Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Development of 7H-pyrrolo[2,3-d]pyrimidin-4-amine Derivatives Using QSARINS Tool as BTK Inhibitors for the Treatment of Rheumatoid Arthritis

Author(s): Shital M. Patil*, Kalyani. D. Asgaonkar, Pradnya Magdum, Vaishnavi Chinde, Aishwarya Edake and Akshata Naik

Volume 22, Issue 4, 2023

Published on: 28 November, 2023

Page: [236 - 249] Pages: 14

DOI: 10.2174/0118715230272263231103094710

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the joints, leading to pain, swelling, and joint deformity. Effective management of RA involves the use of disease-modifying drugs that can slow down disease progression and alleviate symptoms. Among the potential targets for RA treatment is Bruton's tyrosine kinase (BTK), which plays a crucial role in B-cell signalling and contributes to the pathogenesis of RA.

Aims: QSARINS (QSAR-INSUBRIA) is software used for the development and validation of Quantitative Structure-Activity Relationship (QSAR) analysis. In the present work, this software was explored for pharmacophore optimization of the pyrrolo-pyrimidine nucleus for anti-rheumatoid activity.

Methods: A series of pyrrolo-pyrimidine derivatives were used to build the QSAR models. These models were generated to identify structural features that correlate significantly with the activity. We followed the assessment of statistical parameters to ensure thorough validation of all the QSAR models. The QSAR models demonstrating better statistical performance were selected, and descriptors of these models were analysed.

Results: The results showed that the QSAR models were highly statistically robust and exhibited a strong external predictive ability. Their structural features were also deduced.

Conclusion: This QSAR study provided crucial information about the specific molecular features that can be used for the optimization of the pharmacophores. This research provides valuable insights into the structural features essential for BTK inhibition and paves the way for the design and development of novel anti-rheumatic agents targeting BTK in RA.

Keywords: 2D and 3D QSAR, QSARINS, rheumatoid arthritis, BTK inhibitors, pyrrole, pyrimidine.

Graphical Abstract
[1]
Lee, J.E.; Kim, I.J.; Cho, M.S.; Lee, J. A case of rheumatoid vasculitis involving hepatic artery in early rheumatoid arthritis. J. Korean Med. Sci., 2017, 32(7), 1207-1210.
[http://dx.doi.org/10.3346/jkms.2017.32.7.1207] [PMID: 28581281]
[2]
Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid arthritis: A brief overview of the treatment. Med. Princ. Pract., 2018, 27(6), 501-507.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[3]
Klareskog, L.; Rönnelid, J.; Saevarsdottir, S.; Padyukov, L.; Alfredsson, L. The importance of differences; On environment and its interactions with genes and immunity in the causation of rheumatoid arthritis. J. Intern. Med., 2020, 287(5), 514-533.
[http://dx.doi.org/10.1111/joim.13058] [PMID: 32176395]
[4]
Stolt, P.; Bengtsson, C.; Nordmark, B.; Lindblad, S.; Lundberg, I.; Klareskog, L.; Alfredsson, L. Quantification of the influence of cigarette smoking on rheumatoid arthritis: Results from a population based case-control study, using incident cases. Ann. Rheum. Dis., 2003, 62(9), 835-841.
[http://dx.doi.org/10.1136/ard.62.9.835] [PMID: 12922955]
[5]
Padyukov, L.; Silva, C.; Stolt, P.; Alfredsson, L.; Klareskog, L. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum., 2004, 50(10), 3085-3092.
[http://dx.doi.org/10.1002/art.20553] [PMID: 15476204]
[6]
Chauhan, K.; Jandu, J.S.; Brent, L.H.; Al-Dhahir, M.A. Rheumatoid arthritis. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023.
[7]
Saha, S.; Varshney, T.; Singh, P.K.; Manna, S.; Pai, V.; Naithani, M.; Mirza, A. Predictive value of beclin1 in the pathogenesis of rheumatoid arthritis in the indian population. J. Med. Evid., 2022, 3(3), 238-241.
[http://dx.doi.org/10.4103/JME.JME_48_22]
[8]
Cross, M.; Smith, E.; Hoy, D.; Carmona, L.; Wolfe, F.; Vos, T.; Williams, B.; Gabriel, S.; Lassere, M.; Johns, N.; Buchbinder, R.; Woolf, A.; March, L. The global burden of rheumatoid arthritis: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis., 2014, 73(7), 1316-1322.
[http://dx.doi.org/10.1136/annrheumdis-2013-204627] [PMID: 24550173]
[9]
Crowson, C.S.; Matteson, E.L.; Myasoedova, E.; Michet, C.J.; Ernste, F.C.; Warrington, K.J.; Davis, J.M., III; Hunder, G.G.; Therneau, T.M.; Gabriel, S.E. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum., 2011, 63(3), 633-639.
[http://dx.doi.org/10.1002/art.30155] [PMID: 21360492]
[10]
Akil, M.; Moots, R. Rheumatoid arthritis: Clinical features and diagnosis. In: ABC of Rheumatology, 5th ed; Wiley: Oxford, 2018; pp. 73-76.
[11]
Li, Z.; Fu, J.; Cao, Y.; Xu, C.; Han, X.; Zhang, W.; Song, Z.; Chen, J. Drug discovery in rheumatoid arthritis with joint effusion identified by text mining and biomedical databases. Ann. Palliat. Med., 2021, 10(5), 5218-5230.
[http://dx.doi.org/10.21037/apm-20-2631b] [PMID: 33977746]
[12]
Singh, J.A.; Saag, K.G.; Bridges, S.L., Jr; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; Curtis, J.R.; Furst, D.E.; Parks, D.; Kavanaugh, A.; O’Dell, J.; King, C.; Leong, A.; Matteson, E.L.; Schousboe, J.T.; Drevlow, B.; Ginsberg, S.; Grober, J.; St Clair, E.W.; Tindall, E.; Miller, A.S.; McAlindon, T. 2015 american college of rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol., 2016, 68(1), 1-26.
[http://dx.doi.org/10.1002/art.39480] [PMID: 26545940]
[13]
Rho, Y.H.; Oeser, A.; Chung, C.P.; Milne, G.L.; Stein, C.M. Drugs used in the treatment of rheumatoid arthritis: Relationship between current use and cardiovascular risk factors. Arch. Drug Inf., 2009, 2(2), 34-40.
[http://dx.doi.org/10.1111/j.1753-5174.2009.00019.x] [PMID: 19684849]
[14]
Abbasi, M.; Mousavi, M.J.; Jamalzehi, S.; Alimohammadi, R.; Bezvan, M.H.; Mohammadi, H.; Aslani, S. Strategies toward rheumatoid arthritis therapy; the old and the new. J. Cell. Physiol., 2019, 234(7), 10018-10031.
[http://dx.doi.org/10.1002/jcp.27860] [PMID: 30536757]
[15]
Gaffo, A.; Saag, K.G.; Curtis, J.R. Treatment of rheumatoid arthritis. Am. J. Health Syst. Pharm., 2006, 63(24), 2451-2465.
[http://dx.doi.org/10.2146/ajhp050514] [PMID: 17158693]
[16]
Buchman, A.L. Side effects of corticosteroid therapy. J. Clin. Gastroenterol., 2001, 33(4), 289-294.
[http://dx.doi.org/10.1097/00004836-200110000-00006] [PMID: 11588541]
[17]
Sholter, D.E.; Armstrong, P.W. Adverse effects of corticosteroids on the cardiovascular system. Can. J. Cardiol., 2000, 16(4), 505-511.
[PMID: 10787466]
[18]
Benjamin, O.; Goyal, A.; Lappin, S.L. Disease-Modifying Antirheumatic Drugs (DMARD). In: StatPearls; StatPearls Publishing, 2023.
[19]
Zhang, C.; Pei, H.; He, J.; Zhu, J.; Li, W.; Niu, T.; Xiang, M.; Chen, L. Design, synthesis and evaluation of novel 7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives as potent, selective and reversible Bruton’s tyrosine kinase (BTK) inhibitors for the treatment of rheumatoid arthritis. Eur. J. Med. Chem., 2019, 169, 121-143.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.077] [PMID: 30875504]
[20]
Di Paolo, J.A.; Huang, T.; Balazs, M.; Barbosa, J.; Barck, K.H.; Bravo, B.J.; Carano, R.A.D.; Darrow, J.; Davies, D.R.; DeForge, L.E.; Diehl, L.; Ferrando, R.; Gallion, S.L.; Giannetti, A.M.; Gribling, P.; Hurez, V.; Hymowitz, S.G.; Jones, R.; Kropf, J.E.; Lee, W.P.; Maciejewski, P.M.; Mitchell, S.A.; Rong, H.; Staker, B.L.; Whitney, J.A.; Yeh, S.; Young, W.B.; Yu, C.; Zhang, J.; Reif, K.; Currie, K.S. Specific Btk inhibition suppresses B cell– and myeloid cell–mediated arthritis. Nat. Chem. Biol., 2011, 7(1), 41-50.
[http://dx.doi.org/10.1038/nchembio.481] [PMID: 21113169]
[21]
Arneson, L.C.; Carroll, K.J.; Ruderman, E.M. Bruton’s tyrosine kinase inhibition for the treatment of rheumatoid arthritis. ImmunoTargets Ther., 2021, 10, 333-342.
[http://dx.doi.org/10.2147/ITT.S288550] [PMID: 34485183]
[22]
Cohen, S. Novel intra-cellular targeting agents in rheumatic disease. In: Kelley and Firestein’s Textbook of Rheumatology; Firestein, G.S.; Budd, R.C.; Gabriel, S.E.; McInnes, I.B.; O’Dell, J.R., Eds.; Elsevier, 2017; pp. 1044-1060.
[http://dx.doi.org/10.1016/B978-0-323-31696-5.00065-6]
[23]
Joseph, R.E.; Min, L.; Xu, R.; Musselman, E.D.; Andreotti, A.H. A remote substrate docking mechanism for the tec family tyrosine kinases. Biochemistry, 2007, 46(18), 5595-5603.
[http://dx.doi.org/10.1021/bi700127c] [PMID: 17439160]
[24]
Ruderman, E.M.; Pope, R.M. More than just B-cell inhibition. Arthritis Res. Ther., 2011, 13(4), 125.
[http://dx.doi.org/10.1186/ar3439] [PMID: 21878134]
[25]
Satterthwaite, A.B.; Witte, O.N. The role of Bruton’s tyrosine kinase in B-cell development and function: A genetic perspective. Immunol. Rev., 2000, 175, 120-127.
[http://dx.doi.org/10.1111/j.1600-065X.2000.imr017504.x] [PMID: 10933597]
[26]
Alu, A.; Lei, H.; Han, X.; Wei, Y.; Wei, X. BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: mechanisms and clinical studies. J. Hematol. Oncol., 2022, 15(1), 138.
[http://dx.doi.org/10.1186/s13045-022-01353-w] [PMID: 36183125]
[27]
Crofford, L.J.; Nyhoff, L.E.; Sheehan, J.H.; Kendall, P.L. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev. Clin. Immunol., 2016, 12(7), 763-773.
[http://dx.doi.org/10.1586/1744666X.2016.1152888] [PMID: 26864273]
[28]
Fourches, D.; Muratov, E.; Tropsha, A. Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model., 2010, 50(7), 1189-1204.
[http://dx.doi.org/10.1021/ci100176x] [PMID: 20572635]
[29]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem., 2013, 34(24), 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[30]
Cañizares-Carmenate, Y.; Mena-Ulecia, K.; Perera-Sardiña, Y.; Torrens, F.; Castillo-Garit, J.A. An approach to identify new antihypertensive agents using Thermolysin as model: In silico study based on QSARINS and docking. Arab. J. Chem., 2019, 12(8), 4861-4877.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.003]
[31]
Tasso, B.; Spallarossa, A.; Russo, E.; Brullo, C. The Development of BTK inhibitors: A five-year update. Molecules, 2021, 26(23), 7411.
[http://dx.doi.org/10.3390/molecules26237411] [PMID: 34885993]
[32]
Park, H.; Park, C.H.; Kang, S.T.; Jeon, J.H.; Archary, R.; Lee, J.Y.; Kim, P.; Jung, H.; Yun, C.S.; Hwang, J.Y.; Ryu, D.H.; Cho, S.Y. Design and synthesis of novel pyrazolo[3,4- d]pyrimidin-1-yl piperidine derivatives as bruton’s tyrosine kinase inhibitors. Bull. Korean Chem. Soc., 2017, 38(2), 278-281.
[http://dx.doi.org/10.1002/bkcs.11065]
[33]
Zheng, N.; Pan, J.; Hao, Q.; Li, Y.; Zhou, W. Design, synthesis and biological evaluation of novel 3-substituted pyrazolopyrimidine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors. Bioorg. Med. Chem., 2018, 26(8), 2165-2172.
[http://dx.doi.org/10.1016/j.bmc.2018.03.017] [PMID: 29567295]
[34]
Zheng, N.; Hao, Q.; Lin, K.; Pan, J.; Li, Y.; Zhou, W. Synthesis and biological evaluation of novel 1-substituted 3-(3-phenoxyprop-1-yn-1-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amines as potent Bruton’s tyrosine kinase (BTK) inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 225-229.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.051] [PMID: 30522954]
[35]
Ran, F.; Liu, Y.; Liu, M.; Zhang, D.; Wang, P.; Dong, J.; Tang, W.; Zhao, G. Discovery of pyrazolopyrimidine derivatives as potent BTK inhibitors with effective anticancer activity in MCL. Bioorg. Chem., 2019, 89, 102943.
[http://dx.doi.org/10.1016/j.bioorg.2019.102943] [PMID: 31031018]
[36]
Gao, X.; Wang, J.; Liu, J.; Guiadeen, D.; Krikorian, A.; Boga, S.B.; Alhassan, A.B.; Selyutin, O.; Yu, W.; Yu, Y.; Anand, R.; Liu, S.; Yang, C.; Wu, H.; Cai, J.; Cooper, A.; Zhu, H.; Maloney, K.; Gao, Y.D.; Fischmann, T.O.; Presland, J.; Mansueto, M.; Xu, Z.; Leccese, E.; Zhang-Hoover, J.; Knemeyer, I.; Garlisi, C.G.; Bays, N.; Stivers, P.; Brandish, P.E.; Hicks, A.; Kim, R.; Kozlowski, J.A. Discovery of novel BTK inhibitors with carboxylic acids. Bioorg. Med. Chem. Lett., 2017, 27(6), 1471-1477.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.079] [PMID: 28254166]
[37]
Boga, S.B.; Alhassan, A.B.; Liu, J.; Guiadeen, D.; Krikorian, A.; Gao, X.; Wang, J.; Yu, Y.; Anand, R.; Liu, S.; Yang, C.; Wu, H.; Cai, J.; Zhu, H.; Desai, J.; Maloney, K.; Gao, Y.D.; Fischmann, T.O.; Presland, J.; Mansueto, M.; Xu, Z.; Leccese, E.; Knemeyer, I.; Garlisi, C.G.; Bays, N.; Stivers, P.; Brandish, P.E.; Hicks, A.; Cooper, A.; Kim, R.M.; Kozlowski, J.A. Discovery of 3-morpholino-imidazole[1,5-a]pyrazine BTK inhibitors for rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2017, 27(16), 3939-3943.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.040] [PMID: 28720503]
[38]
Liu, J.; Guiadeen, D.; Krikorian, A.; Gao, X.; Wang, J.; Babu, Boga. S.; Alhassan, A.B.; Yu, W.; Selyutin, O.; Yu, Y.; Anand, R.; Xu, J.; Kelly, J.; Duffy, J.L.; Liu, S.; Yang, C.; Wu, H.; Cai, J.; Bennett, C.; Maloney, K.M.; Tyagarajan, S.; Gao, Y.D.; Fischmann, T.O.; Presland, J.; Mansueto, M.; Xu, Z.; Leccese, E.; Zhang-Hoover, J.; Knemeyer, I.; Garlisi, C.G.; Stivers, P.; Brandish, P.E.; Hicks, A.; Kim, R.; Kozlowski, J.A. Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes. Bioorg. Med. Chem. Lett., 2020, 30(17), 127390.
[http://dx.doi.org/10.1016/j.bmcl.2020.127390] [PMID: 32738973]
[39]
He, L.; Pei, H.; Zhang, C.; Shao, M.; Li, D.; Tang, M.; Wang, T.; Chen, X.; Xiang, M.; Chen, L. Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur. J. Med. Chem., 2018, 145, 96-112.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.079] [PMID: 29324347]
[40]
Pandey, G.; Saxena, A.K. 3D QSAR studies on protein tyrosine phosphatase 1B inhibitors: comparison of the quality and predictivity among 3D QSAR models obtained from different conformer-based alignments. J. Chem. Inf. Model., 2006, 46(6), 2579-2590.
[http://dx.doi.org/10.1021/ci600224n] [PMID: 17125198]
[41]
Mordred Web, U.I. Available from: https://mordred.phs.osaka-u.ac.jp/ (Accessed on: February 12, 2023).
[42]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[43]
Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa, E. QSAR modeling is not “push a button and find a correlation”: A case study of toxicity of (benzo‐)triazoles on algae. Mol. Inform., 2012, 31(11-12), 817-835.
[http://dx.doi.org/10.1002/minf.201200075] [PMID: 27476736]
[44]
Gramatica, P.; Sangion, A. A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology. J. Chem. Inf. Model., 2016, 56(6), 1127-1131.
[http://dx.doi.org/10.1021/acs.jcim.6b00088] [PMID: 27218604]
[45]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[46]
Chirico, N.; Sangion, A.; Gramatica, P.; Bertato, L.; Casartelli, I.; Papa, E. QSARINS ‐Chem standalone version: A new platform independent software to profile chemicals for physico‐chemical properties, fate, and toxicity. J. Comput. Chem., 2021, 42(20), 1452-1460.
[http://dx.doi.org/10.1002/jcc.26551] [PMID: 33973667]
[47]
Dearden, J.C.; Cronin, M.T.D.; Kaiser, K.L.E. How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ. Res., 2009, 20(3-4), 241-266.
[http://dx.doi.org/10.1080/10629360902949567] [PMID: 19544191]
[48]
Masand, V.H.; El-Sayed, N.N.E.; Mahajan, D.T.; Mercader, A.G.; Alafeefy, A.M.; Shibi, I.G. QSAR modeling for anti-human African trypanosomiasis activity of substituted 2-Phenylimidazopyridines. J. Mol. Struct., 2017, 1130, 711-718.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.012]
[49]
Masand, V.H.; Mahajan, D.T.; Gramatica, P.; Barlow, J. Tautomerism and multiple modelling enhance the efficacy of QSAR: Antimalarial activity of phosphoramidate and phosphorothioamidate analogues of amiprophos methyl. Med. Chem. Res., 2014, 23(11), 4825-4835.
[http://dx.doi.org/10.1007/s00044-014-1043-8]
[50]
Masand, V.H.; Mahajan, D.T.; Nazeruddin, G.M.; Hadda, T.B.; Rastija, V.; Alfeefy, A.M. Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model. Med. Chem. Res., 2015, 24(3), 1241-1264.
[http://dx.doi.org/10.1007/s00044-014-1193-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy