Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Evaluation of the Capparis Herbacea Willd's Chemistry, Antioxidant and Cytotoxic Activity

Author(s): Orynbassar Tleuberlina*, Asem Mamurova, Zhanar Iskakova*, Yelaman Aibuldinov, Ainagul Kolpek, Yeldar Kopishev, Gulbarshyn Satbaeva, Zhazira Mukazhanova and Meruyert Kurmanbayeva

Volume 22, Issue 4, 2023

Published on: 23 November, 2023

Page: [261 - 272] Pages: 12

DOI: 10.2174/0118715230281697231115074426

Price: $65

Open Access Journals Promotions 2
Abstract

Background: The Capparidaceae family includes the medicinal herb Capparis herbacea Willd. The aerial and underground parts of plant C.herbacea were studied for their chemical composition, antioxidant, and cytotoxic properties.

Methods: Using gas chromatography with mass spectrometric detection (7890A/5975C), 94 chemicals were identified in ethanol extract from leaves, roots, seeds, and stems of C. herbacea. Main components were (leaves) phytol 18.16%, hexanedioic acid, bis(2-ethylhexyl) ester 16.75%, vitamin E 11.95%, (roots) sucrose 13.94%, hexadecanoic acid, ethylester 22.80%, octadecanoic acid, ethylester 37.77%; (seeds) hexadecanoic acid, ethylester 13.96%, ethyl9.cis.,11.trans.-octadecadienoate 48.54%, bis(2-ethylhexyl) phthalate 9.77%; (stems) 1-propene-1,2,3-tricarboxylic acid, tributyl ester 42.69%, and tributylacetylcitrate 19.63%. Nine components were identified in the makeup of the C. herbacea sample's essential oil using the method of chromatography-mass spectrometry.

Results: The main components were (in%): T-cadinol (29.56), meta-cymene (16.12), pulegone (14.11), and σ-amorphene (12.26). Chloroform and methanol extracts of Capparis herbacia roots at concentrations of 1 mg/ml showed higher average antioxidant activity, while ethyl acetate root extract at concentrations of 0.75 and 1 mg/ml showed higher average antioxidant activity compared to gallic acid AOA.

Conclusion: In addition, plant extracts have cytotoxic activity. Essential oils of leaves and stems, fruit and roots of Capparis herbacia plants exhibited cytotoxicity, all larvae died, and larval mortality was 96%.

Keywords: Capparis herbacea willd, extracts, antioxidant, cytotoxic, composition, plant.

[1]
Guo, L.; Zhu, W.; Xu, F.; Liu, M.; Xie, Y.; Zhang, J. Optimized ultrasonic-assisted extraction of polysaccharides from Cyclina sinensis and evaluation of antioxidant activities in vitro. CYTA J. Food, 2014, 12(1), 32-39.
[http://dx.doi.org/10.1080/19476337.2013.785982]
[2]
Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc., 2018, 81(1), 7-11.
[http://dx.doi.org/10.1016/j.jcma.2017.07.012] [PMID: 29042186]
[3]
Rojas, Jhon J Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Complement. Altern. Med., 2006, 6, 2.
[http://dx.doi.org/10.1186/1472-6882-6-2]
[4]
Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; Patel, M.; Snoussi, M. Thymus musilii Velen. As a promising source of potent bioactive compounds with its pharmacological properties: In vitro and in silico analysis. Arab. J. Chem., 2020, 13(8), 6782-6801.
[http://dx.doi.org/10.1016/j.arabjc.2020.06.032]
[5]
Aminzare, M.; Hashemi, M.; Hassanzad, H.; Hejazi, J. The use of herbal extracts and essential oils as a potential antimicrobial in meat and meat products. RE:view, 2016, 1(2), 63-74.
[6]
Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 2021, 9(10), 2041.
[http://dx.doi.org/10.3390/microorganisms9102041] [PMID: 34683362]
[7]
Noumi, E.; Ahmad, I.; Adnan, M.; Merghni, A.; Patel, H.; Haddaji, N.; Bouali, N.; Alabbosh, K.F.; Ghannay, S.; Aouadi, K.; Kadri, A.; Polito, F.; Snoussi, M.; De Feo, V. GC/MS profiling, antibacterial, anti-quorum sensing, and antibiofilm properties of anethum graveolens l. essential oil: Molecular docking study and in silico ADME profiling. Plants, 2023, 12(10), 1997.
[http://dx.doi.org/10.3390/plants12101997] [PMID: 37653914]
[8]
Yang, T.; Wang, Y.L.; Zhang, Y.L.; Liu, Y.T.; Tao, Y.Y.; Zhou, H.; Liu, C.H. The protective effect of Capparisspinosa fruit on triptolide-induced acute liver injury: A metabolomics-based systematic study. J. Funct. Foods, 2022, 90, 104989.
[http://dx.doi.org/10.1016/j.jff.2022.104989]
[9]
Wang, L.; Fan, L.; Zhao, Z.; Zhang, Z.; Jiang, L.; Chai, M.; Tian, C. The Capparis spinosa var. herbacea genome provides the first genomic instrument for a diversity and evolution study of the Capparaceae family. Gigascience, 2022, 11, giac106.
[http://dx.doi.org/10.1093/gigascience/giac106] [PMID: 36310248]
[10]
Shakarishvili, N.; Osishvili, L. Sexual phenotype of Capparis herbacea (Capparaceae). Turk. J. Bot., 2013, 37(4), 682-689.
[http://dx.doi.org/10.3906/bot-1209-10]
[11]
Duran, R.E.; Issah, H. The impact of strigolactone GR24 on Capparis spinosa L. callus production and phenolic compound content. Plant Cell Tissue Organ Cult., 2022, 149(1-2), 197-204.
[http://dx.doi.org/10.1007/s11240-021-02212-1]
[12]
Pegiou, S.; Raptis, P.; Zafeiriou, I.; Polidoros, A.N.; Mylona, P.V. Genetic diversity and structure of Capparis spinosa L. natural populations using morphological and molecular markers. J. Appl. Res. Med. Aromat. Plants, 2023, 34, 100487.
[http://dx.doi.org/10.1016/j.jarmap.2023.100487]
[13]
Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Ouaini, N.; Rajjou, L. Capparisspinosa L. in A systematic review: A xerophilous species of multi values and promising potentialities for agrosystems under the threat of global warming. Front. Plant Sci., 2017, 8(October), 1845.
[http://dx.doi.org/10.3389/fpls.2017.01845] [PMID: 29118777]
[14]
Fici, S. A taxonomic revision of the Capparis spinosa group (Capparaceae) from eastern Africa to Oceania. Phytotaxa, 2015, 203(1), 24-36.
[http://dx.doi.org/10.11646/phytotaxa.203.1.2]
[15]
Özbek, Ö.; Kara, A. Genetic variation in natural populations of Capparis from Turkey, as revealed by RAPD analysis. Plant Syst. Evol., 2013, 299(10), 1911-1933.
[http://dx.doi.org/10.1007/s00606-013-0848-0]
[16]
Allaith, A.A.A. Assessment of the antioxidant properties of the caper fruit(Capparis spinosa L.) from Bahrain. J. Assoc. Arab Univ. Basic Appl. Sci., 2016, 19, 1-7.
[17]
Eddouks, M.; Lemhadri, A.; Michel, J.B. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J. Ethnopharmacol., 2005, 98(3), 345-350.
[http://dx.doi.org/10.1016/j.jep.2005.01.053] [PMID: 15814271]
[18]
Varshney, R.; Mishra, R.; Das, N.; Sircar, D.; Roy, P. A comparative analysis of various flavonoids in the regulation of obesity and diabetes: An in vitro and in vivo study. J. Funct. Foods, 2019, 59(January), 194-205.
[http://dx.doi.org/10.1016/j.jff.2019.05.004]
[19]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability in humans. Nutrients, 2019, 11, 3-19.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[20]
Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; de Freitas, V.; Santos-Buelga, C.; Feliciano, A.S. Wine flavonoids in health and disease prevention. Molecules, 2017, 22(2), 292.
[http://dx.doi.org/10.3390/molecules22020292] [PMID: 28216567]
[21]
Rivera, D.; Inocencio, C.; Obón, C.; Alcaraz, F. Review of food and medicinal uses ofCapparis L. SubgenusCapparis (capparidaceae). Econ. Bot., 2003, 57(4), 515-534.
[http://dx.doi.org/10.1663/0013-0001(2003)057[0515:ROFAMU]2.0.CO;2]
[22]
Ahmadi, Maryam. Saeidi, Hojjatollah Genetic diversity and structure of Capparis spinosa L. in Iran as revealed by ISSR markers. Physiol. Mol. Biol. Plants, 2018, 24, 3.
[http://dx.doi.org/10.1007/s12298-018-0518-3]
[23]
Munir, M.; Ahmad, M.; Waseem, A.; Zafar, M.; Saeed, M.; Wakeel, A.; Nazish, M.; Sultana, S. Scanning electron microscopy leads to identification of novel nonedible oil seeds as energy crops. Microsc. Res. Tech., 2019, 82(7), 1165-1173.
[http://dx.doi.org/10.1002/jemt.23265] [PMID: 30950570]
[24]
Munir, M.; Ahmad, M.; Saeed, M.; Waseem, A.; Nizami, A.S.; Sultana, S.; Zafar, M.; Rehan, M.; Srinivasan, G.R.; Ali, A.M.; Ali, M.I. Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst Renew. Sust. Energ. Rev., 2021, 138, 110558.
[http://dx.doi.org/10.1016/j.rser.2020.110558]
[25]
Mehrzadi, S.; Mirzaei, R.; Heydari, M.; Sasani, M.; Yaqoobvand, B.; Huseini, H.F. Efficacy and safety of a traditional herbal combination in patients with type ii diabetes mellitus: A randomized controlled trial. J. Diet. Suppl., 2021, 18(1), 31-43.
[http://dx.doi.org/10.1080/19390211.2020.1727076] [PMID: 32081056]
[26]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Plant of the Millennium, Caper (Capparis spinosa L.), chemical composition and medicinal uses. Bull. Natl. Res. Cent., 2021, 45(1), 131.
[http://dx.doi.org/10.1186/s42269-021-00592-0]
[27]
Tleuberlina, O.B.; Mamurova, A.T.; Osmonali, B.B.; Omarova, G.K. Distribution and geobotanical studies of the medicinal plant capparis herbacea willd. In the Southern Regions of Kazakhstan. Exp. Biol., 2023, 94(1)
[http://dx.doi.org/10.26577/eb.2023.v94.i1.04]
[28]
Sitpayeva, G. Study and approbation of ex situ conservation methods for preservation of the biodiversity of wild relatives of cultivated plants of Kazakhstan. Am. J. Environ. Prot., 2015, 4(3), 117.
[http://dx.doi.org/10.11648/j.ajep.s.2015040301.28]
[29]
Kozhantayeva, A.; Tashenov, Y.; Tosmaganbetova, K.; Tazhkenova, G.; Mashan, T.; Bazarkhankyzy, A.; Iskakova, Z.; Sapiyeva, A.; Gabbassova, A. Circaea lutetiana (L) Plant and its chemical composition. Rasayan J. Chem., 2022, 15(3), 1653-1659.
[http://dx.doi.org/10.31788/RJC.2022.1536870]
[30]
Iskakova, Z.; Kozhantayeva, A.; Tazhkenova, G.; Mashan, T.; Tosmaganbetova, K.; Tashenov, Y. Investigation of chemical constituents of Chamaenerion latifolium L. Antiinflamm. Antiallergy Agents Med. Chem., 2021, 21(3), 173-178.
[http://dx.doi.org/10.2174/1871523022666221125111235] [PMID: 36437725]
[31]
Gutbrod, K.; Romer, J.; Dörmann, P. Phytol metabolism in plants. Prog. Lipid Res., 2019, 74, 1-17.
[http://dx.doi.org/10.1016/j.plipres.2019.01.002]
[32]
Gutbrod, P.; Yang, W.; Grujicic, G.V.; Peisker, H.; Gutbrod, K.; Du, L.F.; Dörmann, P. Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal. J. Biol. Chem., 2021, 296, 100530.
[http://dx.doi.org/10.1016/j.jbc.2021.100530] [PMID: 33713704]
[33]
Aresta, A.; Milani, G.; Clodoveo, M.L.; Franchini, C.; Cotugno, P.; Radojcic Redovnikovic, I.; Quinto, M.; Corbo, F.; Zambonin, C. Development, optimization, and comparison of different sample pre-treatments for simultaneous determination of vitamin E and vitamin K in vegetables. Molecules, 2020, 25(11), 2509.
[http://dx.doi.org/10.3390/molecules25112509] [PMID: 32481534]
[34]
Zingg, Jean-Marc Vitamin E: an overview of major research directions. Mol. Aspects Med., 2007, 28(5-6), 400-422.
[http://dx.doi.org/10.1016/j.mam.2007.05.004]
[35]
Zingg, J.M. Meydani, M.; Azzi, A. α‐Tocopheryl phosphate-An activated form of vitamin E important for angiogenesis and vasculogenesis? Biofactors, 2012, 38(1), 24-33.
[http://dx.doi.org/10.1002/biof.198] [PMID: 22281871]
[36]
Albanese, D.C.M. Conversion of adipic acid to Bis-2-ethylhexyl adipate overcoming equilibrium constraints: A laboratory experiment. J. Chem. Educ., 2023, 100(1), 361-365.
[http://dx.doi.org/10.1021/acs.jchemed.2c00951]
[37]
Horie, Y.; Nomura, M.; Ramaswamy, B.R.; Harino, H.; Yap, C.K.; Okamura, H. Thyroid hormone disruption by bis-(2-ethylhexyl) phthalate (DEHP) and bis-(2-ethylhexyl) adipate (DEHA) in Japanese medaka Oryzias latipes. Aquat. Toxicol., 2022, 252, 106312.
[http://dx.doi.org/10.1016/j.aquatox.2022.106312] [PMID: 36174385]
[38]
Golshan, M.; Hatef, A.; Socha, M.; Milla, S.; Butts, I.A.E.; Carnevali, O.; Rodina, M. Sokołowska-Mikołajczyk, M.; Fontaine, P.; Linhart, O.; Alavi, S.M.H. Di-(2-ethylhexyl)-phthalate disrupts pituitary and testicular hormonal functions to reduce sperm quality in mature goldfish. Aquat. Toxicol., 2015, 163, 16-26.
[http://dx.doi.org/10.1016/j.aquatox.2015.03.017] [PMID: 25827748]
[39]
Ibor, O.R.; Nnadozie, P.; Ogarekpe, D.M.; Idogho, O.; Anyanti, J.; Aizobu, D. Science of the total environment public health implications of endocrine disrupting chemicals in drinking water and aquatic food resources in Nigeria  A state-of-the-science review. Sci. Total Environ., 2023, 858, 159835.
[http://dx.doi.org/10.1016/j.scitotenv.2022.159835]
[40]
Claeson, P.; Rådström, P.; Sköld, O.; Nilsson, Å.; Höglund, S. Bactericidal effect of the sesquiterpene T‐cadinol on Staphylococcus aureus. Phytother. Res., 1992, 6(2), 94-98.
[http://dx.doi.org/10.1002/ptr.2650060209]
[41]
Muñoz, P.; Munné-Bosch, S. Vitamin E in plants: Biosynthesis, transport, and function. Trends Plant Sci., 2019, 24(11), 1040-1051.
[http://dx.doi.org/10.1016/j.tplants.2019.08.006] [PMID: 31606282]
[42]
Benbelaïd, F.; Khadir, A.; Bendahou, M.; Abdoune, M.A.; Muselli, A.; Costa, J. Composition and antimicrobial activity of Cistus munbyi essential oil: an endemic plant from Algeria. J. For. Res., 2017, 28(6), 1129-1134.
[http://dx.doi.org/10.1007/s11676-017-0387-6]
[43]
Benomari, F.Z.; Dib, M.E.A.; Muselli, A.; Costa, J.; Djabou, N. Comparative study of chemical composition of essential oils for two species of Asteriscus genus from Western Algeria. J. Essent. Oil Res., 2019, 31(5), 414-424.
[http://dx.doi.org/10.1080/10412905.2019.1579761]
[44]
Khalid, K.A.; Ahmed, A.M.A. Exogenous applications of caffeic acid affect the essential oils of marigold cultivars planted on sandy soil. Vegetos, 2023.
[http://dx.doi.org/10.1007/s42535-023-00718-x]
[45]
Gherib, M.; Gordo, B.; Ziane, M.; Braik, O.B.; Bouafia, M.; Chami, K.; Fillali, S.; Amrouche, A.I. Chemical composition and antimicrobial activity of Teucrium luteum subsp. flavovirensessential oil from Northwestern Algeria. Vegetos, 2022, 36(2), 534-541.
[http://dx.doi.org/10.1007/s42535-022-00387-2]
[46]
Kokkini, S.; Hanlidou, E.; Karousou, R.; Lanaras, T. Variation of pulegone content in pennyroyal (menthapulegium L.) plants growing wild in Greece. J. Essent. Oil Res., 2002, 14(3), 224-227.
[http://dx.doi.org/10.1080/10412905.2002.9699830]
[47]
Kamal, R.; Yadav, S.; Mathur, M.; Katariya, P. Antiradical efficiency of 20 selected medicinal plants. Nat. Prod. Res., 2012, 26(11), 1054-1062.
[http://dx.doi.org/10.1080/14786419.2011.553720] [PMID: 22010999]
[48]
Kaileh, M.; Berghe, W.V.; Boone, E.; Essawi, T.; Haegeman, G. Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J. Ethnopharmacol., 2007, 113(3), 510-516.
[http://dx.doi.org/10.1016/j.jep.2007.07.008] [PMID: 17716845]
[49]
Chaves, N.; Santiago, A.; Carlos, J. Quantification of the Antioxidant Activity of Plant Extracts  Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants, 2020, 9(1), 76.
[http://dx.doi.org/10.3390/antiox9010076]
[50]
Barua, C. C.; Sen, S.; Das, A. S.; Talukdar, A. A comparative study of the in vitro antioxidant property of different extracts of Acorus calamus Linn., 2014, 4(1), 8-18.
[51]
Baser, K.H.C.; Kirimer, N.; Tümen, G. Pulegone-rich essential oils of Turkey. J. Essent. Oil Res., 1998, 10(1), 1-8.
[http://dx.doi.org/10.1080/10412905.1998.9700830]
[52]
Abramovič H.; Grobin, B.; Poklar Ulrih, N.; Cigić B. The methodology applied in DPPH, ABTS and folin-ciocalteau assays has a large influence on the determined antioxidant potential. Acta Chim. Slov., 2017, 64(2), 491-499.
[http://dx.doi.org/10.17344/acsi.2017.3408] [PMID: 28621381]
[53]
Cömert, E.D.; Gökmen, V. Antioxidants bound to an insoluble food matrix: Their analysis, regeneration behavior, and physiological importance. Compr. Rev. Food Sci. Food Saf., 2017, 16(3), 382-399.
[http://dx.doi.org/10.1111/1541-4337.12263] [PMID: 33371552]
[54]
Boo, Yong Chool Can plant phenolic compounds protect the skin from airborne particulate matter? Antioxidants, 2019, 8(9), 379.
[http://dx.doi.org/10.3390/antiox8090379]
[55]
Pawlowska, E.; Szczepanska, J.; Koskela, A.; Kaarniranta, K.; Blasiak, J. Dietary polyphenols in age-related macular degeneration: Protection against oxidative stress and beyond. Oxid. Med. Cell. Longev., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/9682318] [PMID: 31019656]
[56]
Duthie, G.G.; Duthie, S.J.; Kyle, J.A.M. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr. Res. Rev., 2000, 13(1), 79-106.
[http://dx.doi.org/10.1079/095442200108729016] [PMID: 19087434]
[57]
Balmus, I.M.; Ciobica, A.; Trifan, A.; Stanciu, C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J. Gastroenterol., 2016, 22(1), 3-17.
[http://dx.doi.org/10.4103/1319-3767.173753]
[58]
Burgos-Morón, E.; Abad-Jiménez, Z.; Marañón, A.M.; Iannantuoni, F.; Escribano-López, I.; López-Domènech, S.; Salom, C.; Jover, A.; Mora, V.; Roldan, I.; Solá, E.; Rocha, M.; Víctor, V.M. Relationship between oxidative stress, ER Stress, and inflammation in type 2 diabetes: The battle continues. J. Clin. Med., 2019, 8(9), 1385.
[http://dx.doi.org/10.3390/jcm8091385] [PMID: 31487953]
[59]
Jin, T.; Song, Z.; Weng, J.; Fantus, I.G. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity. Am. J. Physiol. Endocrinol. Metab., 2018, 314(3), E201-E205.
[http://dx.doi.org/10.1152/ajpendo.00285.2017] [PMID: 29089337]
[60]
Lijana, Dienaitė Isolation of strong antioxidants from paeonia officinalis roots and leaves and evaluation of their bioactivities. Antioxidants, 2019, 8(8), 249.
[http://dx.doi.org/10.3390/antiox8080249]
[61]
Al Juhaimi, F.; Ghafoor, K.; Musa Özcan, M.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A.; Alsawmahi, O.N. Effect of cold press and Soxhlet extraction systems on total carotenoid, antioxidant activity values and phytochemicals in caper (Capparis ovata var herbacea) seed oils. J. Food Process. Preserv., 2021, 45(6), 1-7.
[http://dx.doi.org/10.1111/jfpp.15530]
[62]
Bešlo, D. Golubić N.; Rastija, V.; Agić D.; Karnaš, M.; Šubarić D.; Lučić B. Antioxidant activity, metabolism, and bioavailability of polyphenols in the diet of animals. Antioxidants, 2023, 12(6), 1141.
[http://dx.doi.org/10.3390/antiox12061141] [PMID: 37371871]
[63]
Canga, I.; Vita, P.; Oliveira, A.I.; Castro, M.Á.; Pinho, C. In vitro cytotoxic activity of african plants: A review. Molecules, 2022, 27(15), 4989.
[http://dx.doi.org/10.3390/molecules27154989] [PMID: 35956938]
[64]
Nguyen, N.H.; Ta, Q.T.H.; Pham, Q.T.; Luong, T.N.H.; Phung, V.T.; Duong, T.H.; Vo, V.G. Anticancer activity of novel plant extracts and compounds from adenosma bracteosum (bonati) in human lung and liver cancer cells. Molecules, 2020, 25(12), 2912.
[http://dx.doi.org/10.3390/molecules25122912] [PMID: 32599892]
[65]
Vlavcheski, F. Antidiabetic effects of hydroxytyrosol: In vitro and in vivo evidence. In: Antioxidants ; , 2019; 8, p. (6)188.
[http://dx.doi.org/10.3390/antiox8060188]
[66]
Solowey, E.; Lichtenstein, M.; Sallon, S.; Paavilainen, H.; Solowey, E.; Lorberboum-Galski, H. Evaluating medicinal plants for anticancer activity. Sci World J, 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/721402] [PMID: 25478599]
[67]
Sharma, R. Aashima; Nanda, M.; Fronterre, C.; Sewagudde, P.; Ssentongo, A.E.; Yenney, K.; Arhin, N.D.; Oh, J.; Amponsah-Manu, F.; Ssentongo, P. Mapping cancer in africa: A comprehensive and comparable characterization of 34 cancer types using estimates from GLOBOCAN 2020. Front. Public Health, 2022, 10, 839835.
[http://dx.doi.org/10.3389/fpubh.2022.839835] [PMID: 35548083]
[68]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[69]
Mbele, M.; Hull, R.; Dlamini, Z. African medicinal plants and their derivatives: Current efforts towards potential anti-cancer drugs. Exp. Mol. Pathol., 2017, 103(2), 121-134.
[http://dx.doi.org/10.1016/j.yexmp.2017.08.002] [PMID: 28797846]
[70]
Zonyane, S.; Fawole, O.A.; la Grange, C.; Stander, M.A.; Opara, U.L.; Makunga, N.P. The implication of chemotypic variation on the anti-oxidant and anti-cancer activities of sutherlandia frutescens (l.) r.br. (fabaceae) from different geographic locations. Antioxidants, 2020, 9(2), 152.
[http://dx.doi.org/10.3390/antiox9020152] [PMID: 32069826]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy