli, V.; Gentile, R.; Antonini, G.; Silvestre, R.; Iacobelli, S. Galectin-3 binding protein stimulated IL-6 expression is impeded by antibody intervention in SARS-CoV-2 susceptible cell lines. Sci. Rep., 2022, 12(1), 17047.
[http://dx.doi.org/10.1038/s41598-022-20852-x] [PMID: 36220879]
[42]
Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; Kahan, T.; Mahfoud, F.; Redon, J.; Ruilope, L.; Zanchetti, A.; Kerins, M.; Kjeldsen, S.E.; Kreutz, R.; Laurent, S.; Lip, G.Y.H.; McManus, R.; Narkiewicz, K.; Ruschitzka, F.; Schmieder, R.E.; Shlyakhto, E.; Tsioufis, C.; Aboyans, V.; Desormais, I.; De Backer, G.; Heagerty, A.M.; Agewall, S.; Bochud, M.; Borghi, C.; Boutouyrie, P.; Brguljan, J.; Bueno, H.; Caiani, E.G.; Carlberg, B.; Chapman, N.; Cífková, R.; Cleland, J.G.F.; Collet, J-P.; Coman, I.M.; de Leeuw, P.W.; Delgado, V.; Dendale, P.; Diener, H-C.; Dorobantu, M.; Fagard, R.; Farsang, C.; Ferrini, M.; Graham, I.M.; Grassi, G.; Haller, H.; Hobbs, F.D.R.; Jelakovic, B.; Jennings, C.; Katus, H.A.; Kroon, A.A.; Leclercq, C.; Lovic, D.; Lurbe, E.; Manolis, A.J.; McDonagh, T.A.; Messerli, F.; Muiesan, M.L.; Nixdorff, U.; Olsen, M.H.; Parati, G.; Perk, J.; Piepoli, M.F.; Polonia, J.; Ponikowski, P.; Richter, D.J.; Rimoldi, S.F.; Roffi, M.; Sattar, N.; Seferovic, P.M.; Simpson, I.A.; Sousa-Uva, M.; Stanton, A.V.; van de Borne, P.; Vardas, P.; Volpe, M.; Wassmann, S.; Windecker, S.; Zamorano, J.L.; Windecker, S.; Aboyans, V.; Agewall, S.; Barbato, E.; Bueno, H.; Coca, A.; Collet, J-P.; Coman, I.M.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gaemperli, O.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Knuuti, J.; Lancellotti, P.; Leclercq, C.; McDonagh, T.A.; Piepoli, M.F.; Ponikowski, P.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Zamorano, J.L.; Tsioufis, C.; Lurbe, E.; Kreutz, R.; Bochud, M.; Rosei, E.A.; Jelakovic, B.; Azizi, M.; Januszewics, A.; Kahan, T.; Polonia, J.; van de Borne, P.; Williams, B.; Borghi, C.; Mancia, G.; Parati, G.; Clement, D.L.; Coca, A.; Manolis, A.; Lovic, D.; Benkhedda, S.; Zelveian, P.; Siostrzonek, P.; Najafov, R.; Pavlova, O.; De Pauw, M.; Dizdarevic-Hudic, L.; Raev, D.; Karpettas, N.; Linhart, A.; Olsen, M.H.; Shaker, A.F.; Viigimaa, M.; Metsärinne, K.; Vavlukis, M.; Halimi, J-M.; Pagava, Z.; Schunkert, H.; Thomopoulos, C.; Páll, D.; Andersen, K.; Shechter, M.; Mercuro, G.; Bajraktari, G.; Romanova, T.; Trušinskis, K.; Saade, G.A.; Sakalyte, G.; Noppe, S.; DeMarco, D.C.; Caraus, A.; Wittekoek, J.; Aksnes, T.A.; Jankowski, P.; Polonia, J.; Vinereanu, D.; Baranova, E.I.; Foscoli, M.; Dikic, A.D.; Filipova, S.; Fras, Z.; Bertomeu-Martínez, V.; Carlberg, B.; Burkard, T.; Sdiri, W.; Aydogdu, S.; Sirenko, Y.; Brady, A.; Weber, T.; Lazareva, I.; Backer, T.D.; Sokolovic, S.; Jelakovic, B.; Widimsky, J.; Viigimaa, M.; Pörsti, I.; Denolle, T.; Krämer, B.K.; Stergiou, G.S.; Parati, G.; Trušinskis, K.; Miglinas, M.; Gerdts, E.; Tykarski, A.; de Carvalho Rodrigues, M.; Dorobantu, M.; Chazova, I.; Lovic, D.; Filipova, S.; Brguljan, J.; Segura, J.; Gottsäter, A.; Pechère-Bertschi, A.; Erdine, S.; Sirenko, Y.; Brady, A. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J., 2018, 39(33), 3021-3104.
[http://dx.doi.org/10.1093/eurheartj/ehy339] [PMID: 30165516]
[43]
Hara, A.; Niwa, M.; Noguchi, K.; Kanayama, T.; Niwa, A.; Matsuo, M.; Hatano, Y.; Tomita, H. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules, 2020, 10(3), 389.
[http://dx.doi.org/10.3390/biom10030389] [PMID: 32138174]
[44]
Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev., 2022, 27(2), 625-643.
[http://dx.doi.org/10.1007/s10741-021-10105-w] [PMID: 33852110]
[45]
Baccouche, B.M.; Mahmoud, M.A.; Nief, C.; Patel, K.; Natterson-Horowitz, B. Galectin-3 is associated with heart failure incidence: A meta-analysis. Curr. Cardiol. Rev., 2023, 19(3), e171122211004.
[http://dx.doi.org/10.2174/1573403X19666221117122012] [PMID: 36397629]
[46]
Rabkin, S.W.; Tang, J.K.K. The utility of growth differentiation factor-15, galectin-3, and sST2 as biomarkers for the diagnosis of heart failure with preserved ejection fraction and compared to heart failure with reduced ejection fraction: a systematic review. Heart Fail. Rev., 2021, 26(4), 799-812.
[http://dx.doi.org/10.1007/s10741-020-09913-3] [PMID: 32472523]
[47]
Soares, L.C.; Al-Dalahmah, O.; Hillis, J.; Young, C.C.; Asbed, I.; Sakaguchi, M.; O’Neill, E.; Szele, F.G. Novel galectin-3 roles in neurogenesis, inflammation and neurological diseases. Cells, 2021, 10(11), 3047.
[http://dx.doi.org/10.3390/cells10113047] [PMID: 34831271]
[48]
Martínez-Martínez, E.; Brugnolaro, C.; Ibarrola, J.; Ravassa, S.; Buonafine, M.; López, B.; Fernández-Celis, A.; Querejeta, R.; Santamaria, E.; Fernández-Irigoyen, J.; Rábago, G.; Moreno, M.U.; Jaisser, F.; Díez, J.; González, A.; López-Andrés, N. CT-1 (cardiotrophin-1)-gal-3 (galectin-3) axis in cardiac fibrosis and inflammation. Hypertension, 2019, 73(3), 602-611.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.11874] [PMID: 30612490]
[49]
Hu, G.; Wu, J.; Gu, H.; Deng, X.; Xu, W.; Feng, S.; Wang, S.; Song, Y.; Pang, Z.; Deng, X.; Vendrov, A.E.; Madamanchi, N.R.; Runge, M.S.; Wang, X.; Zhang, Y.; Xiao, H.; Dong, E. Galectin-3-centered paracrine network mediates cardiac inflammation and fibrosis upon β-adrenergic insult. Sci. China Life Sci., 2023, 66(5), 1067-1078.
[http://dx.doi.org/10.1007/s11427-022-2189-x] [PMID: 36449214]
[50]
Gao, Z.; Liu, Z.; Wang, R.; Zheng, Y.; Li, H.; Yang, L. Galectin-3 is a potential mediator for atherosclerosis. J. Immunol. Res., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/5284728] [PMID: 32149158]
[51]
Puccini, M.; Jakobs, K.; Reinshagen, L.; Friebel, J.; Schencke, P.A.; Ghanbari, E.; Landmesser, U.; Haghikia, A.; Kränkel, N.; Rauch, U. Galectin-3 as a marker for increased thrombogenicity in COVID-19. Int. J. Mol. Sci., 2023, 24(9), 7683.
[http://dx.doi.org/10.3390/ijms24097683] [PMID: 37175392]
[52]
Özcan, S.; Dönmez, E.; Yavuz, S.T; Ziyrek, M.; İnce, O.; Küçük, H.S; Taşdemir, Z.A; Yılmaz, İ.; Varol, S.; Şahin, İ.; Okuyan, E. Prognostic significance of serum galectin-3 in hospitalized patients with COVID-19. Cytokine, 2022, 158, 155970.
[http://dx.doi.org/10.1016/j.cyto.2022.155970] [PMID: 35917725]
[53]
Agnello, L.; Bivona, G.; Lo Sasso, B.; Scazzone, C.; Bazan, V.; Bellia, C.; Ciaccio, M. Galectin-3 in acute coronary syndrome. Clin. Biochem., 2017, 50(13-14), 797-803.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.04.018] [PMID: 28456545]
[54]
Slack, R.J.; Mills, R.; Mackinnon, A.C. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int. J. Biochem. Cell Biol., 2021, 130, 105881.
[http://dx.doi.org/10.1016/j.biocel.2020.105881] [PMID: 33181315]
[55]
Karsli, E.; Anabarli Metin, D.; Canacik, O.; Sabirli, R.; Kaymaz, B.; Kurt, O.; Koseler, A. Galectin-3 as a potential prognostic biomarker for COVID-19 disease: A case-control study. Cureus, 2022, 14(9), e28805.
[http://dx.doi.org/10.7759/cureus.28805] [PMID: 36225452]
[56]
Gajovic, N.; Sekulic Markovic, S.; Jurisevic, M.; Jovanovic, M. Galectin-3 as an important prognostic marker for COVID-19 severity. Sci. Reports., 2023, 13(1), 1460.
[57]
Sindrewicz, P.; Yates, E.A.; Turnbull, J.E.; Lian, L.Y.; Yu, L.G. Interaction with the heparin-derived binding inhibitors destabilizes galectin-3 protein structure. Biochem. Biophys. Res. Commun., 2020, 523(2), 336-341.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.054] [PMID: 31866013]
[58]
Duckworth, C.A.; Guimond, S.E.; Sindrewicz, P.; Hughes, A.J.; French, N.S.; Lian, L.Y.; Yates, E.A.; Pritchard, D.M.; Rhodes, J.M.; Turnbull, J.E.; Yu, L.G. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis. Oncotarget, 2015, 6(27), 23671-23687.
[http://dx.doi.org/10.18632/oncotarget.4409] [PMID: 26160844]
[59]
Jia, X.; Sun, C.; Tanaka, H.; Al Rifai, M.; Aguilar, D.; Ndumele, C.; Selvin, E.; Virani, S.S.; Hoogeveen, R.C.; Heiss, G.; Ballantyne, C.M.; Nambi, V. Association between circulating Galectin-3 and arterial stiffness in older adults. Vasa, 2021, 50(6), 439-445.
[http://dx.doi.org/10.1024/0301-1526/a000968] [PMID: 34346252]
[60]
Sherpa, M.D.; Sonkawade, S.D.; Jonnala, V.; Pokharel, S.; Khazaeli, M.; Yatsynovich, Y.; Kalot, M.A.; Weil, B.R.; Canty, J.M., Jr; Sharma, U.C. Galectin-3 is associated with cardiac fibrosis and an increased risk of sudden death. Cells, 2023, 12(9), 1218.
[http://dx.doi.org/10.3390/cells12091218] [PMID: 37174619]
[61]
Meijers, W.C.; López-Andrés, N.; de Boer, R.A. Galectin-3, cardiac function, and fibrosis. Am. J. Pathol., 2016, 186(8), 2232-2234.
[http://dx.doi.org/10.1016/j.ajpath.2016.05.002] [PMID: 27461364]
[62]
Gehlken, C.; Suthahar, N.; Meijers, W.C.; de Boer, R.A. Galectin-3 in heart failure. Heart Fail. Clin., 2018, 14(1), 75-92.
[http://dx.doi.org/10.1016/j.hfc.2017.08.009] [PMID: 29153203]
[63]
Humphrey, J.D. Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens., 2021, 34(5), 432-441.
[http://dx.doi.org/10.1093/ajh/hpaa195] [PMID: 33245319]
[64]
Díez, J. Arterial hypertension in patients with heart failure. Heart Fail. Clin., 2014, 10(2), 233-242.
[http://dx.doi.org/10.1016/j.hfc.2013.12.004] [PMID: 24656102]
[65]
Bošnjak, I.; Bedeković, D.; Selthofer-Relatić, K.; Roguljić, H.; Mihaljević, I.; Bilić-Ćurčić, I. Role of galectin-3 in diagnosis and severity assessment of epicardial artery lesions in patients with suspected coronary artery disease. BMC Cardiovasc. Disord., 2023, 23(1), 268.
[http://dx.doi.org/10.1186/s12872-023-03310-y] [PMID: 37221462]
[66]
Anyfanti, P.; Gkaliagkousi, E.; Gavriilaki, E.; Triantafyllou, A.; Dolgyras, P.; Galanopoulou, V.; Aslanidis, S.; Douma, S. Association of galectin‐3 with markers of myocardial function, atherosclerosis, and vascular fibrosis in patients with rheumatoid arthritis. Clin. Cardiol., 2019, 42(1), 62-68.
[http://dx.doi.org/10.1002/clc.23105] [PMID: 30353563]
[67]
Hara, A.; Niwa, M.; Kanayama, T.; Noguchi, K.; Niwa, A.; Matsuo, M.; Kuroda, T.; Hatano, Y.; Okada, H.; Tomita, H. Galectin-3: A potential prognostic and diagnostic marker for heart disease and detection of early stage pathology. Biomolecules, 2020, 10(9), 1277.
[http://dx.doi.org/10.3390/biom10091277] [PMID: 32899694]
[68]
Acharya, S.; Kumar, S.; Talwar, D.; Raisinghani, N.; Madaan, S.; Hulkoti, V.; Akhilesh, A.; Khanna, S.; Shah, D.; Nimkar, S. Interleukin 6 and its correlation with COVID-19 in terms of outcomes in an intensive care unit of a rural hospital: a cross-sectional study. Indian J. Crit. Care Med., 2022, 26(1), 39-42.
[http://dx.doi.org/10.5005/jp-journals-10071-24075] [PMID: 35110842]
[69]
Yudhawati, R.; Sakina, S.; Fitriah, M. Interleukin-1β and interleukin-10 profiles and ratio in serum of COVID-19 patients and correlation with COVID-19 severity: A time series study. Int. J. Gen. Med., 2022, 15, 8043-8054.
[http://dx.doi.org/10.2147/IJGM.S381404] [PMID: 36389025]
[70]
Baykiz, D.; Emet, S.; Ayduk-Govdeli, E.; Kaytaz, M.; Yavuz, M.; Karaca-Ozer, P.; Karaayvaz, E.; Medetalibeyoglu, A.; Elitok, A.; Genc, S.; Bugra, Z.; Umman, B. Galectin-3 as a novel biomarker for predicting clinical outcomes in hospitalized COVID-19 Patients. Clin. Lab., , 2022, 68(12/2022), 2483-2495.
[http://dx.doi.org/10.7754/Clin.Lab.2022.220134] [PMID: 36546745]
[71]
Berber, N.K.; Geçkil, A.A.; Altan, N.Ö.; Kıran, T.R; Otlu, Ö.; Erdem, M.; İn, E. Efficacy of serum apelin and galectin‐3 as potential predictors of mortality in severe COVID‐19 patients. J. Med. Virol., 2023, 95(2), e28494.
[http://dx.doi.org/10.1002/jmv.28494] [PMID: 36633201]
[72]
Gaughan, E.E.; Quinn, T.M.; Mills, A.; Bruce, A.M.; Antonelli, J.; MacKinnon, A.C.; Aslanis, V.; Li, F.; O’Connor, R.; Boz, C.; Mills, R.; Emanuel, P.; Burgess, M.; Rinaldi, G.; Valanciute, A.; Mills, B.; Scholefield, E.; Hardisty, G.; Findlay, E.G.; Parker, R.A.; Norrie, J.; Dear, J.W.; Akram, A.R.; Koch, O.; Templeton, K.; Dockrell, D.H.; Walsh, T.S.; Partridge, S.; Humphries, D.; Wang-Jairaj, J.; Slack, R.J.; Schambye, H.; Phung, D.; Gravelle, L.; Lindmark, B.; Shankar-Hari, M.; Hirani, N.; Sethi, T.; Dhaliwal, K. An inhaled galectin-3 inhibitor in COVID-19 pneumonitis: A phase Ib/IIa randomized controlled clinical trial (DEFINE). Am. J. Respir. Crit. Care Med., 2023, 207(2), 138-149.
[http://dx.doi.org/10.1164/rccm.202203-0477OC] [PMID: 35972987]
[73]
Bruni, F.; Charitos, P.; Lampart, M.; Moser, S.; Siegemund, M.; Bingisser, R.; Osswald, S.; Bassetti, S.; Twerenbold, R.; Trendelenburg, M.; Rentsch, K.M.; Osthoff, M. Complement and endothelial cell activation in COVID-19 patients compared to controls with suspected SARS-CoV-2 infection: A prospective cohort study. Front. Immunol., 2022, 13, 941742.
[http://dx.doi.org/10.3389/fimmu.2022.941742] [PMID: 36203596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy