Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Anti-inflammatory Effect of Novel 2-Phenylphthalazin-2-ium Bromides on LPS-induced RAW264.7 Cells and their Mechanism

Author(s): Fang-Jun Cao*, Jian Shen, Hui Zhang and Lu Wang

Volume 21, Issue 12, 2024

Published on: 11 December, 2023

Page: [2407 - 2415] Pages: 9

DOI: 10.2174/0115701808239556231121065200

Price: $65

Abstract

Background: Inspired by natural anti-inflammatory quaternary benzo[C]phenanthridine alkaloids, novel 2-phenylphthalazin-2-ium bromides were previously designed and synthesized.

Objective: The anti-inflammatory effect of 2-phenylphthalazin-2-ium bromides was evaluated based on inflammatory cytokines, and their possible mechanism was explored through the NF-κB, TLR4 and MAPK signaling pathways.

Methods: The tested concentrations of two compounds were assessed using MTT assay in vitro. Griess assay was used to determine the changes in nitric oxide (NO) in the cell culture supernatant. qRT‒PCR was used to detect the mRNA levels of inflammatory cytokines, such as IL-6, IL-1ß, IL-10, TNF-α, TLR4 and iNOS. The secretion levels of TNF-α and IL-1β were detected by ELISA. Western blot test was used to detect the protein expression of IL-6, IL-10, TLR4, iNOS, NF-κB, p-P38/P38, p- ERK/ERK and p-JNK/JNK.

Results: 2-(3,5-Dichlorophenyl)phthalazin-2-ium bromide (2) with a concentration below 1 μg/mL showed no significant effect on the growth inhibition of RAW264.7 cells, so the concentrations of compound 2 used for experiments were set to 0, 0.25, 0.5 and 1 μg/mL. Compared with the blank control group, the model group showed increased release of NO, transcription levels of IL-6, IL-1ß, IL-10, TNF-α, TLR4 and iNOS (p<0.05), and ratios of p-P38/P38, p-ERK/ERK, p-JNK/JNK (p<0.05). Compared with the model group, the sample groups displayed decreased NO release and reduced transcriptional levels of IL-6, IL-1ß, IL-10, TNF-α, TLR4, and iNOS and reduced protein expression ratios of IL-6, IL-1ß, IL-10, TNF-α, NF-κB, TLR4, iNOS, p-P38/P38, p-ERK/ERK and p- JNK/JNK (p<0.05).

Conclusion: This study showed that 2-phenylphthalazin-2-ium bromides partially protected macrophages from the LPS-induced inflammatory response by suppressing TLR4-NF-κB/MAPK signaling and reducing NO production.

Keywords: Isoquinolinebenzo[c]phenanthridine alkaloids, 2-phenylphthalazin-2-ium bromides, Anti-inflammatory effect, Inflammatory cytokines, TLR4-NF-κB/MAPK signal pathway.

Graphical Abstract
[1]
Zhang, J.; Mao, K.; Gu, Q.; Wu, X. The Antiangiogenic Effect of Sanguinarine Chloride on Experimental Choroidal Neovacularization in Mice via Inhibiting Vascular Endothelial Growth Factor. Front. Pharmacol., 2021, 12, 638215-638215.
[http://dx.doi.org/10.3389/fphar.2021.638215] [PMID: 33790794]
[2]
Liu, G.P.; Guan, J.; Fang, Y.; Martinez, S.; Chen, P.; Bin, V.; Duraipandiyan, T.; Gong, M.; Garine, B. Macleaya cordata extract decreased diarrhea score and enhanced intestinal barrier function in growing piglets. BioMed Res. Int., 2016, 13, 1-7.
[3]
Liu, Y.L.; Zhong, L.; Chen, T.; Shi, Y.; Hu, Y.; Zeng, J.G.; Liu, H.Y.; Xu, S.D. Dietary sanguinarine supplementation on the growth performance, immunity and intestinal health of grass carp (Ctenopharyngodon idellus) fed cottonseed and rapeseed meal diets. Aquaculture, 2020, 528, 735521.
[http://dx.doi.org/10.1016/j.aquaculture.2020.735521]
[4]
Zhu, L.F.; Hou, Z.; Zhou, K.; Tong, Z.B.; Kuang, Q.; Geng, H.L.; Zhou, L. Synthesis, bioactivity and structure–activity relationships of new 2-aryl-8-OR-3,4-dihydroisoquinolin-2-iums salts as potential antifungal agents. Bioorg. Med. Chem. Lett., 2016, 26(10), 2413-2417.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.001] [PMID: 27072907]
[5]
Cui, Z.M.; Zhou, B.H.; Fu, C.; Chen, L.; Fu, J.; Cao, F.J.; Yang, X.J.; Zhou, L. Simple Analogues of Quaternary Benzo[ c]phenanthridine Alkaloids: Discovery of a Novel Antifungal 2-Phenylphthalazin-2-ium Scaffold with Excellent Potency against Phytopathogenic Fungi. J. Agric. Food Chem., 2020, 68(52), 15418-15427.
[http://dx.doi.org/10.1021/acs.jafc.0c06507] [PMID: 33332120]
[6]
Li, J.Y.; Huang, H.B.; Pan, T.X.; Wang, N.; Shi, C.W.; Zhang, B.; Wang, C.F.; Yang, G.L. Sanguinarine induces apoptosis in Eimeria tenella sporozoites via the generation of reactive oxygen species. Poult. Sci., 2022, 101(5), 101771-101771.
[http://dx.doi.org/10.1016/j.psj.2022.101771] [PMID: 35272108]
[7]
Zhang, S.; Zhao, Y.; Liu, Y.; Chen, D.; Lan, W.; Zhao, Q.; Dong, C.; Xia, L.; Gong, P. Synthesis and antitumor activities of novel 1,4-disubstituted phthalazine derivatives. Eur. J. Med. Chem., 2010, 45(8), 3504-3510.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.016] [PMID: 20537434]
[8]
Zhang, S.M.; Coultas, K.A. Identification of plumbagin and sanguinarine as effective chemotherapeutic agents for treatment of schistosomiasis. Int. J. Parasitol. Drugs Drug Resist., 2013, 3, 28-34.
[http://dx.doi.org/10.1016/j.ijpddr.2012.12.001] [PMID: 23641325]
[9]
Sánchez-Moreno, M.; Sanz, A.M.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Ramírez-Macias, I.; Rosales, M.J.; Olmo, F.; Garcia-Aranda, I.; Campayo, L.; Cano, C.; Arrebola, F.; Yunta, M.J.R.; Sanz, M.A.M.; Gómez-Contreras, F. In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. J. Med. Chem., 2011, 54(4), 970-979.
[http://dx.doi.org/10.1021/jm101198k] [PMID: 21229977]
[10]
Prakash, O.; Aneja, D.K.; Hussain, K.; Kumar, R.; Arora, S.; Sharma, C.; Aneja, K.R. Organoiodine(III) Mediated Synthesis of Novel Symmetrical Bis ([1,2,4]triazolo)[3,4‐a:4′,3′‐c]phthalazines as Antibacterial and Antifungal Agents. J. Heterocycl. Chem., 2012, 49(5), 1091-1097.
[http://dx.doi.org/10.1002/jhet.943]
[11]
Hashash, M.A.E.; Dalal, B.G.; Nayera, A.W.; Aya, S.A.R. Synthesis of Novel Series of Phthalazine Derivatives with Antibacterial and Antifungal Evaluation. Journal of Chemical Engineering & Process Technology, 2014, 5(4), 4.
[http://dx.doi.org/10.4172/2157-7048.1000195]
[12]
Chen, J.; Kang, B.; Yao, K.; Fu, C.; Zhao, Y. Effects of dietary Macleaya cordata extract on growth performance, immune responses, antioxidant capacity, and intestinal development in weaned piglets. J. Appl. Anim. Res., 2019, 47(1), 349-356.
[http://dx.doi.org/10.1080/09712119.2019.1636800]
[13]
Kosina, P.; Walterová, D.; Ulrichová, J.; Lichnovský, V.; Stiborová, M.; Rýdlová, H.; Vičar, J.; Krečman, V.; Brabec, M.J.; Šimánek, V. Sanguinarine and chelerythrine: Assessment of safety on pigs in ninety days feeding experiment. Food Chem. Toxicol., 2004, 42(1), 85-91.
[http://dx.doi.org/10.1016/j.fct.2003.08.007] [PMID: 14630132]
[14]
Chaturvedi, M.M.; Kumar, A.; Darnay, B.G.; Chainy, G.B.N.; Agarwal, S.; Aggarwal, B.B. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kappaB activation, IkappaBalpha phosphorylation, and degradation. J. Biol. Chem., 1997, 272(48), 30129-30134.
[http://dx.doi.org/10.1074/jbc.272.48.30129] [PMID: 9374492]
[15]
Meng, Y.; Liu, Y.; Hu, Z.; Zhang, Y.; Ni, J.; Ma, Z.; Liao, H.; Wu, Q.; Tang, Q. Sanguinarine attenuates lipopolysaccharide-induced inflammation and apoptosis by inhibiting the TLR4/NF-κB pathway in H9C2 cardiomyocytes. Curr. Med. Sci., 2018, 38(2), 204-211.
[http://dx.doi.org/10.1007/s11596-018-1867-4] [PMID: 30074177]
[16]
Yu, C.; Li, P.; Wang, Y.X.; Zhang, K.G.; Zheng, Z.C.; Liang, L.S. Sanguinarine Attenuates Neuropathic Pain by Inhibiting P38 MAPK Activated Neuroinflammation in Rat Model. Drug Des. Devel. Ther., 2020, 14, 4725-4733.
[http://dx.doi.org/10.2147/DDDT.S276424] [PMID: 33177809]
[17]
Fan, F.; Zou, Y.; Wang, Y.; Zhang, P.; Wang, X.; Dart, A.M.; Zou, Y. Sanguinarine Reverses Pulmonary Vascular Remolding of Hypoxia-Induced PH via Survivin/HIF1α-Attenuating Kv Channels. Front. Pharmacol., 2021, 12, 768513-768513.
[http://dx.doi.org/10.3389/fphar.2021.768513] [PMID: 35002707]
[18]
Yang, X.; Wang, X.; Gao, D.; Zhang, Y.; Chen, X.; Xia, Q.; Jin, M.; Sun, C.; He, Q.; Wang, R.; Liu, K. Developmental toxicity caused by sanguinarine in zebrafish embryos via regulating oxidative stress, apoptosis and wnt pathways. Toxicol. Lett., 2021, 350, 71-80.
[http://dx.doi.org/10.1016/j.toxlet.2021.07.001] [PMID: 34252508]
[19]
Cao, F.J.; Hou, X.; Wang, L.; Li, P.W.; Ma, L.; Feng, H. Cytotoxic Activity, Apoptosis Induction and Structure–Activity Relationship of 2‐Phenylphthalazin‐2‐ium Salts as Promising Antitumor Agents. ChemistrySelect, 2022, 7(40), e202202983.
[http://dx.doi.org/10.1002/slct.202202983]

© 2024 Bentham Science Publishers | Privacy Policy