Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Review Article

The Role of Resveratrol in Alzheimer's Disease: A Comprehensive Review of Current Research

Author(s): Shivendra Kumar*, Sunam Saha, Bhawna Sharma, Shubham Singh, Piyush Shukla, Soumyadip Mukherjee, Mohit Agrawal, Kuldeep Singh and Talever Singh

Volume 2, Issue 2, 2024

Published on: 12 December, 2023

Article ID: e121223224364 Pages: 13

DOI: 10.2174/0126668629269244231127071411

Price: $65

Open Access Journals Promotions 2
Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and impaired daily functioning. The etiology of AD is complex and multifactorial, involving various pathological mechanisms such as the accumulation of amyloid-beta plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress. As the global prevalence of AD continues to rise, there is a growing interest in identifying potential therapeutic interventions to prevent or slow down the progression of the disease. Resveratrol, a natural polyphenolic compound found in various plant sources such as grapes, berries, and peanuts, has gained considerable attention due to its potential neuroprotective effects. Numerous preclinical studies utilizing in vitro and animal models have investigated the impact of resveratrol on AD pathology and associated cognitive impairments. This review aims to provide a comprehensive summary of the current research on the role of resveratrol in AD. In conclusion, resveratrol holds promise as a potential therapeutic agent for AD due to its ability to target multiple pathological processes involved in the disease. Further research, including well-designed clinical trials with larger sample sizes, is needed to fully elucidate the efficacy, optimal dosage, and long-term effects of resveratrol in AD patients. Nevertheless, resveratrol remains an intriguing compound with neuroprotective properties and may contribute to the development of novel therapeutic approaches for AD in the future.

Keywords: Alzheimer's disease, resveratrol, amyloid-beta, neurofibrillary tangles, oxidative stress, neuroinflammation, synaptic plasticity, neurogenesis, clinical trials.

[1]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[2]
Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci Transl Med 2011; 3(77): 77sr1.
[http://dx.doi.org/10.1126/scitranslmed.3002369] [PMID: 21471435]
[3]
Neugroschl J, Wang S. Alzheimer’s disease: diagnosis and treatment across the spectrum of disease severity. Mt Sinai J Med 2011; 78(4): 596-612.
[http://dx.doi.org/10.1002/msj.20279] [PMID: 21748748]
[4]
Grøntvedt GR, Schröder TN, Sando SB, White L, Bråthen G, Doeller CF. Alzheimer’s disease. Curr Biol 2018; 28(11): R645-9.
[http://dx.doi.org/10.1016/j.cub.2018.04.080] [PMID: 29870699]
[5]
Knopman DS, Petersen RC. Mild cognitive impairment and mild dementia: a clinical perspective. Mayo Clin Proc 2014; 89(10): 1452-9.
[http://dx.doi.org/10.1016/j.mayocp.2014.06.019] [PMID: 25282431]
[6]
Deture MA, Dickson DW. The neuropathological diagnosis of alzheimer’s disease. Mol Neurodegener 2019; 14: 1-4.
[http://dx.doi.org/10.1186/s13024-019-0333-5]
[7]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 2013; 6(1): 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[8]
Dubois B, Padovani A, Scheltens P, Rossi A, Dell’Agnello G. Timely diagnosis for Alzheimer’s disease: a literature review on benefits and challenges. J Alzheimers Dis 2015; 49(3): 617-31.
[http://dx.doi.org/10.3233/JAD-150692] [PMID: 26484931]
[9]
Abubakar MB, Sanusi KO, Ugusman A, et al. Alzheimer’s disease: An update and insights into pathophysiology. Front Aging Neurosci 2022; 14: 742408.
[http://dx.doi.org/10.3389/fnagi.2022.742408] [PMID: 35431894]
[10]
Brodaty H, Donkin M. Family caregivers of people with dementia. Dialogues Clin Neurosci 2009; 11(2): 217-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/hbrodaty] [PMID: 19585957]
[11]
Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann Indian Acad Neurol 2008; 11(1): 13-9.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[12]
Ma T, Tan MS, Yu JT, Tan L. Resveratrol as a therapeutic agent for Alzheimer’s disease. BioMed Res Int 2014; 2014: 1-13.
[http://dx.doi.org/10.1155/2014/350516] [PMID: 25525597]
[13]
Khattar S, Khan SA, Zaidi SAA, et al. Resveratrol from dietary supplement to a drug candidate: An assessment of potential. Pharmaceuticals 2022; 15(8): 957.
[http://dx.doi.org/10.3390/ph15080957] [PMID: 36015105]
[14]
Salehi B, Mishra A, Nigam M, et al. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018; 6(3): 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[15]
Aliev G, Obrenovich M, Reddy V, et al. Antioxidant therapy in Alzheimer’s disease: Theory and practice. Mini Rev Med Chem 2008; 8(13): 1395-406.
[http://dx.doi.org/10.2174/138955708786369582] [PMID: 18991755]
[16]
Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 2017; 57(4): 1105-21.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[17]
Maharjan R, Diaz Bustamante L, Ghattas KN, Ilyas S, Al-Refai R, Khan S. Role of lifestyle in neuroplasticity and neurogenesis in an aging brain. Cureus 2020; 12(9): e10639.
[http://dx.doi.org/10.7759/cureus.10639] [PMID: 33133809]
[18]
Novelle MG, Wahl D, Diéguez C, Bernier M, de Cabo R. Resveratrol supplementation: Where are we now and where should we go? Ageing Res Rev 2015; 21: 1-15.
[http://dx.doi.org/10.1016/j.arr.2015.01.002] [PMID: 25625901]
[19]
Yang AJT, Bagit A, MacPherson REK. Resveratrol, metabolic dysregulation, and Alzheimer’s disease: Considerations for neurogenerative disease. Int J Mol Sci 2021; 22(9): 4628.
[http://dx.doi.org/10.3390/ijms22094628] [PMID: 33924876]
[20]
Shaito A, Posadino AM, Younes N, et al. Potential adverse effects of resveratrol: A literature review. Int J Mol Sci 2020; 21(6): 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[21]
Wiciński M, Domanowska A, Wódkiewicz E, Malinowski B. Neuroprotective properties of resveratrol and its derivatives-influence on potential mechanisms leading to the development of Alzheimer’s disease. Int J Mol Sci 2020; 21(8): 2749.
[http://dx.doi.org/10.3390/ijms21082749] [PMID: 32326620]
[22]
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 40.
[http://dx.doi.org/10.1186/s13024-020-00391-7] [PMID: 32677986]
[23]
Frozza RL, Lourenco MV, De Felice FG. Challenges for alzheimer’s disease therapy: Insights from novel mechanisms beyond memory defects. Front Neurosci 2018; 12: 37.
[http://dx.doi.org/10.3389/fnins.2018.00037] [PMID: 29467605]
[24]
Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis 2017; 57(4): 975-99.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[25]
Pinheiro L, Faustino C. Therapeutic strategies targeting amyloid-β in Alzheimer’s disease. Curr Alzheimer Res 2019; 16(5): 418-52.
[http://dx.doi.org/10.2174/1567205016666190321163438] [PMID: 30907320]
[26]
Sinsky J, Pichlerova K, Hanes J. Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies. Int J Mol Sci 2021; 22(17): 9207.
[http://dx.doi.org/10.3390/ijms22179207] [PMID: 34502116]
[27]
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2012; 2(7): a006247.
[http://dx.doi.org/10.1101/cshperspect.a006247] [PMID: 22762014]
[28]
Su B, Wang X, Nunomura A, et al. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 2008; 5(6): 525-32.
[http://dx.doi.org/10.2174/156720508786898451] [PMID: 19075578]
[29]
Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev 2019; 2019: 1-13.
[http://dx.doi.org/10.1155/2019/5080843] [PMID: 31737171]
[30]
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement 2018; 4(1): 575-90.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[31]
Kandimalla R, Reddy PH. Therapeutics of neurotransmitters in Alzheimer’s Disease. J Alzheimers Dis 2017; 57(4): 1049-69.
[http://dx.doi.org/10.3233/JAD-161118] [PMID: 28211810]
[32]
Rajji TK. Impaired brain plasticity as a potential therapeutic target for treatment and prevention of dementia. Expert Opin Ther Targets 2019; 23(1): 21-8.
[http://dx.doi.org/10.1080/14728222.2019.1550074 ] [PMID: 30451545]
[33]
Bekris LM, Yu CE, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 2010; 23(4): 213-27.
[http://dx.doi.org/10.1177/0891988710383571] [PMID: 21045163]
[34]
Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical exercise and brain mitochondrial fitness: The possible role against Alzheimer’s Disease. Brain Pathol 2016; 26(5): 648-63.
[http://dx.doi.org/10.1111/bpa.12403] [PMID: 27328058]
[35]
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[36]
Iqbal K, Grundke-Iqbal I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 2010; 6(5): 420-4.
[http://dx.doi.org/10.1016/j.jalz.2010.04.006] [PMID: 20813343]
[37]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer disease: An update. J Cent Nerv Syst Dis 2020; 12.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[38]
Rahman MH, Akter R, Bhattacharya T, et al. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease. Front Pharmacol 2020; 11: 619024.
[http://dx.doi.org/10.3389/fphar.2020.619024] [PMID: 33456444]
[39]
Weiskirchen S, Weiskirchen R. Resveratrol: How much wine do you have to drink to stay healthy? Adv Nutr 2016; 7(4): 706-18.
[http://dx.doi.org/10.3945/an.115.011627] [PMID: 27422505]
[40]
Jeon BT, Jeong EA, Shin HJ, et al. Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. Diabetes 2012; 61(6): 1444-54.
[http://dx.doi.org/10.2337/db11-1498] [PMID: 22362175]
[41]
Morrison CD, Pistell PJ, Ingram DK, et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 2010; 114(6): 1581-9.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06865.x ] [PMID: 20557430]
[42]
van Dinther M, Voorter PHM, Jansen JFA, et al. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42(5): 718-37.
[http://dx.doi.org/10.1177/0271678X221076557] [PMID: 35078344]
[43]
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127(6): 1109-22.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[44]
Benameur T, Giacomucci G, Panaro MA, et al. New promising therapeutic avenues of curcumin in brain diseases. Molecules 2021; 27(1): 236.
[http://dx.doi.org/10.3390/molecules27010236] [PMID: 35011468]
[45]
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4(8): 1151-62.
[http://dx.doi.org/10.1021/cn400094w ] [PMID: 23758534]
[46]
Yang J, Huang J, Shen C, et al. Resveratrol treatment in different time-attenuated neuronal apoptosis after oxygen and glucose deprivation/reoxygenation via enhancing the activation of nrf-2 signaling pathway in vitro. Cell Transplant 2018; 27(12): 1789-97.
[http://dx.doi.org/10.1177/0963689718780930] [PMID: 30008229]
[47]
Zhang QL, Jia L, Jiao X, et al. APP/PS1 transgenic mice treated with aluminum: An update of Alzheimer’s disease model. Int J Immunopathol Pharmacol 2012; 25(1): 49-58.
[http://dx.doi.org/10.1177/039463201202500107] [PMID: 22507317]
[48]
Margioris AN, Markogiannakis E, Makrigiannakis A, Gravanis A. PC12 rat pheochromocytoma cells synthesize dynorphin. Its secretion is modulated by nicotine and nerve growth factor. Endocrinology 1992; 131(2): 703-9.
[http://dx.doi.org/10.1210/endo.131.2.1353443] [PMID: 1353443]
[49]
Porquet D, Casadesús G, Bayod S, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Omaha) 2013; 35(5): 1851-65.
[http://dx.doi.org/10.1007/s11357-012-9489-4] [PMID: 23129026]
[50]
Charrière K, Ghzaiel I, Lizard G, Vejux A. Involvement of microglia in neurodegenerative diseases: Beneficial effects of docosahexahenoic acid (DHA) supplied by food or combined with nanoparticles. Int J Mol Sci 2021; 22(19): 10639.
[http://dx.doi.org/10.3390/ijms221910639] [PMID: 34638979]
[51]
Kudo T, Kanetaka H, Mochizuki K, et al. Induction of neurite outgrowth in PC12 cells treated with temperature-controlled repeated thermal stimulation. PLoS One 2015; 10(4): e0124024.
[http://dx.doi.org/10.1371/journal.pone.0124024] [PMID: 25879210]
[52]
Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 2010; 285(12): 9100-13.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[53]
Sun P, Ortega G, Tan Y, et al. Streptozotocin impairs proliferation and differentiation of adult hippocampal neural stem cells in vitro-correlation with alterations in the expression of proteins associated with the insulin system. Front Aging Neurosci 2018; 10: 145.
[http://dx.doi.org/10.3389/fnagi.2018.00145] [PMID: 29867451]
[54]
Kumar A, Naidu PS, Seghal N, Padi SSV. Neuroprotective effects of resveratrol against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology 2007; 79(1): 17-26.
[http://dx.doi.org/10.1159/000097511] [PMID: 17135773]
[55]
Ma Y, Li Y, Yin R, et al. Therapeutic potential of aromatic plant extracts in Alzheimer’s disease: Comprehensive review of their underlying mechanisms. CNS Neurosci Ther 2023; 29(8): 2045-59.
[http://dx.doi.org/10.1111/cns.14234] [PMID: 37122144]
[56]
Akbarzadeh A, Norouzian D, Mehrabi MR, et al. Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem 2007; 22(2): 60-4.
[http://dx.doi.org/10.1007/BF02913315] [PMID: 23105684]
[57]
Jabir NR, Khan FR, Tabrez S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. CNS Neurosci Ther 2018; 24(9): 753-62.
[http://dx.doi.org/10.1111/cns.12971] [PMID: 29770579]
[58]
Shojaei S, Panjehshahin MR, Shafiee SM, et al. Differential effects of resveratrol on the expression of brain-derived neurotrophic factor transcripts and protein in the hippocampus of rat brain. Iran J Med Sci 2017; 42(1): 32-9.
[PMID: 28293048]
[59]
Yu J, Auwerx J. The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci 2009; 1173(S1): E10-9.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04952.x ] [PMID: 19751409]
[60]
Razick DI, Akhtar M, Wen J, et al. The role of sirtuin 1 (SIRT1) in neurodegeneration. Cureus 2023; 15(6): e40463.
[http://dx.doi.org/10.7759/cureus.40463] [PMID: 37456463]
[61]
Kim D, Nguyen MD, Dobbin MM, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 2007; 26(13): 3169-79.
[http://dx.doi.org/10.1038/sj.emboj.7601758] [PMID: 17581637]
[62]
Chuang YC, Chen S, Der , et al. Resveratrol promotes mitochondrial biogenesis and protects against seizure-induced neuronal cell damage in the hippocampus following status epilepticus by activation of the PGC-1α signaling pathway. Int J Mol Sci 2019; 20: 998.
[http://dx.doi.org/10.3390/ijms20040998]
[63]
Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022; 11(2): 408.
[http://dx.doi.org/10.3390/antiox11020408] [PMID: 35204290]
[64]
Lee EO, Park HJ, Kang JL, Kim HS, Chong YH. Resveratrol reduces glutamate-mediated monocyte chemotactic protein-1 expression via inhibition of extracellular signal-regulated kinase 1/2 pathway in rat hippocampal slice cultures. J Neurochem 2010; 112(6): 1477-87.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06564.x ] [PMID: 20050970]
[65]
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res Rev 2021; 67: 101271.
[http://dx.doi.org/10.1016/j.arr.2021.101271] [PMID: 33571701]
[66]
Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1195-201.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.011] [PMID: 25281824]
[67]
Fang JY, Li ZH, Li Q, Huang WS, Kang L, Wang JP. Resveratrol affects protein kinase C activity and promotes apoptosis in human colon carcinoma cells. Asian Pac J Cancer Prev 2012; 13(12): 6017-22.
[http://dx.doi.org/10.7314/APJCP.2012.13.12.6017 ] [PMID: 23464396]
[68]
Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 2000; 131(4): 711-20.
[http://dx.doi.org/10.1038/sj.bjp.0703626] [PMID: 11030720]
[69]
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018; 10(11): 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[70]
Candelario-Jalil E, de Oliveira ACP, Gräf S, et al. Resveratrol potently reduces prostaglandin E2production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 2007; 4(1): 25.
[http://dx.doi.org/10.1186/1742-2094-4-25] [PMID: 17927823]
[71]
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021; 26(1): 229.
[http://dx.doi.org/10.3390/molecules26010229]
[72]
Schlotterose L, Pravdivtseva MS, Ellermann F, et al. Resveratrol mitigates metabolism in human microglia cells. Antioxidants 2023; 12(6): 1248.
[http://dx.doi.org/10.3390/antiox12061248] [PMID: 37371977]
[73]
Gegunde S, Alfonso A, Alvariño R, Pérez-Fuentes N, Botana LM. Anhydroexfoliamycin, a Streptomyces secondary metabolite, mitigates microglia-driven inflammation. ACS Chem Neurosci 2021; 12(13): 2336-46.
[http://dx.doi.org/10.1021/acschemneuro.1c00033] [PMID: 34110771]
[74]
Kotha A, Sekharam M, Cilenti L, et al. Resveratrol inhibits Src and Stat3 signaling and induces the apoptosis of malignant cells containing activated Stat3 protein. Mol Cancer Ther 2006; 5(3): 621-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0268 ] [PMID: 16546976]
[75]
Hui Y, Chengyong T, Cheng L, Haixia H, Yuanda Z, Weihua Y. Resveratrol attenuates the cytotoxicity induced by amyloid-β1-42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. Neurochem Res 2018; 43(2): 297-305.
[http://dx.doi.org/10.1007/s11064-017-2421-7] [PMID: 29090409]
[76]
Jang J, Song J, Lee J, Moon SK, Moon B. Resveratrol attenuates the proliferation of prostatic stromal cells in benign prostatic hyperplasia by regulating cell cycle progression, apoptosis, signaling pathways, BPH Markers, and NF-κb activity. Int J Mol Sci 2021; 22(11): 5969.
[http://dx.doi.org/10.3390/ijms22115969] [PMID: 34073143]
[77]
Manna SK, Mukhopadhyay A, Aggarwal BB. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: Potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 2000; 164(12): 6509-19.
[http://dx.doi.org/10.4049/jimmunol.164.12.6509] [PMID: 10843709]
[78]
Labban S, Alghamdi BS, Alshehri FS, Kurdi M. Effects of melatonin and resveratrol on recognition memory and passive avoidance performance in a mouse model of Alzheimer’s disease. Behav Brain Res 2021; 402: 113100.
[http://dx.doi.org/10.1016/j.bbr.2020.113100] [PMID: 33417994]
[79]
Lin Y-T, Wu YC, Sun GC, et al. Effect of resveratrol on reactive oxygen species-induced cognitive impairment in rats with angiotensin II-induced early Alzheimer’s Disease. J Clin Med 2018; 7(10): 329.
[http://dx.doi.org/10.3390/jcm7100329]
[80]
Chandrashekar DV, Steinberg RA, Han D, et al. Alcohol as a modifiable risk factor for alzheimer’s disease—evidence from experimental studies. Int J Mol Sci 2023; 24: 9492.
[http://dx.doi.org/10.3390/ijms24119492]
[81]
Hu J, Lin T, Gao Y, et al. The resveratrol trimer miyabenol C inhibits β-secretase activity and β-amyloid generation. PLoS One 2015; 10(1): e0115973.
[http://dx.doi.org/10.1371/journal.pone.0115973] [PMID: 25629409]
[82]
Ugusman A, Zakaria Z, Hui CK, Megat Mohd Nordin NA. Piper sarmentosum inhibits ICAM-1 and Nox4 gene expression in oxidative stress-induced human umbilical vein endothelial cells. BMC Complement Altern Med 2011; 11(1): 31.
[http://dx.doi.org/10.1186/1472-6882-11-31] [PMID: 21496279]
[83]
Al-Edresi S, Alsalahat I, Freeman S, Aojula H, Penny J. Resveratrol-mediated cleavage of amyloid β1-42 peptide: Potential relevance to Alzheimer’s disease. Neurobiol Aging 2020; 94: 24-33.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.04.012 ] [PMID: 32512325]
[84]
Chakraborty A, Mohapatra SS, Barik S, Roy I, Gupta B, Biswas A. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43(2): BSR20220324.
[http://dx.doi.org/10.1042/BSR20220324] [PMID: 36630532]
[85]
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev 2019; 119(2): 1221-322.
[http://dx.doi.org/10.1021/acs.chemrev.8b00138] [PMID: 30095897]
[86]
Gomes BAQ, Silva JPB, Romeiro CFR, et al. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/8152373]
[87]
Wendeburg L, de Oliveira ACP, Bhatia HS, Candelario-Jalil E, Fiebich BL. Resveratrol inhibits prostaglandin formation in IL-1β-stimulated SK-N-SH neuronal cells. J Neuroinflammation 2009; 6(1): 26-6.
[http://dx.doi.org/10.1186/1742-2094-6-26] [PMID: 19751497]
[88]
Zarghi A, Arfaei S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran J Pharm Res 2011; 10(4): 655-83.
[89]
Konyalioglu S, Armagan G, Yalcin A, Atalayin C, Dagci T. Effects of resveratrol on hydrogen peroxide-induced oxidative stress in embryonic neural stem cells. Neural Regen Res 2013; 8(6): 485-95.
[http://dx.doi.org/10.3969/J.ISSN.1673-5374.2013.06.001] [PMID: 25206691]
[90]
Nogueiras R, Habegger KM, Chaudhary N, et al. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol Rev 2012; 92(3): 1479-514.
[http://dx.doi.org/10.1152/physrev.00022.2011] [PMID: 22811431]
[91]
Silva P, Vauzour D. Wine polyphenols and neurodegenerative diseases: An update on the molecular mechanisms underpinning their protective effects. Beverages 2018; 4: 96.
[http://dx.doi.org/10.3390/beverages4040096]
[92]
Song SY, Kim IS, Koppula S, et al. 2-Hydroxy-4-Methylbenzoic anhydride inhibits neuroinflammation in cellular and experimental animal models of Parkinson’s disease. Int J Mol Sci 2020; 21(21): 8195.
[http://dx.doi.org/10.3390/ijms21218195 ] [PMID: 33147699]
[93]
Tucci P, Lattanzi R, Severini C, Saso L. Nrf2 pathway in huntington’s disease (HD): What is its role? Int J Mol Sci 2022; 23: 15272.
[http://dx.doi.org/10.3390/ijms232315272]
[94]
Liu S, Lin F, Wang J, Pan X, Sun L, Wu W. Polyphenols for the treatment of ischemic stroke: New applications and insights. Molecules 2022; 27(13): 4181.
[http://dx.doi.org/10.3390/molecules27134181] [PMID: 35807426]
[95]
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011; 164(4): 1079-106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x ] [PMID: 21371012]
[96]
Zhang XM, Zhu J. Kainic Acid-induced neurotoxicity: Targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 2011; 9(2): 388-98.
[http://dx.doi.org/10.2174/157015911795596540] [PMID: 22131947]
[97]
Sargsyan SA, Blackburn DJ, Barber SC, Monk PN, Shaw PJ. Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. Neuroreport 2009; 20(16): 1450-5.
[http://dx.doi.org/10.1097/WNR.0b013e328331e8fa ] [PMID: 19752764]
[98]
Gottlieb PA, Barone T, Sachs F, Plunkett R. Neurite outgrowth from PC12 cells is enhanced by an inhibitor of mechanical channels. Neurosci Lett 2010; 481(2): 115-9.
[http://dx.doi.org/10.1016/j.neulet.2010.06.066] [PMID: 20600595]
[99]
Descamps O, Spilman P, Zhang Q, et al. AβPP-selective BACE inhibitors (ASBI): Novel class of therapeutic agents for Alzheimer’s disease. J Alzheimers Dis 2013; 37(2): 343-55.
[http://dx.doi.org/10.3233/JAD-130578] [PMID: 23948888]
[100]
Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci 2018; 19(11): 3650.
[http://dx.doi.org/10.3390/ijms19113650] [PMID: 30463271]
[101]
Chen XQ, Fang F, Florio JB, et al. TRiC enhances retrograde axonal transport by modulating tau phosphorylation. Traffic 2018; 19: 840.
[http://dx.doi.org/10.1111/tra.12610] [PMID: 30120810]
[102]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[103]
Rocamonde B, Paradells S, Barcia C, Garcia Esparza A, Soria JM. Lipoic acid treatment after brain injury: Study of the glial reaction. Clin Dev Immunol 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/521939] [PMID: 24302959]
[104]
Jahrling J, Laberge RM. Age-related neurodegeneration prevention through mTOR inhibition: Potential mechanisms and remaining questions. Curr Top Med Chem 2015; 15(21): 2139-51.
[http://dx.doi.org/10.2174/1568026615666150610125856 ] [PMID: 26059360]
[105]
Ma Y, Li C, He Y, et al. Beclin-1/LC3-II dependent macroautophagy was uninfluenced in ischemia-challenged vascular endothelial cells. Genes Dis 2022; 9(2): 549-61.
[http://dx.doi.org/10.1016/j.gendis.2021.02.010] [PMID: 35224166]
[106]
Silvestro S, Mazzon E. Nrf2 activation: Involvement in central nervous system traumatic injuries. A promising therapeutic target of natural compounds. Int J Mol Sci 2022; 24(1): 199.
[http://dx.doi.org/10.3390/ijms24010199] [PMID: 36613649]
[107]
Waseem M, Sahu U, Salman M, et al. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death. PLoS One 2017; 12(7): e0180953.
[http://dx.doi.org/10.1371/journal.pone.0180953] [PMID: 28732061]
[108]
Asano T, Xuan M, Iwata N, et al. Involvement of the restoration of cerebral blood flow and maintenance of eNOS expression in the prophylactic protective effect of the novel ferulic acid derivative FAD012 against ischemia/reperfusion injuries in rats. Int J Mol Sci 2023; 24(11): 9663.
[http://dx.doi.org/10.3390/ijms24119663] [PMID: 37298615]
[109]
Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1202-8.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.006] [PMID: 25315300]
[110]
Intagliata S, Modica MN, Santagati LM, Montenegro L. Strategies to improve resveratrol systemic and topical bioavailability: An update. Antioxidants 2019; 8(8): 244.
[http://dx.doi.org/10.3390/antiox8080244] [PMID: 31349656]
[111]
Mazzanti G, Di Giacomo S. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2016; 1822: 631-8.
[http://dx.doi.org/10.3390/molecules21091243]
[112]
Mecocci P, Polidori MC. Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822(5): 631-8.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.006] [PMID: 22019723]
[113]
Zhu CW, Grossman H, Neugroschl J, et al. A randomized, double‐blind, placebo‐controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: A pilot study. Alzheimers Dement 2018; 4(1): 609-16.
[http://dx.doi.org/10.1016/j.trci.2018.09.009] [PMID: 30480082]
[114]
Cummings J. The role of biomarkers in Alzheimer’s disease drug development. Adv Exp Med Biol 2019; 1118: 29-61.
[http://dx.doi.org/10.1007/978-3-030-05542-4_2] [PMID: 30747416]
[115]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035 ] [PMID: 26362286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy